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GERAD and Département de mathématiques et de génie industriel
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Abstract

It is well known that each tree metric M has a unique realization as a tree, and that
this realization minimizes the total length of the edges among all other realizations of
M . We extend this result to the class of symmetric matrices M with zero diagonal,
positive entries, and such that mij +mkl ≤ max{mik +mjl,mil +mjk} for all distinct
i, j, k, l.

Résumé

Il est bien connu qu’une matrice de distance M a une réalisation unique en tant
qu’arbre, et que cette réalisation minimise la longueur totale des arêtes par rap-
port à toutes les autres réalisations de M . Nous étendons ce résultat à l’ensemble
des matrices symétriques de diagonale nulle, ayant des entrées positives et tel que
mij + mkl ≤ max{mik + mjl,mil + mjk} pour tout i, j, k, l distincts.

Acknowledgments: This work has been partially funded by grant PA002-104974/1
from the Swiss National Science Foundation, received by the second author.
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1 Introduction

An n × n matrix M = (mij) with zero diagonal is a tree metric if it satisfies the following
4-point condition:

mij + mkl ≤ max{mik + mjl, mil + mjk} ∀i, j, k, l in {1, . . . , n}

The 4-point condition entails the triangle inequality (for k = l) and symmetry (for i = k
and j = l). There is an extensive literature on tree metrics; see for example [1, 2, 5, 6, 7, 8].

It is well known that a tree metric M = (mij) can be represented by an unrooted tree
T such that {1, . . . , n} is a subset of the vertex set of T , and the length of the unique chain
connecting two vertices i and j in T (1 ≤ i < j ≤ n) is equal to mij .

Let G = (V, E, d) be the graph with vertex set V , edge set E, and where d is a function
assigning a positive length dij to each edge (i, j) of G. The length of the shortest chain
between two vertices i and j in G is denoted dG

ij .

Definition 1 Let M be a symmetric n × n matrix with zero diagonal and such that 0 ≤
mij ≤ mik + mkj for all i, j, k in {1, . . . , n}. A graph G = (V, E, d) is a realization of

M = (mij) if and only if {1, . . . , n} is a subset of V , and dG
ij = mij for all i, j in {1, . . . , n}.

As mentioned above, tree metrics have a realization as a tree. A realization G of a matrix
M is said optimal if the total length of the edges in G is minimal among all realizations of
M . Hakimi and Yau [5] have proved that tree metrics have a unique realization as a tree,
and this realization is optimal.

We propose to extend the above definition to matrices whose entries do not necessarily
satisfy the triangle inequality. Given a symmetric n × n matrix M = (mij) with zero
diagonal and positive entries, let KM denote the complete graph on n vertices in which
each edge (i, j) has length mij .

Definition 2 Let M be a symmetric n×n matrix with zero diagonal and positive entries.

A graph G = (V, E, d) is a realization of M = (mij) if and only if {1, . . . , n} is a subset of

V , and dG
ij = dKM

ij for all i, j in {1, . . . , n}.

Obviously, if M satisfies the triangle inequality, then dKM

ij = mij , and Definition 2 is
then equivalent to Definition 1. Figure 1 illustrates this new definition. Notice that the
matrix in Figure 1 is not a tree metric, while it has a realization as a tree.

Let Mn denote the set of symmetric n × n matrices M = (mij) with zero diagonal,
positive entries, and such that mij + mkl ≤ max{mik + mjl, mil + mjk} for all distinct

points i, j, k, l in {1, . . . , n}.

Since we only impose the 4-point condition on distinct points i, j, k, l, the entries of
a matrix in Mn do not necessarily satisfy the triangle inequality. While all tree metrics
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Figure 1: A tree realization of a tree metric

belong to Mn, the example in Figure 2 shows that a matrix having a realization as a tree
does not necessarily belong to Mn. However, we prove in this paper that all matrices in
Mn have a unique realization as a tree, and that this realization is optimal.
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Figure 2: A tree realization of a matrix that does not belong to Mn

2 The main result

Let M = (mij) be any matrix in Mn, and consider the matrix M ′ = (m′

ij) obtained from

M by setting m′

ij equal to the length dKM

ij of the shortest chain between i and j in KM .

Notice that the elements in M ′ satisfy the triangle inequality. In order to prove that M
has a realization as a tree, it is sufficient to prove that M ′ is a tree metric. The proof is
based on Floyd’s algorithm [4] for the computation of M ′.

Floyd’s algorithm [4]

Set M0 equal to M ;

For r := 1 to n do

For all i and j in {1, . . . , n} do



Les Cahiers du GERAD G–2005–27 3

Set mr
ij equal to min{mr−1

ij , mr−1

ir + mr−1

rj };

Set M ′ equal to Mn;

We shall prove that each matrix M r (1 ≤ r ≤ n) is in Mn. Since the entries of M ′ = Mn

satisfy the triangle inequality, we will be able to conclude that M ′ is a tree metric.

Theorem 1 Let M = (mij) be a matrix in Mn, and let M ′ = (m′

ij) be the n × n matrix

obtained from M by setting m′

ij = dKM

ij for all i and j in {1, . . . , n}. Then M ′ is a tree

metric.

Proof. Following Floyd’s algorithm, define M0 = M and let M r be the matrix obtained
from M r−1 by setting mr

ij = min{mr−1

ij , mr−1

ir + mr−1

rj } for all i and j in {1, . . . , n}. Given

four distinct points i, j, k, l in {1, . . . , n}, we denote sr
ijkl = mr

ij + mr
kl. We prove by

induction that each M r (r = 1, . . . , n) is in Mn. By hypothesis, M0 = M is in Mn, so
assume M r−1 ∈ Mn. It is sufficient to show that sr

ijkl ≤ max{sr
ikjl, s

r
iljk} for all distinct

i, j, k, l in {1, . . . , n}, or equivalently, that two of the three sums sr
ijkl, s

r
ikjl and sr

iljk are
equal and not less than the third.

Notice that mr
ri = mr−1

ri and mr
ij ≤ mr−1

ij for all 1 ≤ i ≤ j ≤ n. Consider any four
distinct points i, j, k and l. Since r is possibly one of these four points, we divide the proof
into two cases.

Case A: r ∈ {i, j, k, l}, say r = l.

Since M r−1 ∈ Mn, we may assume, without loss of generality that sr−1

rijk ≤ sr−1

rjik = sr−1

rkij .

If mr
ik = mr−1

ik and mr
ij = mr−1

ij , then sr
rijk ≤ sr

rjik = sr
rkij . We may therefore assume

mr
ik < mr−1

ik . It then follows that mr−1

ri + sr−1

rjik = mr−1

ri + sr−1

rkij < mr−1

ik + mr−1

ij , which

means that mr
ij = mr−1

ri +mr−1

rj < mr−1

ij . We therefore have sr
rijk ≤ mr−1

ri +mr−1

rj +mr−1

rk =
sr
rjik = sr

rkij .

Case B: r /∈ {i, j, k, l}.

If sr
ijkl = sr−1

ijkl , s
r
ikjl = sr−1

ikjl and sr
iljk = sr−1

iljk , there is nothing to prove. So assume

without loss of generality that mr
ij < mr−1

ij . Notice that if mr
ik = mr−1

ik , mr
il = mr−1

il ,

mr
jk = mr−1

jk and mr
jl = mr−1

jl , then we are done. Indeed, since M r−1 ∈ Mn and sr
rkij <

sr−1

rkij , while sr
rjik = sr−1

rjik and sr
rijk = sr−1

rijk, we know from Case A that sr−1

rjik = sr−1

rijk. In a

similar way, we also have sr−1

rjil = sr−1

rijl . Hence, sr−1

rjik +sr−1

rijl = sr−1

rijk +sr−1

rjil , which means that

sr−1

ikjl = sr−1

iljk . Since M r−1 ∈ Mn, sr
ikjl = sr−1

ikjl , s
r
iljk = sr−1

iljk and sr
ijkl < sr−1

ijkl we conclude
that sr

ijkl < sr
ikjl = sr

iljk.

Without loss of generality, we can therefore assume mr
ik < mr−1

ik . The rest of the proof
is divided into four subcases.

Case B1: mr−1

jk < mr−1

rj + mr−1

rk and mr−1

jl > mr−1

rj + mr−1

rl .
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Since sr
rkjl = mr−1

rk + mr−1

rj + mr−1

rl > sr
rljk, we know from Case A that sr

rjkl = sr
rkjl,

which means that mr
kl = mr−1

rk + mr−1

rl . Hence, sr
iljk < sr

ijkl = sr
ikjl.

Case B2: mr−1

jk < mr−1

rj + mr−1

rk and mr−1

jl ≤ mr−1

rj + mr−1

rl .

We can assume mr
kl = mr−1

kl , else we are in Case B1, where the roles of points j and k

are exchanged. We can also assume mr−1

il < mr−1

ri +mr−1

rl . Indeed, if mr−1

il ≥ mr−1

ri +mr−1

rl

then sr
ijkl = mr−1

ri + sr−1

rjkl, sr
ikjl = mr−1

ri + sr−1

rkjl, and sr
iljk = mr−1

ri + sr−1

rljk and we are done

since M r−1 ∈ Mn.

But now, sr
rlik > sr

rkil, and we know from Case A that sr
rikl = sr

rlik, which means that

mr
kl = mr−1

rk + mr−1

rl . Hence, sr
rjkl > sr

rljk, and we know from Case A that sr
rkjl = sr

rjkl,

which means that mr
jl = mr−1

rj + mr−1

rl . We therefore have sr
iljk < sr

ijkl = sr
ikjl.

Case B3: mr−1

jk ≥ mr−1

rj + mr−1

rk and mr−1

jl > mr−1

rj + mr−1

rl .

We may assume mr−1

il ≥ mr−1

ri + mr−1

rl , else the situation is equivalent either to Case

B1 or B2 (where the roles of points i and j are exchanged, as well as those of k and l)
Hence, sr

ijkl ≤ sr
ikjl = sr

iljk.

Case B4: mr−1

jk ≥ mr−1

rj + mr−1

rk and mr−1

jl ≤ mr−1

rj + mr−1

rl .

Since M r−1 ∈ Mn, and sr−1

rijl < sr−1

rlij we know that sr−1

rjil = sr−1

rlij , which means that

mr
il < mr−1

il . If mr−1

jl = mr−1

rj +mr−1

rl then sr
ijkl ≤ sr

ikjl = sr
iljk. Else, mr−1

jl < mr−1

rj +mr−1

rl ,
which implies sr

rkjl < sr
rljk. We then know from Case A that sr

rjkl = sr
rljk, which means

that mr
kl = mr−1

rk + mr−1

rl . We therefore have sr
ikjl < sr

ijkl = sr
iljk. 2

Corollary 1 Each matrix in Mn has a unique realization as a tree, and this realization

is optimal.

Proof. Let M be any matrix in Mn, and let M ′ = (m′

ij) be the n × n matrix obtained

from M by setting m′

ij = dKM

ij for all 1 ≤ i < j ≤ n. It follows from Definition 2 that a

graph is a realization of M if and only if it is a realization of M ′. We know from the above
theorem that M ′ is a tree metric. To conclude, it is sufficient to observe that each tree
metric has a unique tree realization, and this realization is optimal. 2

3 A related problem

Given two n×n tree metrics L = (lij) and U = (uij), the matrix sandwich problem [3] is to
find (if possible) a tree metric M = (mij) such that lij ≤ mij ≤ uij for all i ∈ {1, . . . , n}.
Typically, the information concerning the distance matrix associated with a network may
be inaccurate, an we are only given lower and upper bound matrices L and U .
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We prove here below that a solution to the matrix sandwich problem can be obtained
by first finding a matrix M ∈ Mn that lies between L and U , and then constructing the
tree metric M ′ = (m′

ij) with m′

ij = dKM

ij . Finding a matrix M ∈ Mn that lies between L
and U is possibly easier than finding a tree metric with the same lower and upper bound
matrices, the reason being that the triangle inequality is not imposed on matrices in Mn.

Proposition 1 Let M = (mij) be a matrix in Mn, and let M ′ = (m′

ij) be the n×n matrix

obtained from M by setting m′

ij = dKM

ij for all i and j in {1, . . . , n}. If lij ≤ mij ≤ uij for

all i ∈ {1, . . . , n}, then M ′ is a solution to the matrix sandwich problem.

Proof. Let M = (mij) be a matrix in Mn, such that lij ≤ mij ≤ uij for all i ∈ {1, . . . , n}.
Since L and U are tree metrics, it follows that M has a zero diagonal and positive entries.
Let M ′ = (m′

ij) be the n × n matrix obtained from M by setting m′

ij = dKM

ij for all

1 ≤ i < j ≤ n. We know from Theorem 1 that M ′ is a tree metric. Moreover, since L is a
tree metric, we have lij ≤ m′

ij ≤ mij for all i, j ∈ {1, . . . , n}. 2
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