
Les Cahiers du GERAD ISSN: 0711–2440

A Graph Coloring Model for a

Feasibility Problem in Crew

Scheduling

M. Gamache, A. Hertz,
J. Ouellet

G–2005–34

April 2005

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.

A Graph Coloring Model for a Feasibility

Problem in Crew Scheduling

Michel Gamache

GERAD and Département des génies civil, géologique et des mines

École Polytechnique de Montréal
C.P. 6079, Succ. Centre-ville

Montréal (Québec) Canada H3C 3A7
michel.gamache@polymtl.ca

Alain Hertz, Jérôme Ouellet

GERAD and Département de mathématiques et de génie industriel

École Polytechnique de Montréal
C.P. 6079, Succ. Centre-ville

Montréal (Québec) Canada H3C 3A7
{alain.hertz;jerome.ouellet}@polymtl.ca

April 2005

Les Cahiers du GERAD

G–2005–34

Copyright c© 2005 GERAD

Abstract

We consider a crew scheduling problem with preferential bidding in the airline in-
dustry. We propose a new methodology based on a graph coloring model and a tabu
search algorithm for determining if the problem contains at least one feasible solu-
tion. We then show how to combine the proposed approach with a heuristic sequential
scheduling method that uses column generation and branch-and-bound techniques.

Key Words: Graph coloring, crew scheduling, preferential bidding, tabu search.

Résumé

Nous considérons un problème de confection d’horaires d’équipages en transport
aérien, dans lequel on tient compte des préférences des employés. Nous proposons une
nouvelle méthodologie basée sur un modèle de coloration de graphe et sur un algorithme
de type Recherche avec tabous, le but étant de déterminer si le problème considéré con-
tient au moins une solution qui respecte toutes les contraintes. Nous montrons ensuite
comment combiner l’approche proposée avec une heuristique séquentielle de confec-
tion d’horaires qui utilise la génération de colonnes et une technique de séparation-
évaluation (branch-and-bound).

Les Cahiers du GERAD G–2005–34 1

1 Introduction

In the airline industry, the problem of constructing monthly work schedules consists of
designing a monthly schedule for each employee while taking into account their preferences
and a list of preassigned activities such as vacations and training periods. More precisely, a
schedule is a sequence of pairings, pre-assignments, and rest periods. A pairing is a sequence
of flights that starts from a city, called base, and ends at this same city. A schedule is
feasible if it respects constraints imposed by security rules of the airline industry, collective
agreements between the employees and the company, and pre-assignment requirements.
The crew scheduling problem is to determine a feasible schedule for each employee such
that the selected schedules cover all the pairings planned during the month.

Each employee draws up a list of preferences that is used for calculating a value reflecting
the interest (or the aversion) of the employee for each pairing and rest period. The score
of a schedule for an employee is computed as the sum of the values assigned to the pairings
and rest periods in his schedule. Two modes can be used to build the schedules. In the
first mode, the objective consists of maximizing the global satisfaction of the employees,
that is, the overall sum of the selected schedule scores. This mode is called rostering and is
mainly used in large European airline companies such as Air France (Giafferri et al. 1982,
Gontier 1985, Gamache et al. 1998a), Alitalia (Nicoletti 1975, Marchettini 1980, Sarra
1988, Federici et Paschina 1990), Lufthansa (Glanert 1984), SwissAir (Tingley 1979), Air
New-Zealand (Ryan 1992) and El-Al Israel Airline (Mayer 1980). The second mode, called
preferential bidding, is similar to the first one except that the assignment of tasks (pairings
and rest periods) according to preferences is done on the basis of seniority rules. More
precisely, this mode requires that no employee can get a better score if this new score
imposes a strict decrease in the score of a more senior employee. Preferential bidding is
most often used in large North-American airlines.

The crew scheduling problem with preferential bidding (PBS) is quite new and thus
less known than the rostering problem. There are only few papers in the literature that
deal with this problem. Companies such as Quantas (Moore et al., 1978), CP Air (Byrne,
1988), Midwest Express Airlines, Inc. (Schmidt, 1994), Air Canada (Gamache et al.,
1998) have developed their solution method. Based on Sherali and Soyser’s approach on
preemptive multi-objective programming (1983), one can formulate the PBS as an integer
linear program. However, as observed in (Gamache et al., 1998), such a model necessitates
huge numbers that are much too large for any computer. Because of the complexity of the
problem, most of the methods presented in the literature are based on greedy heuristics.

The current most efficient heuristic method for the PBS is a sequential algorithm based
on column generation and branch and bound (Gamache et al, 1998, Achour et al. 2004). It
solves a sequence of mixed linear programs, one for each employee, from the most senior to
the most junior employee. It may happen that the method fixes a schedule for an employee
so that the more junior employees cannot cover the residual pairings. A backtracking

2 G–2005–34 Les Cahiers du GERAD

process is therefore used to repair bad decisions. The method of Gamache et al. (1998)
is described in the next section. In order to avoid the above mentioned backtracks, which
may be very time consuming, we propose to add a feasibility test that determines if it is
possible to assign a feasible schedule to each employee while covering all pairings. This
feasibility problem is explained with more details in Section 3, and modeled as a graph
coloring problem in Section 4. A solution method for the proposed graph coloring problem
is described in Section 5, and some computational experiments are reported in Section 6.
Final remarks and conclusions are drawn in Section 7.

2 Heuristic sequential algorithms for the PBS

Let P denote a set of pairings that have to be covered, and let E = {1, · · · , m} be the set of
employees labeled from the most senior to the most junior. The heuristic sequential method
for the PBS proposed by Gamache et al. (1998) constructs the schedules sequentially, one
after the other, from the most senior employee to the most junior one. In such a sequential
algorithm, a problem is defined for each employee i ∈ E. It consists of constructing the
best possible schedule for employee k, without changing the schedules already chosen for
the more senior employees 1, · · · , k − 1, and with the constraint that it should be possible
to assign feasible schedules to the more junior employees k + 1, · · · , m so that all pairings
in P are covered.

The assignment of employees to pairings must satisfy qualification requirements imposed
by the airline company. Let Q be the set of qualifications, and define δiq equal 1 if employee
i has qualification q, 0 otherwise. Assume that a feasible schedule has already been assigned
to employees 1, · · · , k − 1. We will use the following notations:

• Nk
pq represents the number of employees with qualification q still required by pairing

p.

• bk
p represents the number of employees still required by pairing p ;

• Sk
i is the set of all remaining feasible schedules for employee i ;

Also, let apj equal 1 if pairing p is part of schedule j, 0 otherwise, and let cij denote
the score of schedule j for employee i. Finally, let xij be a binary variable which equals 1
if schedule j ∈ Sk

i is chosen for employee i, and 0 otherwise. The problem of finding a
feasible schedule for employee k so that the schedules of more junior employees can cover
the residual pairings can be formulated as an integer linear program (IPk) as follows.

Les Cahiers du GERAD G–2005–34 3

(IPk)

Max ZIPk
=

∑

j∈Sk
k

ckj xkj

subject to
m

∑

i=k

∑

j∈Sk
i

apj δiq xij ≥ Nk
pq ∀p ∈ P ∀q ∈ Q (1)

m
∑

i=k

∑

j∈Sk
i

apj xij = bk
p ∀p ∈ P (2)

∑

j∈Sk
i

xij = 1 i = k, . . . , m (3)

xij ∈ {0, 1} i = k, . . . , m, ∀j ∈ Sk
i (4)

Qualification requirements are imposed by constraints (1). The constraint set (2) en-
sures that the set of selected schedules covers all the pairings with the appropriate number
of employees. Constraints (3) guarantee that a schedule is built for each employee. Binary
requirements on the xij variables are given by (4).

Let x∗

1, · · · , x∗

k−1 denote feasible schedules assigned to employees 1, · · · , k−1. The inte-
ger linear program (IPk) resulting from these assignments will be denoted IP (x∗

1, · · ·, x
∗

k−1).
An ideal sequential algorithm for the PBS, called PSB-IP is given in Figure 1. It obviously
produces an optimal solution to PBS in the case where no employee has two schedules with
the same score.

Procedure PSB-IP

for k = 1, · · · ,m do

determine an optimal solution s to IP (x∗

1, · · · , x∗

k−1);

set x∗

k equal to the schedule assigned to k in s;

Figure 1: An sequential heuristic algorithm for the PBS

The solution of (IPk) may however prove very long. Moreover, in the optimal solution
of (IPk), the schedules for employees k + 1, · · ·m are useless for the subsequent iterations
since the preferences of these employees have not been taken into account. To reduce
the solution time, Gamache et al. (1998) propose to solve the following mixed integer
linear program (MIPk), where integrality constraints are imposed only for the variables
associated with employee k.

4 G–2005–34 Les Cahiers du GERAD

(MIPk)

Max ZMIPk
=

∑

j∈Sk
k

ckj xkj

subject to
m

∑

i=k

∑

j∈Sk
i

apj δiq xij ≥ Nk
pq ∀p ∈ P ∀q ∈ Q (1)

m
∑

i=k

∑

j∈Sk
i

apj xij = bk
p ∀p ∈ P (2)

∑

j∈Sk
i

xij = 1 i = k, . . . , m (3)

xkj ∈ {0, 1} ∀j ∈ Sk
k . (4′)

xij ≥ 0 i = k + 1, . . . , m, ∀j ∈ Sk
i . (4′′)

Gamache et al. (1998) propose to solve (MIPk) by combining a column generation
algorithm with a branch-and-bound technique. Column generation is used to solve the
linear program obtained by relaxing the integrality constraints in (MIPk), while branch-
and-bound is used to assign an integer solution to employee k.

It often happens that (MIPk) and (IPk) have the same optimal value. This situation
is however not always true and it may therefore happen that a (MIPk) has no feasible
solution. In such a case, one must backtrack and find an optimal solution to (IPk−1),
if possible; otherwise, this backtracking process is repeated until a feasible solution is
obtained for an (IPℓ) with ℓ < k. The process, called PSB-MIP, is summarized in Figure 2,
where MIP (x∗

1, · · · , x∗

k−1) denotes the (MIPk) resulting from the assignment of schedules
x∗

1, · · · , x∗

k−1 to employees 1, · · · , k − 1. In this process, it is assumed that (IP1) has a
feasible solution.

Procedure PSB-MIP

(0) set k:=1;

(1) if MIP (x∗

1, · · · , x∗

k−1) has no feasible solution then go to step (2)

else determine an optimal solution s to MIP (x∗

1, · · · , x∗

k−1) and go to (3)

(2) repeat k := k − 1 until IP (x∗

1, · · · , x∗

k−1) has a feasible solution;

determine an optimal solution s to IP (x∗

1, · · · , x∗

k−1) and go to (3)

(3) let x∗

k by the schedule assigned to k in s; set k := k + 1, and go to (1);

Figure 2: The sequential algorithm for the PBS proposed by Gamache et al. (1998)

We illustrate the backtracking process with the following simple example where m = 5
employees must cover a set P = {A, B, C, D, E, F, G} of pairings. We suppose that all

Les Cahiers du GERAD G–2005–34 5

pairings require exactly one employee, except G that requires two employees. The periods
associated with the pairings are represented in Figure 3. Each pairing has a number of
flight credits corresponding to the number of units on the horizontal axis. For example,
D has 2 flight credits while E has 5 flight credits. We assume that the workload of each
employee must be of at least 6 flight credits, but not more than 10 flight credits, and that
pairing D is pre-assigned to employee 3.

D E F

A B C

G

time

Figure 3: Seven pairings

The sets of feasible schedules at iteration 1 are

• S1
i = {∅, A, B, C, E, F, G, A →B, A →C, A →F, B →C, E →F} (i = 1, 2, 4, 5)

• S1
3 = {D, D →B, D →C, D →E, D →F, D →G}

where p1 →p2 denotes the schedule made of pairing p1 followed by pairing p2.

Consider the set Q = {α, β, γ, δ} of qualifications, and assume that

• pairing A requires one employee with qualification α,

• pairings B and C both require one employee with qualification β,

• pairings E and F both require one employee with qualification γ, and

• pairing G requires one employee with qualification δ.

Suppose also that employees 1 and 4 have qualification α, employees 1, 4 and 5 have
qualification β, employees 3 and 5 have qualification γ, and employees 1 and 3 have qualifi-
cation δ, while employee 2 has no qualification. Finally, assume that employee 1 has given
a score 10 to G, 4 to A and B, 2 to C, and 0 to D, E and F .

The optimal solution to MIP1 is the following one with value 10:

• x1G = x2G = 1,

• x3D→E = x3D→F = x4A→B = x4A→C = x5B→C = x5E→F = 0.5, and

• xij = 0 otherwise.

6 G–2005–34 Les Cahiers du GERAD

However, (IP1) has no feasible solution of score 10. Indeed, if one gives pairing G to 1,
then 1 cannot do anything else, which means that employees 3, 4 and 5 must cover pairings
A, · · · , F (while employee 2 can only be assigned to pairing G). But this means that

(1) employee 4 must do pairing A since he is the last one with qualification α. Hence,
he cannot do both B and C because of the limit of 10 flight credits in his workload.
As a consequence, employee 5 must do B or/and C (since both pairing require an
employee with qualification β).

(2) employee 3 cannot do both E and F (because he must do D and cannot cumulate
more than 10 flight credits). As a consequence, employee 5 must do E or/and F
(since both pairing require an employee with qualification γ).

(1) and (2) are contradictory since there is no feasible schedule for employee 5 that
contains a pairing from {B, C} and a pairing from {E, F}.

As a conclusion, the optimal solution of (MIP1) assigns pairing G to employee 1, and
the consequence is that (IP2) has no feasible solution. This is not detected immediately
since (MIP2) has a feasible solution x2G = 1, x3D→E = x3D→F = x4A→B = x4A→C =
x5B→C = x5E→F = 0.5, and xij = 0 otherwise. By assigning pairing G to employee 2,
one gets (MIP3) which has no feasible solution. The backtracking process must then first
detect that (IP2) has no feasible solution, and finally produce an optimal solution to (IP1)
which consists in assigning schedule A → B to 1, schedule G to 2, schedule D → G to 3,
schedule C to 4 and schedule E → F to 5. This solution has value 8 which is strictly
smaller that the optimal value of (MIP1).

Instead of solving (MIPk) or (IPk), one can generate a schedule for employee k with-
out taking care of the more junior employees. This corresponds to solving the following
problem, called (RCSPk), which is a resource constrained shortest path problem (this
algorithm is used by Gamache et al., 1998, for solving the subproblems in the column
generation approach).

(RCSPk)

Max ZRCSPk
=

∑

j∈Sk
k

ckj xkj

subject to

∑

j∈Sk
k

xkj = 1

xkj ∈ {0, 1} ∀j ∈ Sk
k .

It often happens in practice that (IPk), (MIPk) and (RCSPk) have the same optimal
value, especially for small values of k. The reason is that the number of more junior
employees is large enough to ensure the satisfaction of constraints (1) to (3) of (IPk).

Les Cahiers du GERAD G–2005–34 7

Jeandroz (1999) and El Idrissi (2002) have proposed to use counters to detect when the
number of more junior employees becomes critical (i.e., there is a non-negligible probability
that the schedule obtained by solving RCSPk involves an infeasible solution for IPk). The
counters measure the number of required employees and qualifications at each time period,
and these demands are compared to the current offers. When the demands are too close
to the offers, the method switches to (MIPk) instead of (RCSPk). Details are given
in Jeandroz (1999). Procedure PBS-MIP-RCSP in Figure 4 presents a possible way to
integrate counters in a solution scheme, where RCSP (x∗

1, · · · , x∗

k−1) denotes the (RCSPk)
resulting from the assignment of schedules x∗

1, · · · , x∗

k−1 to employees 1, · · · , k − 1. An
alternative, proposed by Jeandroz (1999) and El Idrissi (2002), is to never turn back to
Step 2 as soon as Step 3 is visited.

Procedure PSB-MIP-RCSP

(0) set k:=1;

(1) use counters to determine whether to go to step (2) or (3);

(2) if RCSP (x∗

1, · · · , x∗

k−1) has no feasible solution then go to step (4)

else determine an optimal solution s to RCSP (x∗

1, · · · , x∗

k−1) and go to (5);

(3) if MIP (x∗

1, · · · , x∗

k−1) has no feasible solution then go to step (4)

else determine an optimal solution s to MIP (x∗

1, · · · , x∗

k−1) and go to (5);

(4) repeat k := k − 1 until IP (x∗

1, · · · , x∗

k−1) has a feasible solution;

determine an optimal solution s to IP (x∗

1, · · · , x∗

k−1) and go to (5);

(5) let x∗

k be the schedule assigned to k in s; set k := k + 1, and go to (1);

Figure 4: A sequential algorithm that combines (IPk), (MIPk), (RCSPk),

3 A feasibility problem

As already noticed, it may happen that (IPk), (MIPk) and (RCSPk) have different optimal
values. This explains the use of the backtracking step (2) in PBS-MIP or step (4) in
PBS-MIP-RCSP. The following property provides a sufficient condition to certify that no
backtrack will be needed. It is a direct consequence of the fact that (RCSPk) and (MIPk)
are relaxations of (IPk).

Property Let x∗

k denote the schedule assigned to k in an optimal solution to RCSP (x∗

1,
· · · , x∗

k−1) or MIP (x∗

1, · · · , x∗

k−1). If IP (x∗

1, · · · , x∗

k) has at least one feasible solution, then
there is an optimal solution to IP (x∗

1, · · · , x∗

k−1) that assigns schedule x∗

k to k.

Suppose the existence of a procedure, called FEASIBLE, which tries to determine a
feasible solution to a given input problem (IPk), and produces the answer ”YES” if such
a solution was found, and ”I DON’T KNOW” otherwise.

8 G–2005–34 Les Cahiers du GERAD

Since (RCSPk) and (MIPk) are much easier to solve when compared to (IPk), we
propose to first determine a schedule for k by solving (RCSPk), and then check, using
the FEASIBLE procedure, whether the resulting (IPk) is feasible. If we are not able to
exhibit a feasible solution to (IPk) (i.e., FEASIBLE(IPk)=”I DON’T KNOW”), then we
solve the corresponding (MIPk) which is still easier to solve than (IPk). Again, if the
resulting (IPk) can be proved feasible, this proves that the schedule assigned to k is the
best possible one; otherwise we solve (IPk). It often happens that (IPk) and (RCSPk) have
different optimal values when k is large. This is due to the fact that the number of junior
employees becomes critical to cover the residual pairings. We have therefore decided to
solve (RCSPk) only up to employee kmax, where kmax is a fixed parameter. This process,
called PBS-FeasibleIP, is summarized in Figure 5.

Procedure PBS-FeasibleIP

(0) Set k:=1;

(1) if k ≤ kmax then go to (2) else go to (3);

(2) determine an optimal solution sRCSP to RCSP (x∗

1, · · · , x∗

k−1);

let x∗

k denote the schedule assigned to k in sRCSP ;

if FEASIBLE(IP (x∗

1, · · · , x∗

k)) = ”I DON’T KNOW” then go to (3) else go to (5)

(3) determine an optimal solution sMIP to MIP (x∗

1, · · · , x∗

k−1);

let x∗

k denote the schedule assigned to k in sMIP ;

if FEASIBLE(IP (x∗

1, · · · , x∗

k)) = ”I DON’T KNOW” then go to (4) else go to (5)

(4) set x∗

k equal to the schedule of k in an optimal solution of IP (x∗

1, · · · , x∗

k−1);

(5) if k < m then set k := k + 1 and go to (1) else STOP.

Figure 5: a new heuristic sequential algorithm for the PBS

For illustration, both (RCSP1) and (MIP1) suggest to assign pairing G to employee 1
in the example of Section 2, while this should not be done since, as already observed,
this will induce future backtrack. The new proposed algorithm PBS-FeasibleIP does not
assign pairing G to employee 1 because, with such a schedule x∗

1, the output of procedure
FEASIBLE(IP (x∗

1)) at Steps 2 and 3 is ”I DON’T KNOW”.

In the next section, we show that the output of procedure FEASIBLE can be obtained
by solving a graph coloring problem. A tabu search algorithm for this problem is proposed
in Section 5.

4 A graph coloring model

Given a graph G = (V, E) with vertex set V and edge set E, a coloring of G is a function
c : V → N. The value c(x) of a vertex x is called the color of x. If two adjacent vertices

Les Cahiers du GERAD G–2005–34 9

x and y have the same color i, the edge linking x with y is said conflicting. A coloring
without conflicting edges is said legal. The Graph Coloring Problem (GCP for short) is to
determine a legal coloring with the smallest number of different colors, called chromatic
number of G.

The GCP is NP-hard. Although many exact algorithms have been designed for this
problem, such algorithms can only be used to solve small instances. Heuristic algorithms,
on the other hand, can be used on much larger instances, but only to produce upper bounds
on the chromatic number.

In this section, we describe a graph coloring model for checking whether (IPk) contains
at least one feasible solution. To each problem (IPk) we associate a graph Gk which is
constructed as follows:

• for each pairing p, we create bk
p vertices denoted vαp (α = 1, · · · , bk

p); in the following
we denote Vp = {v1p, · · · , vbk

pp};

• two vertices vαp and vβq are linked by an edge if and only if p=q or p overlaps with q.

The graph G1 associated with (IP1) for the example of Figure 3 is represented in
Figure 6.

2G

v v v v v v

v1G v

1D 1A 1E 1B 1F 1C

Figure 6: The graph associated with the pairings of Figure 3

We associate a color i to each employee i = k, · · · , m, and a coloring of the vertices of
Gk is defined as a function c that assigns exactly one color c(v) to each vertex v. Such a
definition means that a coloring satisfies constraints (2), (3) and (4) of (IPk).

To simplify the presentation, we suppose here below that the sets Sk
i (i = k, · · · , m) of

feasible schedules at iteration k are defined with the following constraints:

(a) a schedule cannot contain overlapping pairings

(b) all pre-assignments requirements must be fulfilled

(c) the workload (i.e., the total number of flight credits) in the schedule assigned to
employee i must lie in the interval [Li, Ui].

As will be discussed in Section 7, other constraints (e.g., collective agreements between
the company and the employees, airline security rules) can easily be added to the model.

10 G–2005–34 Les Cahiers du GERAD

A conflicting edge (i.e., an edge having both endpoints with the same color) corresponds
to the situation where an employee performs two tasks vαp and vβp of the same pairing p,
or two tasks vαp and vβq in two overlapping pairings p and q. Hence, a legal coloring of
Gk satisfies constraints (a).

We assign a list L(v) of possible colors to each vertex v. If employee i has to be pre-
assigned to pairing p, then we choose one vertex vαp ∈ Vp and we restrict the set L(vαp) of
possible colors for this vertex to the singleton {i}. Any task v that is not pre-assigned to
an employee i has L(v) = {k, · · · , m}.

Constraints (b) are taken into account by imposing that a coloring c must assign a color
c(v) ∈ L(v) to each vertex v. In our example, we impose that v1D must have color 3 (i.e.,
L(v1D) = {3}).

Let wp denote the number of flight credits of pairing p. We assign a weight denoted
w(v) and equal to wp to each vertex v ∈ Vp. Constraints (c) impose that the total weight
∑

c(v)=i w(v) of vertices with color i is a number in [Li, Ui] for all i = k, · · · , m.

The schedules are linked together with constraint (1) of (IPk) imposing that all qual-
ification requirements must be fulfilled. These constraints can be interpreted in terms of
graph coloring. Indeed, let Iq denote the set of employees in {k, · · · , m} having qualifica-
tion q. To satisfy constraint (1), a coloring must be such that at least Nk

pq vertices in Vp

must have a color in Iq. In our example, we impose that at least one vertex among v1G

and v2G must have color 1 or 3.

In summary, our goal is to determine a legal coloring c of Gk such that

• c(v) ∈ L(v) for all vertices v,

•
∑

c(v)=i w(v) ∈ [Li, Ui] (i = k, · · · , m),

• at least Nk
pq vertices in Vp have a color in Iq.

Such a coloring exists if and only if (IPk) has a feasible solution.

Finding a legal coloring Gk (i.e., a coloring that satisfies constraints (a)) or proving
that no such coloring exists is an easy task. Indeed, the graph Gk is an interval graph
(Hajós, 1957), and polynomial algorithms are known to color such graphs. However the
above additional requirement make the problem much more difficult. Indeed, for example,
it is shown in (Biró et al. 1992) that two pre-assignments are sufficient to transform the
coloring problem from polynomially solvable to NP-hard. We therefore propose a heuristic
coloring algorithm which is presented in the next section.

5 A tabu search algorithm

Let S be the set of solutions to a combinatorial optimization problem. For a solution s ∈ S,
let N(s) denote the neighborhood of s which is defined as the set of neighbor solutions in S

Les Cahiers du GERAD G–2005–34 11

obtained from s by performing a local change on it. Local search techniques visit a sequence
s0, . . . , sn of solutions, where s0 is an initial solution and si+1 ∈ N(si) (i = 1, . . . , n − 1).
Tabu search is one of the most famous local search technique. It was introduced by Glover
in 1986. A description of the method and its concepts can be found in Glover and Laguna
(1997). A basic tabu search is described in Figure 7.

Tabu Search

Choose an initial solution s; set TL = ∅ (tabu list); set s∗ = s (best solution);

Repeat the following until a stopping criterion is met

• Determine a best solution s′ ∈ N(s) such that either s′ /∈ TL or s′ is better than s∗;

• If s′ is better than s∗ then set s∗ := s′;

• Set s := s′ and update TL;

Figure 7: Basic tabu search

We describe in this section a tabu search algorithm for our graph coloring problem.
Since we follow the general scheme of Figure 7, it is sufficient to define the solution space
S, the objective function f , the neighborhood N and the tabu list TL.

The proposed tabu search algorithm is an extension of the Tabucol algorithm described
in (Hertz et al., 1987). Tabucol first generates an initial coloring which contains typically
a large number of conflicting edges. Then, the heuristic iteratively modifies the color of a
single vertex, the objective being to decrease progressively the number of conflicting edges
until a legal coloring is obtained.

Our adaptation works as follows. We define the solution space S as the set of colorings c
such that c(v) ∈ L(v) for all v in Gk and such that c(vαp) 6= c(vβp) for all p ∈ P and α 6= β.
This means that our algorithm will only visit colorings that satisfy the pre-assignment
requirements and such that each employee performs at most one task in each pairing p.

The objective function we try to minimize is a weighted sum of three components. More
precisely, given a coloring c, we define f(c) = ω1f1(c)+ω2f2(c)+ω3f3(c), where ω1, ω2 and
ω3 are penalty parameters that give more or less importance to each component of f(c),
and f1(c), f2(c) and f3(c) are defined as follows.

• f1(c) is the number of conflicting edges. This value corresponds to the number of
overlapping situations.

• Let Wi(c) denote the total weight
∑

c(v)=i w(v) of the vertices with color i (i =

k, · · · , m). We define f2(c) =
∑m

i=k max{0, Li − Wi(c), Wi(c) − Ui}. This value is a
total penalty for the situations where Wi(c) /∈ [Li, Ui].

12 G–2005–34 Les Cahiers du GERAD

• For a paring p ∈ P and a qualification q ∈ Q, let npq(c) denote the number of vertices
v ∈ Vp with c(v) ∈ Iq. We define f3(c) =

∑

p∈P q∈Q max{0, Nk
pq − npq(c)}. This value

corresponds to the number of violations of qualification requirements.

Parameters ωi are initially set equal to 1 and are then adjusted every 10 iterations,
as in (Gendreau et al., 1994): if the ten previous solutions c had a value fi(c) = 0 then
ωi is divided by 2; if these 10 values were all strictly positive, then ωi is multiplied by 2;
otherwise ωi remains unchanged.

A move from a solution to a neighbor one consists in changing the color of a single
vertex. For a vertex v and a color i 6= c(v), we denote (v, i) the move that assigns color
i to v, and we denote c + (v, i) the solution resulting from this move. Let p(v) denote
the pairing associated with vertex v (i.e., v ∈ Vp(v)). Since an employee cannot perform
more than one task in each pairing, we do not consider moves (v, i) such that there is a
vertex u 6= v with p(v) = p(u) and c(u) = i. Also, in order to satisfy the pre-assignment
requirements, we impose that i ∈ L(v) for all moves (v, i). In summary, the neighborhood
N(c) of a solution c ∈ S is defined as the set of solutions c′ that can be reached from c by
applying a move (v, i) with i ∈ L(v) and i 6= c(u) for all u ∈ Vp(v).

The tabu list TL stores forbidden moves. More precisely, when a move (v, i) is performed
on a solution c, the tabu list stores the pair (v, c(v)), which means that it is forbidden to
reassign color c(v) to v for a given number of iterations.

There are typically many vertices v than can receive a new color i without inducing
any change in the objective function (i.e., f(c) = f(c+(v, i)). In order to guide the search
towards good regions of the search space S, we try to force the algorithm to deal with
those vertices that are responsible for the current strictly positive value of f(c). This is
done by considering only interesting moves which are defined as follows.

Definition Let TL be a tabu list and c∗ the current best solution. A move (v, i) from
a solution c is interesting if (v, i) /∈ TL or f(c) < f(c∗), and at least one of the following
properties is satisfied:

• vertex v is one of the endpoints of a conflicting edge (and is therefore responsable for
the strictly positive value of f1(c)).

• Wc(v)(c) > Uc(v). In such a case, employee c(v) has too many flight credits and we
reduce f2(c) by removing one task from this employee.

• Wi(c) < Li. In such a case, employee i does not have enough flight credits and we
reduce f2(c) by adding one task to this employee.

• there is a pairing p ∈ P and a qualification q ∈ Q such that v ∈ Vp, δc(v)q = 0 (i.e.,

c(v) does not have qualification q), and Nk
pq > npq(c) (i.e., the number of employees

assigned to p with qualification q is not large enough). In such a case f3(c) > 0 and
the algorithm tries to assign a new employee i to v with qualification q (i.e., i ∈ Iq).

Les Cahiers du GERAD G–2005–34 13

In order to build an initial solution, we follow two strategies. If k = 1 then we build
an initial coloring of Gk by using a greedy algorithm that simply colors the vertices one
by one, trying to avoid creating conflicting edges as well as exceeds in the workloads. An
initial coloring in Gk(k > 1) is simpler to obtain since a coloring ck−1 of Gk−1 is known.
Indeed, Gk is a subgraph of Gk−1 obtained by removing those vertices corresponding to
the tasks assigned to employee k − 1. An initial coloring ck of Gk can simply be obtained
by setting ck(v) = ck−1(v) if ck−1(v) 6= k−1, and by using the above greedy algorithm only
for those vertices v in Gk with ck−1(v) = k − 1. A detailed description of this procedure is
given in Figure 8.

Procedure INIT

if k = 1 then

set Wi = 0 for all i = 1, · · · ,m, and c(v) = 0 for all v in G1

else

let ck−1(v) denote the color of v in Gk−1;

for all vertices v do

if ck−1(v) = k − 1 then set c(v) = 0

else set c(v) = ck−1(v);

for all vertices v with c(v) = 0 do

for all i in L(v) do

If c(u) = i for some u ∈ Vp(v) then set value(i) = ∞

else

let µiv denote the number of vertices u adjacent to v with color c(u) = i;

set value(i) = µiv + max{0,Wi + w(v) − Ui}

Choose a color i for v with minimum value(i) and add w(v) units to Wi

Figure 8: Procedure that generates an initial coloring in Gk

Our tabu search algorithm is described in Figure 9. At each iteration we perform the
best interesting move (ties are broken randomly). The algorithm stops as soon as f(c) = 0,
or after a given time limit.

Algorithm Tabu-PBS-FIP

build an initial solution s according to procedure INIT in Figure 8;

set c∗ := c, iter = 0 and TL = ∅;

repeat until f(c) = 0 or a given time limit is reached

• choose an interesting move (v, i) with minimum value f(c + (v, i));
• if f(c) < f(c∗) then set c := c + (v, i), and update TL;
• set c∗ := c ;

Figure 9: Our tabu search algorithm

14 G–2005–34 Les Cahiers du GERAD

Notice that the value f1(c + (v, i)) and f2(c + (v, i)) of a move (v, i) from c can be
computed in constant time, while f3(c + (v, i)) can be computed in O(| Q |) time. Such a
complexity can be achieved by storing the following information:

• the number µju of vertices with color j adjacent to u, for all j and u,

• the workload Wj of each employee i,

• the number npq(c) of vertices u ∈ Vp with c(u) ∈ Iq, for all p and q.

Indeed,

• f1(c + (v, i)) = f1(c) + µiv − µc(v)v,

• f2(c + (v, i)) = f2(c) − max{0, Li − Wi(c), Wi(c) − Ui}

−max{0, Lc(v) − Wc(v)(c), Wc(v)(c) − Uc(v)}

+max{0, Li − Wi(c) − w(v), Wi(c) + w(v) − Ui}

+max{0, Lc(v) − Wc(v)(c) − w(v), Wc(v)(c) + w(v) − Uc(v)}

• f3(c + (v, i)) = f3(c) −
∑

q∈Q max{0, Nk
pq − npq(c)}

+
∑

q∈Q max{0, Nk
pq − npq(c) − δiq + δc(v)q}

Once a move (v, i) is performed, it is sufficient to do the following update:

• for all vertices u adjacent to v do: add 1 to µiu and remove 1 from µc(v)u

• add w(v) units to Wi and remove w(v) units from Wc(v)

• for all q ∈ Q do: add 1 unit to np(v)q(c) if i ∈ Iq while c(v) /∈ Iq, and remove 1 unit
from np(v)q(c) if c(v) ∈ Iq while i /∈ Iq.

6 Model validation on a real instance

To validate the proposed model and algorithm, we have performed experiments on a real
instance from a North American carrier. This instance has been chosen for two reasons.
First, the constraints that have to be taken into account in this instance are exactly those
considered in this paper, while other airline companies have additional constraints which
have not yet been included in our model. Second, this instance is known for being difficult to
solve and requiring several backtracks when using the PBS-MIP-RCSP algorithm described
in Figure 4. The instance contains 330 employees, 1956 pairings, and | Q |= 11 different
qualifications. The lower and upper bounds Li and Ui on the workload of each employees
are 65 and 90 hours, respectively.

When using the PBS-MIP-RCSP algorithm of Figure 4, a first backtrack occurs at
employee 248. The wrong decision is taken for employee 218, which means that the
backtracking process (i.e., step (4) in PBS-MIP-RCSP) demonstrates the infeasibility of
(IP247), (IP246), · · · , (IP219) and then finds an optimal solution to (IP218). A second back-

Les Cahiers du GERAD G–2005–34 15

track occurs for employee 303 and it is then discovered that a wrong decision was taken
for employee 223.

We have tested our PBS-FeasibleIP strategy with a time limit of 30 seconds for each
tabu search. This means that if we are not able to produce a coloring c with f(c) = 0 in
less than 30 seconds, we conclude that the current (IPk) probably has no feasible solution.
We have decided to solve (RCSPk) only up to employee kmax = 200. For an employee
k > kmax, we skip step (2) and directly solve (MIPk) and test if the resulting (IPk+1) is
feasible.

When solving our real instance, we have run each tabu search 50 times, and all runs
have given the same results. The employees can be divided into four groups:

(a) For k ≤ 200, k 6= 165, 195, we have determined a schedule by solving (RCSPk), and
we have got the output ”YES” from FEASIBLE(IPk+1).

(b) For k = 165, 195, we have first determined a schedule by solving (RCSPk); since
the tabu search algorithm was not able to color the resulting Gk+1 (i.e., we got the
answer ”I DON’T KNOW” from FEASIBLE(IPk+1)), we have then solved (MIPk);
we were finally able to color the resulting Gk+1 (i.e., we got the output ”YES” from
FEASIBLE(IPk+1)).

(c) For k > 200, k 6= 218, 223, we have determined a schedule by solving (MIPk) and
we have got the output ”YES” from FEASIBLE(IPk+1).

(d) For k = 218, 223, we have first determined a schedule by solving (MIPk); since the
tabu search algorithm was not able to color the resulting Gk+1 (i.e., we got the answer
”I DON’T KNOW” from FEASIBLE(IPk+1)), we have then solved (IPk).

Our tabu search needs more time to color G1 than a Gk with k > 1. The reason is that
when coloring G1, the INIT procedure of Figure 8 must build an initial solution starting
from scratch, and this initial solution typically contains many violations of constraints. A
coloring of Gk(k > 1) is much easier to obtain since the initial solution is obtained by
copying the coloring ck−1 of Gk−1, and then assigning a new color > k − 1 to the vertices
which had color k − 1 in ck−1. In our experiments, we often got initial feasible colorings c
with f(c) = 0, which means that no iteration of the tabu search was needed.

We have colored graph G1 of our instance in an average of 22 seconds (the average
being taken over the 50 runs). The graphs Gk with k > 1 for which we have been able
to determine a coloring c with f(c) = 0 have been colored, in average, in less than one
second, the worst case being 4.7 seconds. In summary, our tabu search was run, in average
for less than 9 minutes. Indeed, we needed 22 seconds to color G1, exactly 2 minutes (4
times 30 seconds for employees 164, 195, 218, 223 of the above cases (b) and (d)), and less
than 6 minutes to color the 325 other Gk’s. The time limit of 30 seconds seems reasonable
since all colorings c with f(c) = 0 were obtained in less than 5 seconds (except for G1). All

16 G–2005–34 Les Cahiers du GERAD

these times can be considered as negligible when compared to the hours needed to solve
the (IPk)’s.

Notice finally that we have solved only 2 (IPk)’s (one for employee 218, and one for
employee 223), while the PBS-MIP-RCSP algorithm required the solution of 110 (IPk)’s:
(IP247), · · · , (IP218) during the first backtrack and (IP302), · · · , (IP223) during the second
backtrack. This is a huge saving of time.

7 Final remarks

We have proposed a graph coloring model and a tabu search algorithm for solving a fea-
sibility problem in crew scheduling. Our algorithm either produces a feasible schedule
for each employee while covering all pairings, or terminates with the message ”I DON’T
KNOW”, which means that no proof of feasibility or infeasibility could be produced. Our
algorithm can be efficiently combined with the heuristic sequential algorithm for the PBS
proposed by Gamache et al. (1998). This algorithm takes decisions which may lead to
backtracks, and these backtracks can be avoided with the help of our solution method.

We have tested our method on two instances that were known for being difficult to solve
because of the occurrences of several backtracks in the solution process. We have shown
with these two examples that the cost of avoiding these backtracks is a few minutes to be
compared to hours that can be saved. In fact, our algorithm only needs a few seconds to
prove that no backtrack will be needed. More time is only needed when a future backtrack
is suspected, in which case we don’t take any chance and therefore solve the current (IPk).

The main objective of our research project was to validate the use of a graph coloring
model and a tabu search algorithm for solving a feasibility problem in crew scheduling.
As shown in this paper, the proposed model can easily handle qualifications and workload
constraints. This list of constraints represents the ones that are most commonly encoun-
tered in the airline industry, but should however not be considered as exhaustive. Several
other constraints can be added to the model. Among them, we mention the constraints
related to the assignment of rest periods to employees, airline security rules, and collective
agreements between the company and the employees. Since such constraints differ signifi-
cantly from one company to the other, they have not been considered in the first phase of
this research project. We are however confident that these particular constraints can be
integrated into our model.

Our method can be considered as flexible since it offers the possibility to handle each
requirement either as a hard or a soft constraint. For example, all constraints imposed
on the schedule of an employee correspond to constraints on a colors class (i.e., a set of
vertices with the same color). One can decide to consider some of these constraints as
hard, which means that all colorings visited by our tabu search satisfy theses constraints:
this is what we did with the pre-assignment requirements which are never violated. One

Les Cahiers du GERAD G–2005–34 17

can prefer to accept colorings that violate some of these constraints: in such a case, one
must penalize the constraint violations, as was done with function f2 for the violations of
the maximal and minimal workloads.

Future works will concentrate on the integration in our model of particular constraints
that have been omitted in this initial phase of our research project (e.g. constraints related
to a limited set of patterns for the rest periods, and constraints on the sequence of workloads
between rest periods).

References

[1] Achour, H., M. Gamache and F. Soumis Branch and Cut at the Subproblem Level
in a Column Generation Approach: Application to the Airline Industry. Cahier du
GERAD G-2003-34.

[2] Biró, M., M. Hujter and Zs. Tuza (1992). Precoloring extension I: interval graphs.
Discrete Mathematics 100(1-3), 267–279.

[3] Byrne, J. (1988). A Preferential Bidding System for Technical Aircrew. 1988 AGI-
FORS Symposium Proceedings 28, 87–99.

[4] El Idrissi, T. (2002). Amélioration de la méthode des compteurs pour la construction
des blocs mensuels personnalisés d’agents de bord. Master Thesis École Polytechnique,
Montréal.

[5] Federici, F. and D. Paschina (1990). Automated Rostering Model. AGIFORS Sympo-
sium Proceedings 26.

[6] Gamache, M. and F. Soumis (1998a). A Method for Optimally Solving the Roster-
ing Problem. In: Operations Research in the Airline Industry, G. Yu (ed.), Kluwer,
Norwell, MA, 124–157.

[7] Gamache, M., F. Soumis, J. Desrosiers, D. Villeneuve, and E. Gélinas (1998b). The
Preferential Bidding System at Air Canada. Transportation Science 32, 246–255.

[8] Gamache, M., F. Soumis, G. Marquis, and J. Desrosiers (1999). A Column Generation
Approach for Large-Scale Aircrew Rostering Problems. Operations Research 47, 247–
262.

[9] Gendreau, M., A. Hertz and G. Laporte (1994), A tabu search heuristic for the vehicle
routing problem. Management Science 40, 1276-1290.

[10] Giafferri, C., J.P. Hamon, and J.G. Lengline (1982). Automatic Monthly Assignment
of Medium-Haul Cabin Crew. 1982 AGIFORS Symposium Proceedings 22, 69–95.

[11] Glanert, W. (1984). A Timetable Approach to the Assignment of Pilots to Rotations.
1984 AGIFORS Symposium Proceedings 24, 369–391.

[12] Gontier, T. (1985). Longhaul Cabin Crew Assignment. 1985 AGIFORS Symposium
Proceedings 25, 44–66.

[13] Hajós G. (1957). Über eine Art von Graphen. INt. Math. Nachrichtern 11.

18 G–2005–34 Les Cahiers du GERAD

[14] Hertz A. and D. de Werra (1987) Using Tabu Search Techniques for Graph Coloring.
Computing 39, 345-351, 1987.

[15] Jeandroz, P.(1999) Heuristique pour la construction de blocs mensuels personnalisés
d’agentsde bord. Master Thesis École Polytechnique, Montréal.

[16] Marchettini, F. (1980). Automatic Monthly Cabin Crew Rostering Procedure. 1980
AGIFORS Symposium Proceedings 20, 23–59.

[17] Mayer, M. (1980). Monthly Computerized Crew Assignment. 1980 AGIFORS Sympo-
sium Proceedings 20, 93–124.

[18] Moore, R., J. Evans, and H. Ngo (1978). Computerized Tailored Blocking. 1978 AG-
IFORS Symposium Proceedings 18, 343–361.

[19] Nicoletti, B.(1975). Automatic Crew Rostering. Transportation Science 9, 33–42.

[20] Ryan, D.M. (1992). The Solution of Massive Generalized Set Partitioning Problems
in Air Crew Rostering. Operations Research 45, 649–661.

[21] Schmidt, W.R. and J. Hosseini (1994). Preferential Schedule Assignments for Airline
Crew Scheduling. ORSA/TIMS conference, Detroit.

[22] Sherali, H.D. and A.L. Soyster (1983). Preemptive and Non preemptive Multi-
Objective Programming: Relationships and Counterexamples. Journal Of Optimi-
sation Theory and Applications 39, 173–186.

[23] Tingley, G.A. (1979). Still Another Solution Method for the Monthley Aircrew As-
signment Problem. 1979 AGIFORS Symposium Proceedings 19, 143–203.

