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Abstract

In the integrated aircraft routing, crew scheduling and flight retiming problem,
a minimum-cost set of aircraft routes and crew pairings must be constructed while
choosing a departure time for each flight leg within a given time window. Linking
constraints ensure that the same schedule is chosen for both the aircraft routes and
the crew pairings, and impose minimum connection times for crews that depend on
aircraft connections and departure times. We propose a compact formulation of the
problem and a Benders decomposition method with a dynamic constraint generation
procedure to solve it. Computational experiments performed on test instances pro-
vided by two major airlines show that allowing some flexibility on the departure times
within an integrated model yields significant cost savings while ensuring the feasibility
of the resulting aircraft routes and crew pairings.

Key Words: aircraft routing; crew scheduling; flight retiming; integrated planning;
time windows; Benders decomposition; column generation.

Résumé

Le problème intégré de la création d’itinéraires d’avions et d’horaires d’équipages
avec fenêtres de temps consiste à déterminer un ensemble de routes d’avions et de
rotations d’équipages et à choisir une heure de départ pour chaque segment de vol à
l’intérieur d’une fenêtre de temps donnée. Des contraintes liantes s’assurent que le
même horaire est choisi à la fois pour les routes d’avions et les rotations d’équipages
et imposent des temps minimaux de connexion pour les équipages qui dépendent des
connexions utilisées par les appareils ainsi que des heures de départ choisies. Nous pro-
posons une formulation compacte du problème ainsi qu’une méthode de décomposition
de Benders, comprenant une procédure de génération dynamique de contraintes, pour
résoudre le problème de façon efficace. Pour un ensemble d’instances basées sur des
données réelles fournies par deux compagnies aériennes, laisser davantage de flexibilité
en permettant de prendre des décisions par rapport à l’horaire des vols dans un modèle
intégré avions-équipages procure des économies importantes de coûts tout en assurant
la réalisabilité des routes d’avions et des rotations d’équipages fournis par le modèle.
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and Engineering Research Council of Canada. This support is gratefully acknowledged.
Thanks are also due to AD OPT Technologies for providing the data used in the
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Introduction

Airlines usually use a sequential procedure to plan their operations (see, e.g., Yu (1998)).
By solving a flight scheduling problem, they first create a schedule that specifies each flight
leg to be flown during a given period and sets departure and arrival times for each of those
legs. Then, the fleet assignment is performed to assign an aircraft type to each flight leg
to maximize anticipated profits while taking into account the number of available aircraft.
For each aircraft type, an aircraft routing problem is then solved to determine the sequence
of flight legs to be flown by each individual aircraft so that each leg is covered exactly
once while ensuring appropriate aircraft maintenance. With the aircraft routes on hand,
the airline then builds crew rotations or pairings by solving a crew scheduling problem for
each aircraft type. A pairing is a sequence of duty periods separated by overnight rests,
and a duty period is a sequence of flight legs separated by smaller rest periods, called
sits (or connections). The objective of the crew scheduling problem is to determine a
minimum-cost set of pairings so that every flight leg is assigned a qualified crew and every
pairing satisfies the set of applicable work rules. For example, each duty period in a pairing
must respect limits on total work time, total flight time and total number of landings. In
the last step of the planning process, pairings are finally combined to form personalized
monthly schedules that are assigned to employees by solving a crew bidding problem or a
crew rostering problem.

While a sequential procedure greatly simplifies the process, Cordeau et al. (2001), Klab-
jan et al. (2002) and Cohn and Barnhart (2003) have shown that integrating the aircraft
routing and crew scheduling problems can generate solutions that are significantly better
than those obtained by solving the problems sequentially. Because the minimum connec-
tion time required between two successive flight legs covered by the same crew depends on
whether the same aircraft is used on both legs, aircraft routing decisions have an impact
on the set of feasible pairings. Consequently, a sequential planning procedure is likely to
yield suboptimal solutions. A connection that is too short to be made by a crew when the
two associated legs are not flown by the same aircraft is said to be short. In this paper,
we consider an additional level of integration by adding some flight scheduling decisions to
the integrated aircraft routing and crew scheduling problem. More precisely, the departure
time of each flight leg is allowed to deviate slightly from the planned schedule. Obviously,
the same departure time has to be chosen for both the aircraft and the crews, and this com-
plicates the problem. However, an integrated approach can take advantage of the added
schedule flexibility to a greater extent since the departure times are chosen by taking into
account the benefits to both the aircraft routings and the crew pairings. This would not
be possible with a sequential solution process in which modifying the schedule in one step
could have unforeseen consequences on the next step. When only small modifications from
the original flight schedule are considered, it is reasonable to assume that flight demand
does not change significantly (see, e.g., Desaulniers et al. (1997), Rexing et al. (2000) and
Klabjan et al. (2002)).
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Several modeling and solution approaches have been proposed to separately address
the aircraft routing and crew pairing problems. The former problem was studied, among
others, by Daskin and Panayotopoulos (1989), Feo and Bard (1989), Clarke et al. (1997),
Gopalan and Talluri (1998) and Talluri (1998). Numerous contributions regarding the
different variants of the crew scheduling problem can also be found in the operations
research literature. For an overview, the reader is referred to the recent survey of Barnhart
et al. (2003). Issues related to the introduction of maintenance and crew considerations
in the fleet assignment problem were discussed by Clarke et al. (1996), Rushmeier and
Kontogiorgis (1997) and Barnhart et al. (1998b). Finally, other interesting contributions
with respect to the integration of the planning process are the approaches presented by
Desaulniers et al. (1997) and Barnhart et al. (1998a) for the combined fleet assignment
and aircraft routing problem.

In recent years, there has been a growing interest in the integration of aircraft rout-
ing and crew scheduling problems. Cordeau et al. (2001) have introduced a model that
integrates the complete aircraft routing and crew pairing formulations to which is added
one linking constraint for each short connection. To handle these linking constraints, a
solution approach based on Benders decomposition is used. The solution process iterates
between a master problem that solves the aircraft routing problem, and a subproblem that
solves the crew pairing problem. Short connections are fixed by the master problem and
the subproblem constructs minimum-cost crew pairings using only the fixed set of short
connections. Because of their particular structure, both of these problems are solved by
column generation. On a set of test instances based on data provided by a Canadian
airline, the integrated approach reduced variable crew costs by 9.4% with respect to the
sequential planning process commonly used in practice.

The latter model was further enhanced by Mercier et al. (2005) who have introduced a
generalized formulation in which solution robustness is improved by penalizing connections
that are likely to introduce delays if they are not performed by the same aircraft. The
authors also show that reversing the order of the solution sequence, i.e., solving the crew
pairing problem in the Benders master problem as opposed to the aircraft routing problem,
yields important improvements over the approach of Cordeau et al. (2001). Most costs
in the integrated problem are associated with the crew pairings and, by reversing the
natural solution sequence, the aircraft routing subproblem is mostly transferring feasibility
information to the master problem and very little optimality (or cost) information. This
results in a significant decrease in the number of Benders cuts generated. The identification
of Pareto-optimal cuts was also shown to be useful in further improving the speed of
convergence.

Cohn and Barnhart (2003) have also proposed an integrated model, but instead of
incorporating the aircraft routing formulation in the model, variables representing complete
solutions to the aircraft routing problem are used in an extended crew pairing model. This
obviously reduces the number of constraints, but may lead to a very large number of
additional variables. The authors show that only a subset of the feasible aircraft routing
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solutions needs to be included in the model, i.e., one column for each unique and maximal
maintenance-feasible short connection set. These columns can be generated individually
and sequentially, in a preprocessing step, by solving a series of aircraft routing problems
with additional constraints and a modified objective function. They also propose to solve
the extended crew pairing problem by a branch-and-price algorithm in which both crew
pairing and aircraft routing solutions are generated dynamically.

Klabjan et al. (2002) have presented a partially integrated approach that solves the crew
pairing problem first, but includes additional constraints that count the number of available
aircraft on the ground at any time. Under the assumption that maintenance is performed at
night when all aircraft are on the ground, these constraints generally ensure the feasibility
of the resulting maintenance aircraft routing problem. In addition, the model allows the
departure time of each flight leg to be moved within a small time window so as to further
reduce crew costs. A rapid depth-first search method generates a subset of pairings that
are based on the original schedule and some modified feasibility parameters. For example,
the minimum connection time is decreased by the time window width to allow pairings
that would be feasible with modified leg departure times. While generating a pairing,
if it is impossible to retime the legs in accordance with the true feasibility parameters,
the pairing is rejected. To speed up the algorithm, only one feasible retiming of legs per
pairing is considered. Next, a crew pairing problem with plane count constraints is solved
by considering only the valid generated pairings. Because the time windows can modify
the set of ground arcs, it is difficult to model the plane count constraints exactly and they
are thus approximated. On test instances involving up to 450 flight legs, this approach has
produced crew solutions with significantly lower costs then the solutions obtained with the
traditional sequential method. It is, however, less likely to yield a feasible maintenance
aircraft routing problem in an international context where maintenance does not necessarily
take place at night.

In the case of the fleet assignment problem, a number of papers have considered the
idea of integrating flight scheduling decisions to increase flexibility and ultimately find bet-
ter solutions (see, e.g., Levin (1971), Desaulniers et al. (1997) and Rexing et al. (2000)).
However, we are not aware of any model for the fully integrated aircraft routing and crew
scheduling problem that also includes flight scheduling decisions. The contributions of this
paper are to introduce such a model, to explain how it can be solved efficiently and to eval-
uate the benefits that result from the increased flexibility related to the departure times.
In particular, we show that a straightforward extension of the integrated aircraft routing
and crew scheduling model proposed by Mercier et al. (2005) yields an intractable formu-
lation, but that a compact reformulation of the problem coupled with dynamic constraint
generation allow the solution of large-scale instances in reasonable computing times.

The remainder of the article is organized as follows. The next section introduces some
notation and a mathematical formulation of the problem while Section 2 presents the
solution methodology. Computational experiments that show the benefits of solving an



4 G–2005–12 – Revised Les Cahiers du GERAD

integrated model including flight retiming are reported in Section 3. Conclusions and
directions for future work are discussed in the final section.

1 Mathematical Formulation

In this paper, we assume that the fleet assignment problem has been solved so that the
aircraft type assigned to each flight leg is known. In this context, the integrated aircraft
routing, crew scheduling and flight retiming problem decomposes into one problem for each
aircraft type. Given a set of flight legs to be flown by the aircraft of a specific type, the
problem is then to determine a modified schedule and a minimum-cost set of aircraft routes
and crew pairings such that each flight leg is covered by one aircraft and one crew, and
side constraints are satisfied.

1.1 Model

Our formulation addresses the daily problem which is common in the crew scheduling
literature. Consider a set L of daily flight legs to be flown by a single aircraft type. Each
flight leg i ∈ L is defined by origin and destination stations, and departure and arrival
times. A finite number of possible changes to the original departure time of a leg is used
to model schedule flexibility. Let Ui be the set of possible departure times of leg i ∈ L. For
example, if the original departure time of leg i is 12h00, then Ui = {11h55, 12h00, 12h05}
could be a set of possible departure times for this leg.

Given two flight legs i, j ∈ L, the connection between these legs is said to be short if
it is feasible but the difference between the departure time of leg j and the arrival time of
leg i is smaller than the minimum sit time for crews. In this case, the legs can be covered,
in sequence, by the same crew only if both legs are also covered by the same aircraft.
Otherwise, insufficient time is available for the crew to make the connection. Let S be the
set of leg pairs for which the connection between them is short for at least one possible
combination of departure times. For each (i, j) ∈ S, let Sij be the set of pairs of departure
times p ∈ Ui and q ∈ Uj for which the connection between leg i and leg j is short.

The problem is modeled with a path formulation. Each aircraft route must respect a
limit on the total number of days separating two visits at a maintenance station. Each
duty period in a pairing must respect limits on total work time, total flight time and total
number of landings. In addition, the number of duty periods in a pairing must not exceed
a certain limit. These path feasibility constraints are modeled through the use of resources
and are handled directly by dynamic programming in a column generation framework
(see, e.g., Desaulniers et al. (1998)). The aircraft and the crew paths are generated with
time-space networks. Each node of these networks correspond either to the departure of
a flight leg, or to its arrival. Aircraft networks contain two types of arcs: flight arcs and
connection arcs. In the crew networks, each arc represents either a flight, a deadhead flight,
or a feasible connection between two flights, between two deadhead flights or between one
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of each. Deadheads permit crew members to travel as passengers on certain flights. They
are useful to reposition crews to a different city where they are needed to cover a flight
leg. They can also be used to ensure that the crew can return to its base at the end of a
pairing. For each leg i ∈ L, |Ui| copies of the corresponding flight arc are included in the
networks (one for each possible schedule) and the leg covering constraints will ensure that
only one of them is used per leg.

Let ΩF be the set of feasible aircraft paths and let ΩK denote the set of feasible crew
paths. For every path ω ∈ ΩF or ω ∈ ΩK , define binary constants bi

ω that take value 1
if leg i ∈ L belongs to this path and binary constants biu

ω that take value 1 if leg i ∈ L

is assigned schedule u ∈ Ui in this path. Let also n
ijpq
ω be equal to 1 if leg i ∈ L with

schedule p ∈ Ui and leg j ∈ L with schedule q ∈ Uj are performed in sequence in path ω.
Let also cω be the cost of sending one unit of flow along path ω. For every aircraft path
ω ∈ ΩF , let fω be the number of aircraft required to cover path ω. The value of fω may
be greater than one since aircraft paths can span more than one day and every leg has to
be covered daily. Let also θω be a binary variable that represents the flow on aircraft path
ω. For every crew path ω ∈ ΩK , let eω be the number of duties in the path. A binary
variable χω is defined for every crew path ω, and binary constants diu

ω take value 1 if leg
i ∈ L with schedule u ∈ Ui is performed as a deadhead in crew path ω. Finally, constants
ζF and ζD represent the number of available aircraft and a limit on the total number of
duties in all crew pairings, respectively. Table 1 provides a summary of the notation used
in the formulation.

The integrated aircraft routing, crew scheduling and flight retiming model, (M1), can
be stated as follows:

Minimize
∑

ω∈ΩK

cωχω +
∑

ω∈ΩF

cωθω (1)

subject to
∑

ω∈ΩF

bi
ωθω = 1 (i ∈ L) (2)

∑

ω∈ΩF

fωθω ≤ ζF (3)

∑

ω∈ΩK

bi
ωχω = 1 (i ∈ L) (4)

∑

ω∈ΩK

eωχω ≤ ζD (5)

∑

ω∈ΩK

diu
ω χω −

∑

ω∈ΩK

biu
ω χω ≤ 0 (i ∈ L, u ∈ Ui) (6)

∑

ω∈ΩK

biu
ω χω −

∑

ω∈ΩF

biu
ω θω = 0 (i ∈ L, u ∈ Ui) (7)
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∑

ω∈ΩK

nijpq
ω χω −

∑

ω∈ΩF

nijpq
ω θω ≤ 0 ((i, j) ∈ S, (p, q) ∈ Sij) (8)

θω ∈ {0, 1} (ω ∈ ΩF ) (9)

χω ∈ {0, 1} (ω ∈ ΩK). (10)

The objective function (1) minimizes the sum of all crew scheduling and aircraft rout-
ing costs. An approximate crew cost function including piecewise linear waiting costs and
deadhead costs is used. Because each flight leg must be covered by exactly one crew, a
large portion of total crew costs is fixed. Hence, the only relevant costs considered in
these experiments are those that can be reduced by a better planning of crew pairings.
Variable expenses are incurred for connections whose duration exceeds a given threshold
because crews must then be credited work time even though they are not actually work-
ing. Additional accommodation expenses are also incurred when the rest period between
successive duties does not take place at the crewbase. For the aircraft routing problem,
airlines sometimes take into consideration through values that represent the extra revenues
obtained by assigning the same aircraft to a pair of consecutive flight legs (i.e., a through)
so that passengers flying from the origin of the first leg to the destination of the second
leg do not have to change aircraft. Constraints (2) and (4) require each leg to be covered
by exactly one aircraft and one crew, respectively. Constraint (3) imposes a limit on the
number of available aircraft and constraint (5) limits the total number of duties worked.
By restricting the number of duties worked, one can increase their duration and make
unattractive short duties which would incur charges for the airline. The minimum paid
flying time for crews is not included in our approximate crew cost function but sensitivity
analysis showed that it is properly replaced by (5). Constraints (6) ensure that the same
schedule is chosen for the working crew and the traveling crew (deadhead), if any. Simi-
larly, constraints (7) ensure that, for every leg, the same schedule is chosen for the aircraft
and the crew. Finally, constraints (8) guarantee that a crew does not change aircraft if, for
the chosen schedule, the connection time is too short. These last two groups of constraints
((7) and (8)) link the aircraft and the crew problems.

1.2 A simpler formulation

Model (M1) contains a large number of short connection linking constraints (8) which make
the problem hard to solve. Indeed, there are potentially |Ui| · |Uj | constraints of this type
for each leg pair (i, j) ∈ S since the connecting flight legs can each have many possible
departure times. One can reduce the number of such constraints by aggregating them so
as to keep only one linking constraint per short connection. In fact, by constraints (2), (4),
(9) and (10), only one departure time is chosen for every flight leg in the aircraft paths and
only one departure time is chosen for every flight leg in the crew paths. In addition, by
constraints (7), every leg is associated with the same departure time in both the crew and
the aircraft paths. Therefore, the same combination of departure times is chosen for two
given connecting flight legs in both the crew and the aircraft paths. This implies that the
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Table 1: Summary of notation

L set of legs

Ui set of possible departure times for leg i

S set of pairs of legs for which the connection between them is short

for at least one schedule combination

Sij set of pairs of departure times p ∈ Ui and q ∈ Uj for which the

connection between leg i and leg j is short

ΩF set of feasible aircraft paths

ΩK set of feasible crew paths

χω binary variable representing the flow on crew path ω

θω binary variable representing the flow on aircraft path ω

bi
ω equal to 1 if leg i belongs to path ω

biu
ω equal to 1 if leg i with schedule u belongs to path ω

cω cost of sending one unit of flow along path ω

diu
ω equal to 1 if deadhead i with schedule u belongs to path ω

eω number of duties in crew path ω

fω number of aircraft required to cover aircraft path ω

nij
ω equal to 1 if leg i and leg j are performed in sequence in path ω

nijpq
ω equal to 1 if leg i with schedule p and leg j with schedule q are

performed in sequence in path ω

ζF number of available aircraft

ζD total number of duties allowed in all crew pairings

path variables can take a non-zero value in only one of the unaggregated linking constraints
(8) related to a given short connection. These constraints can thus be rewritten as:

∑

ω∈ΩK

nij
ω χω −

∑

ω∈ΩF

nij
ω θω ≤ 0 ((i, j) ∈ S). (11)

Although the integer aggregated model, (M2), obtained by replacing (8) with (11) is
equivalent to the original formulation, its linear relaxation does not prevent the model to
choose for crews fractions of short connections that are taken by aircraft, but with different
schedules. The aggregated formulation could therefore lead to a larger integrality gap or
introduce a greater number of fractional variables in the LP solution. The detailed short
connection linking constraints (8) impose that the flow on each short connection arc in the
crew networks be smaller than or equal to the flow on the corresponding arc in the aircraft
networks. In contrast, the aggregated formulation only requires that the sum of the flows
on all arcs corresponding to a given short connection (for all schedule combinations) be
smaller or equal in the crew networks. Figure 1 shows an example where a solution to the
linear relaxation of the aggregated model violates some of the unaggregated constraints
(8). For ease of exposition, this example only considers two possible departure times for
two connecting flight legs where the connection between leg A and leg B is short for all
four possible schedule combinations.
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Crew subnetwork

Aircraft subnetwork

Schedule 1

Leg A

Schedule 2

Leg B

0.3

0.5 0.2 0.2

0.5 0.5 0.8

0.5 0.2

0.5 0.3 0.8

0.5

0.0

0.0

0.2

0.5

Schedule 1

Leg A

Schedule 2

Leg B

Departure node of a flight leg

Arrival node of a flight leg

Flight leg arc

Connection arc

Flow on the corresponding arc

Figure 1: Example of some violated unaggregated constraints

One can see in Figure 1 that two detailed constraints are violated with this solution.
For instance, 0.2 crew makes the short connection between [Leg A - Schedule 1] and [Leg
B - Schedule 1] while no aircraft makes the same connection. Nevertheless, one can easily
observe that the MIP obtained by relaxing integrality on either crew or aircraft variables
in (M2) is equivalent to (M1). If the aircraft variables, for example, are not restricted to
take integer values, the flow on the leg arcs would still be integer because of constraints
(7), which restrict the flow on the aircraft arcs to be equal to the flow on the crew arcs.
Consequently, as in the integer formulation of (M2), only one possible schedule combination
can be taken between two flight legs.

2 Solution Methodology

2.1 Benders decomposition

The model includes both crew pairing and aircraft routing path variables. Benders decom-
position (see Benders (1962)) can be used to reformulate the problem to separate the two
types of variables at the expense of an increase in the number of constraints.

Let χ be the set of solutions (paths) satisfying the crew constraints (4), (5), (6) and
(10). For given integer values χ̄ω (ω ∈ ΩK) ∈ χ, the MIP relaxation of the aggregated
model (obtained by relaxing integrity on variables θω in (M2)) reduces to the following
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primal subproblem involving only aircraft variables:

Minimize
∑

ω∈ΩF

cωθω (12)

subject to

∑

ω∈ΩF

bi
ωθω = 1 (i ∈ L) (13)

∑

ω∈ΩF

fωθω ≤ ζF (14)

∑

ω∈ΩF

biu
ω θω ≥

∑

ω∈ΩK

biu
ω χ̄ω (i ∈ L, u ∈ Ui) (15)

∑

ω∈ΩF

nij
ω θω ≥

∑

ω∈ΩK

nij
ω χ̄ω ((i, j) ∈ S) (16)

θω ≥ 0 (ω ∈ ΩF ). (17)

One can notice that the set of equalities (7) has been replaced with inequalities (15) in
the subproblem. This form is equivalent but easier to solve because it reduces the feasible
set of the dual.

Let α = (αi|i ∈ L), β ≤ 0, δ = (δiu ≥ 0|i ∈ L, u ∈ Ui) and µ = (µij ≥ 0|(i, j) ∈ S) be
the dual variables associated with constraints (13)-(16), respectively. The dual of (12)-(17)
is the following dual subproblem:

Maximize
∑

i∈L

αi + ζF β +
∑

i∈L

∑

u∈Ui

∑

ω∈ΩK

biu
ω χ̄ωδiu +

∑

(i,j)∈S

∑

ω∈ΩK

nij
ω χ̄ωµij (18)

subject to

∑

i∈L

bi
ωαi + fωβ +

∑

i∈L

∑

u∈Ui

biu
ω δiu +

∑

(i,j)∈S

nij
ω µij ≤ cω (ω ∈ ΩF ) (19)

β ≤ 0 (20)

δiu ≥ 0 (i ∈ L, u ∈ Ui) (21)

µij ≥ 0 ((i, j) ∈ S). (22)

Assuming that cω ≥ 0 for all ω ∈ ΩF , the dual subproblem is always feasible since the
null vector 0 satisfies constraints (19)-(22). Furthermore, if it is also bounded, it makes
the primal subproblem feasible and bounded as well. Let ∆ denote the polyhedron defined
by constraints (19)-(22), and let P∆ and R∆ be the sets of extreme points and extreme
rays of ∆, respectively. One can see that ∆ does not depend on the crew problem since
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the crew elements χ̄ω are present only in the objective function (18). P∆ and R∆ could
then be enumerated a priori.

Introducing the additional free variable z0, the MIP relaxation of (M2) can thus be
reformulated as the following Benders master problem:

Minimize
∑

ω∈ΩK

cωχω + z0 (23)

subject to

z0 −
∑

i∈L

∑

u∈Ui

∑

ω∈ΩK

biu
ω δiuχω −

∑

(i,j)∈S

∑

ω∈ΩK

nij
ω µijχω ≥

∑

i∈L

αi + ζF β ((α, δ,µ, β) ∈ P∆)

(24)

−
∑

i∈L

∑

u∈Ui

∑

ω∈ΩK

biu
ω δiuχω −

∑

(i,j)∈S

∑

ω∈ΩK

nij
ω µijχω ≥

∑

i∈L

αi + ζF β ((α, δ,µ, β) ∈ R∆)

(25)
∑

ω∈ΩK

bi
ωχω = 1 (i ∈ L) (26)

∑

ω∈ΩK

eωχω ≤ ζD (27)

∑

ω∈ΩK

diu
ω χω −

∑

ω∈ΩK

biu
ω χω ≤ 0 (i ∈ L, u ∈ Ui) (28)

χω ∈ {0, 1} (ω ∈ ΩK). (29)

Feasibility constraints (25) ensure that the values given to the crew variables χω (ω ∈
ΩK) lead to a bounded dual subproblem. When bounded, the purpose of the dual sub-
problem is to evaluate the aircraft routing problem for a specific set of short connections
and a specific schedule for every leg. The value of z0 is thus restricted to be larger than
or equal to the optimal value of the dual subproblem by optimality constraints (24). Since
the Benders cuts are generated from the polyhedron of the dual subproblem, integrality
on the primal subproblem variables has to be relaxed. However, an algorithm in three
phases ensuring that an integer solution to the problem is obtained is described in the next
section.

In general, model (23)-(29) contains more constraints than the MIP relaxation of (M2)
but most optimality and feasibility cuts are inactive in an optimal solution. Hence, these
constraints need not be enumerated exhaustively but can instead be generated dynamically
by iterating between a relaxed master problem and the subproblem. The relaxed master
problem contains constraints (26)-(29) as well as subsets of Benders cuts (24) and (25).
The optimal solution of the relaxed Benders master problem is used to set up constraints
(15) and (16) in the primal subproblem at every iteration. If the primal subproblem is
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feasible, the value of the dual variables associated with constraints (13)-(16) determine an
extreme point of P∆. Otherwise, an extreme ray of R∆ violating one of the constraints
(25) is identified. When through values are not considered, as it is often the case in the
literature (see, e.g., Klabjan (2005)), the aircraft routing problem reduces to a feasibility
problem and optimality cuts become irrelevant. Hence, exactly one feasibility cut is added
to the relaxed Benders master problem at each iteration and the process continues until
its optimal solution yields a feasible primal subproblem.

2.1.1 Three-phase algorithm Mercier et al. (2005) have described a heuristic solution
method in which both the crew pairing master problem and the aircraft routing subproblem
are solved by column generation. The method works in three phases. In Phase I, all
integrality requirements are relaxed and the relaxation is solved to optimality by Benders
decomposition and column generation. Retaining all generated cuts, Phase II reintroduces
integrality constraints on the master problem crew variables and solves the resulting mixed-
integer problem by generating additional cuts. In this phase, the integer master problem
must be solved at each iteration of the Benders decomposition algorithm. In Phase III,
integrality constraints are finally added on the subproblem aircraft variables and the integer
subproblem is solved once with the values of the master problem variables being held
fixed. Because linking constraints in the primal subproblem force the aircraft to use the
short connections selected for crews in the master problem, the integer primal subproblem
may be infeasible in Phase III for the given solution of the master problem, even if the
original problem is feasible. A step is therefore added after the third phase to verify the
feasibility of the integer subproblem and, if needed, go back to the second phase to solve
the integer master problem with an additional constraint forbidding the same subset of
short connections to be chosen. To obtain integer solutions in the master problem and
in the subproblem, a heuristic branching strategy is used. Branching is performed on the
path variables and decisions can be made simultaneously on more than one variable to
accelerate the search.

2.1.2 Dynamic constraint generation Due to the increased number of constraints
and variables in the model to include possible schedule changes, the algorithm developed
by Mercier et al. (2005) does not succeed in solving the model efficiently. In fact, the
computational experiments presented in Section 3 show that the straightforward extension
of the method does not converge within 36 hours of computing time for the larger instances,
even when the aggregated model is used. The integrated model including flight retiming
is thus solved with a modified version of the three-phase approach. The new approach
includes a dynamic constraint generation procedure.

The large number of deadhead coordination constraints (6) in the model contributes
to the inefficiency of the solution method, but without deadhead flights, the majority of
the instances would either become infeasible or the crew costs would increase significantly.
However, since the proportion of potential deadhead flights actually used in the solutions
is small, constraints (6) can be generated dynamically to reduce the computational effort
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required to solve the Benders master problem. When this approach is used, all constraints
(6) are relaxed in the master problem at the beginning of phase I and, after each iteration
of the Benders decomposition algorithm, all violated constraints are added to the master
problem. Recall that the purpose of the Benders subproblem is only to evaluate the
aircraft routing problem (or verify its feasibility) for a specific set of short connections and
a specific schedule for every leg. The subproblem thus generates valid Benders cuts even if
a relaxation of the master problem is used to supply crew pairings and potential schedules.

When the aggregated model is used, the algorithm can also add, throughout phase I,
the violated detailed short connection linking constraints (8) to the model in an effort to
improve the LP solution value. Adding constraints in the primal subproblem during the
solution process does not affect the validity of the previously generated Benders cuts. In-
deed, restricting the primal subproblem relaxes the dual subproblem. As a result, Benders
cuts added in previous iterations were generated from possibly interior points (rays) of the
dual, but nonetheless feasible dual points (rays) of the complete model. In other words,
the missing dual values (associated with the detailed linking constraints) were assumed to
be 0 in the previous iterations. Recall that this step is not needed in phase II since the
MIP relaxation of (M2) is not a relaxation of the integer formulation of (M1) because of
constraints (7).

Figure 2 gives the complete algorithmic flowchart of the proposed solution method.

3 Computational Experiments

In this section, we present computational experiments that were carried out on a set of
seven instances based on data provided by two major airlines. Three possible departure
times for every leg, five minutes apart, were used to test the flight retiming aspect and
make comparisons with the model in which the schedule is fixed. These modifications from
the original flight schedule are considered small enough not to change flight demand.

3.1 Description of data sets

The test instances come from daily fleet assignment solutions provided by the airlines.
Some characteristics of the different instances are given in Table 2. This table indicates, for
each instance, the number of daily legs and the total number of possible short connections
(|S|). In column |S′|, we indicate the number of connections that are short for at least
one combination of departure times when small retimings are considered (± 5 min.). The
percentage increase in the number of possible short connections with the retimings is given
in the last column of the table.

One can see from Table 2 that the flight retiming model contains, on average, 58.4%
more possible short connections than the model with fixed departure times. Small schedule
modifications can thus have a strong impact on the number of pairings satisfying all the
work rules and on the number of maintenance-feasible aircraft routes. Allowing new paths
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Table 2: Characteristics of test instances
Instance Legs |S| |S′| Increase

D95A 198 87 127 46.0%

B757A 184 114 151 32.5%

B767R 152 83 168 102.4%

A320D 258 182 272 49.5%

D9SA 523 502 725 44.4%

D9SB 508 659 961 45.8%

B767S 510 370 697 88.4%

Avg. 58.4%

that would otherwise be infeasible can significantly reduce crew costs while reducing the
number of necessary aircraft.

3.2 Summary of computational experiments

To evaluate the efficiency of the three-phase algorithm on the integrated model with flight
retiming, we first tried to solve the model where all the detailed short connection linking
constraints and all the deadhead schedule coordination constraints are included from the
start (model (M1)). For more than half of the instances, this straightforward extension
could not find a solution even after 36 hours of computing time. To improve the effi-
ciency of the algorithm, we tried to solve the compact aggregated model, first with all
the deadhead coordination constraints (model (M2)), and then with the latter constraints
generated dynamically (model (M2a)). Finally, we tried solving the compact model with
the deadhead coordination constraints generated dynamically again but also with the vio-
lated detailed short connection linking constraints generated as needed throughout phase
I (model (M2b)). Our algorithms were coded in C++ and use GENCOL1 for column gen-
eration. All experiments were performed on a Pentium 4, 2 GHz computer, using a single
processor.

Table 3 presents a comparison of the CPU time and computational effort needed to
perform all three phases with the different approaches. We indicate, for the four approaches
and all seven instances, the time spent in each of the three phases as well as the number
of cuts generated in the first two phases and the number of forbidden short connection
subset cuts added after phase II to get a feasible integer subproblem (SPIP Cuts). We also
indicate, when appropriate, the total number of deadhead schedule coordination constraints
added (DH Cuts) and the total number of detailed short connection linking constraints
added (SCLC Cuts). Cost IP indicates the cost of the integer integrated solution at the
end of Phase III. Since the branch-and-bound strategy is heuristic, the optimality of the
solution is not guaranteed. The master problem also includes an integrality gap. The
reported gap is therefore the maximum optimality gap and is computed as the percentage

1GENCOL is an optimization software that was developed at GERAD in Montreal.
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difference between Cost IP and Cost LP . Finally, the CPU time efficiency of the methods
are compared. For example, CPU ratio vs M1 reported for (M2a) is the total CPU time
of (M1) divided by the total CPU time of (M2a).

When considering Phase I CPU times, one observes that the approach using the com-
pact aggregated formulation (M2) always produced an LP solution faster than the one
using the unaggregated model (M1). In addition, the LP value does not deteriorate with
the aggregated model. Although the number of linking constraints is greatly reduced in
the aggregated Benders subproblem, the improvements are mainly attributed to a decrease
in the number of Benders cuts generated and not to the improved solution time of the sub-
problem itself. It thus seems that the aggregated subproblem generates stronger Benders
cuts than the unaggregated one. While this may be surprising, it can be explained by the
fact that the aggregated model has a smaller dual feasible region which helps to generate
stronger cuts. The comparison of the time spent in finding an integer solution can be
misleading because of the heuristic branch-and-bound method. For all instances, (M2)
nevertheless solved the integer problem faster than (M1), by a factor of at least 5.10, on
average, and an additional instance could be solved within the time limit. This CPU
decrease is in fact underestimating the real ratio of decrease since (M1) was sometimes
stopped before getting a solution.

Putting the deadhead schedule coordination constraints in the crew master problem only
when they are violated (model (M2a)) further improves the performance of the three-phase
algorithm. This refinement can decrease the average total CPU time by another factor of at
least 3.30 when compared to the basic aggregated model (M2) and two additional instances
could be solved. In addition to reducing the solution time of the crew pairing problem,
the numerical results show that this relaxation of the Benders master problem also has the
effect of reducing the number of iterations of the Benders decomposition algorithm.

Furthermore, the dynamic generation of the violated detailed short connection linking
constraints in the course of phase I (model (M2b)) can also decrease the average total CPU
time. This refinement is essential to be able to solve all the larger instances. Recall that the
LP values of (M2) are equal to the LP values of (M1) on these instances. Therefore, adding
the detailed short connection linking constraints cannot improve the LP values, but it can
still speed up phase II since restoring integrality on the crew path variables in this phase
implies the satisfaction of the detailed linking constraints in the subproblem, on account
of constraints (7). Indeed, one can observe that the number of generated Benders cuts
in phase II of (M2b) is always lower than or equal to the number generated with (M2a),
except for instance D9SB. For instance D9SB, some variability may have come from the
generation of an SPIP cut to get a feasible integer subproblem. Yet, it is worth noting
that the number of Benders cut generated in the first run of phase II (before the SPIP
cut) was again lower with (M2b). When this approach is compared to the straightforward
extension (model (M1)), the total CPU time is decreased, on average, by a factor of more
than 12. One can finally notice that the performance improvements do not come at the
price of lower solution quality. When comparing (M2b) to any other method, if the average
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Table 3: Complete results: integrated problem with flight retiming†

D95A B757C B767R A320D D9SA D9SB B767S Avg.

Cost LP 20,626 47,821 37,492 80,272 66,840 80,229 172,728

M1

CPU Ph.I >36h 41.51 87.40 153.49 >36h >36h >36h

CPU Ph.II 19.44 7.26 8.80

CPU Ph.III 34.34 20.72 1.85

CPU Total >36h 95.29 115.38 164.14 >36h >36h >36h

Cuts Ph.I 68 69 78

Cuts Ph.II 6 0 0

SPIP Cuts 2 2 0

Cost IP 48,973 37,543 80,848

Gap 2.35% 0.14% 1.93% 1.47%

M2

CPU Ph.I 158.80 27.81 9.25 46.62 >36h >36h >36h

CPU Ph.II 17.08 27.05 2.68 29.42

CPU Ph.III 0.17 3.65 14.58 0.32

CPU Total 176.05 58.51 26.51 76.36 >36h >36h >36h

Cuts Ph.I 95 34 3 31

Cuts Ph.II 2 12 0 4

SPIP Cuts 0 1 0 0

Cost IP 20,748 48,520 37,543 81,828

Gap 0.59% 1.44% 0.14% 1.90% 1.02%

CPU ratio vs M1 >12.27 1.63 4.35 2.15 >5.10

M2a

CPU Ph.I 32.30 8.75 10.61 14.64 316.63 272.10 58.01

CPU Ph.II 9.98 3.79 1.44 7.51 12.89 181.67 >36h

CPU Ph.III 0.14 2.97 14.63 1.17 32.08 868.93

CPU Total 42.42 15.51 26.68 23.32 361.60 1322.70 >36h

Cuts Ph.I 17 8 6 11 16 9 4

Cuts Ph.II 2 1 0 1 0 3 >3

SPIP Cuts 0 0 0 0 0 1

DH cuts 0 7 3 10 0 2

Cost IP 20,688 48,348 37,543 80,407 67,405 81,123

Gap 0.30% 1.09% 0.14% 0.17% 0.84% 1.10% 0.61%

CPU ratio vs M2 4.15 3.77 0.99 3.27 >5.97 >1.63 >3.30

M2b

CPU Ph.I 29.83 7.61 12.17 13.19 436.09 269.90 37.26

CPU Ph.II 10.32 0.99 1.27 1.78 21.74 364.99 671.12

CPU Ph.III 0.44 2.28 5.90 4.18 43.00 711.63 211.34

CPU Total 40.59 10.88 19.34 19.15 500.83 1346.52 919.72

Cuts Ph.I 18 12 6 6 20 9 3

Cuts Ph.II 2 0 0 0 0 5 0

SPIP Cuts 0 0 0 0 0 1 0

SCLC cuts 9 7 8 11 2 24 28

Cost IP 20,748 48,112 37,555 80,388 66,845 81,157 176,975

Gap 0.59% 0.60% 0.17% 0.14% 0.01% 1.14% 2.40% 0.72%

CPU ratio vs M2a 1.05 1.43 1.38 1.22 0.72 0.98 >2.35 >1.34

CPU ratio vs M1 >53.22 8.76 5.97 8.57 >4.31 >1.60 >2.35 >12.11

† All CPU times are in minutes.
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maximum optimality gap is computed only on the instances solvable with the two methods,
the gap is always lower when using (M2b).

It is worth noting that we also tried to generate Pareto-optimal Benders cuts (see, e.g.,
Magnanti and Wong (1981)) but the time needed to solve the auxiliary problem used to
generate non-dominated cuts was always greater than the time saved by having a reduced
number of iterations of the Benders decomposition procedure.

To evaluate the benefits of having some flexibility in the schedule, the results of (M2b)
(the most efficient approach) were compared with the results obtained when solving the
integrated model with a fixed schedule (model (M0)). Table 4 compares the computational
effort needed as well as the quality of the solutions obtained (in terms of costs). We indicate
for both approaches the time spent in each of the three phases as well as the number of
cuts generated in the first two phases and the number of forbidden short connection subset
cuts added after phase II to get a feasible integer subproblem (SPIP Cuts). Cost LP
indicates the cost of the solution found at the end of Phase I and Cost IP indicates the
cost of the integer solution at the end of Phase III. The maximum optimality gap reported
is computed with respect to the corresponding LP value. The quality of the solutions are
compared by means of the LP cost percentage decrease (Cost LP % dec.), the IP cost
percentage decrease (Cost IP % dec.) and the reduction in the number of aircraft needed
(Aircraft nb. dec.). Finally, the CPU times used by the methods are compared (CPU ratio
vs M0).

These results show that for all instances, the model with flight retiming produced an
integer solution of lower cost and with a smaller number of aircraft than the solution
produced by the model with fixed departure times. Crew costs, which include waiting
costs and deadhead costs, are decreased, on average, by 8.30% when the departure time of
the flights can be moved forward or backward by just five minutes. Since these crew costs
account, on average, for about 20% of total crew costs (which include a large fixed cost for
the actual flight time), the integrated model with flight retiming can reduce the total crew
costs by an average of 1.60% in our instances. At the same time, with these small schedule
modifications, the number of aircraft needed to respect the maintenance requirements can
be reduced, on average, by almost 2. One can notice that the instances for which the
crew costs are decreased by a smaller percentage are also the instances for which the
number of aircraft was reduced more. Globally, these small schedule modifications can
thus significantly reduce airline costs. Of course, the CPU ratios show that the integrated
problem with flight retiming is much harder to solve, but the times can still be considered
reasonable for tactical planning.

Finally, it is worth mentioning that the benefits displayed in the above table are solely
attributable to the introduction of flight retiming in the integrated aircraft routing and crew
scheduling problem. One could be interested in comparing the results from the integrated
aircraft routing, crew scheduling and flight retiming problem with a sequential procedure
also incorporating flight retiming. On the one hand, it can be observed that the number
of Benders feasibility cuts is always positive in phase I of (M2b). A sequential procedure
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Table 4: Computational effort and solution quality: with and without flight retiming†

D95A B757C B767R A320D D9SA D9SB B767S Avg.

M0

CPU Ph.I 0.52 0.47 0.23 1.03 5.38 7.72 2.33

CPU Ph.II 0.23 3.29 0.12 0.73 0.14 16.59 2.92

CPU Ph.III 0.02 0.35 0.23 0.01 1.83 25.07 3.00

CPU Total 0.77 4.11 0.58 1.77 7.35 49.38 8.25

Cuts Ph.I 11 14 0 20 9 11 4

Cuts Ph.II 0 2 0 1 0 2 0

SPIP Cuts 0 1 0 0 0 3 0

Cost LP 25,036 49,355 39,690 83,057 80,480 85,481 177,676

Cost IP 25,403 50,420 40,638 83,367 80,480 86,317 178,980

Gap 1.44% 2.11% 2.33% 0.37% 0.00% 0.97% 0.73% 1.14%

M2b

CPU Ph.I 29.83 7.61 12.17 13.19 436.09 269.90 37.26

CPU Ph.II 10.32 0.99 1.27 1.78 21.74 364.99 671.12

CPU Ph.III 0.44 2.28 5.90 4.18 43.00 711.63 211.34

CPU Total 40.59 10.88 19.34 19.15 500.83 1346.52 919.72

Cuts Ph.I 18 12 6 6 20 9 3

Cuts Ph.II 2 0 0 0 0 5 0

SPIP Cuts 0 0 0 0 0 1 0

Cost LP 20,626 47,821 37,492 80,272 66,840 80,229 172,728

Cost IP 20,748 48,112 37,555 80,388 66,845 81,157 176,975

Gap 0.59% 0.60% 0.17% 0.14% 0.01% 1.14% 2.40% 0.72%

Cost LP % dec. 17.61% 3.11% 5.54% 3.35% 16.95% 6.14% 2.78% 7.93%

Cost IP % dec. 18.32% 4.58% 7.59% 3.57% 16.94% 5.98% 1.12% 8.30%

Aircraft nb. dec. 1 2 1 4 1 2 2 1.83

CPU ratio vs M0 52.71 2.65 33.34 10.82 68.14 27.27 111.48 43.77

† All CPU times are in minutes.

with flight retiming that solves the crew pairing problem first would thus always lead to an
infeasible aircraft routing problem. On the other hand, if the aircraft routing problem was
solved first, the flight scheduling decisions would be made on a feasibility problem and not
with the objective of minimizing crew costs. As a result, the cost decrease would not be as
important. Finally, all benefits attributable to the integration of aircraft routing and crew
scheduling (see, e.g., Cordeau et al. (2001), Klabjan et al. (2002) and Cohn and Barnhart
(2003)) would be left out.

4 Conclusion

This paper has introduced a model and a solution methodology for the integrated aircraft
routing, crew scheduling and flight retiming problem. The methodology combines Benders
decomposition, column generation and a dynamic constraint generation procedure. On test
instances containing up to 500 daily legs, the approach yields solutions that significantly
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decrease crew costs while also reducing the number of aircraft and still ensuring appropriate
aircraft maintenance. This would not be possible with a sequential solution process. When
compared to a straightforward extension of the solution methodology previously developed
by Mercier et al. (2005), by aggregating some of the short connection linking constraints
in the Benders subproblem and by generating some other constraints dynamically, the new
approach decreases by a factor of more than 12, on average, the time needed to solve the
integrated model with flight retiming without deteriorating the solution quality.
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