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Abstract

We propose a hybrid method designed to solve a problem of dispatching and
conflict-free routing of Automated Guided Vehicles (AGVs) in a Flexible Manufactur-
ing System (FMS). This problem consists in the simultaneous assignment, scheduling
and conflict-free routing of the vehicles. Our approach consists in a decomposition
method where the master problem (scheduling) is modeled with Constraint Program-
ming and the sub problem (conflict-free routing) with Mixed Integer Programming.
Logic cuts are generated and used to prune optimal scheduling solutions whose routing
plan exhibits conflicts. The hybrid method presented herein allowed to solve instances
with up to six AGVs.

Key Words: Constraint programming, mathematical programming, hybrid model,
logical Benders decomposition, material handling system, automated guided vehicles,
vehicle routing and scheduling.

Résumé

Dans cet article, nous proposons une méthode hybride pour résoudre un problème
de répartition et routage sans conflit d’une flotte de véhicules automatiques dans un
atelier flexible. Notre problème est un problème simultané d’affectation et routage sans
conflit de véhicules automatiques. Notre approche consiste en une méthode hybride
dans laquelle le problème mâıtre (ordonnancement) est modélisé en programmation par
contraintes tandis que le sous problème (routage sans conflit) est modélisé en program-
mation linéaire en nombres entiers. Des coupes logiques sont générées pour éliminer
les solutions optimales pour la partie ordonnancement mais qui présentent des conflits
de routage. La méthode hybride présentée dans cet article permet de résoudre des
problèmes contenant jusqu’à 6 véhicules automatiques.
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1 Introduction

This study focuses on the routing and scheduling of automated guided vehicles (AGVs) in
a flexible manufacturing system (FMS). An AGV is a material handling equipment that
travels on a network of guide paths. The FMS is composed of various cells, also called
working stations, each with a specific function such as milling, washing, or assembly. Each
cell is connected to the guide path network by a pick-up/delivery (P/D) station where
pallets are transferred from/to the AGVs. Pallets of products are moved between the
cells by the AGVs. The guide path is composed of aisle segments on which the vehicles
are assumed to travel at a constant speed. The vehicles can travel forward or backward.
As many vehicles travel on the guide path simultaneously, collisions must be avoided.
AGV systems are implemented in various industrial contexts: container terminals, part
transportation in heavy industry, flexible manufacturing systems. For a general review
on AGV problems, the reader is referred to Co and Tanchoco (1991), King and Wilson
(1991) and Ganesharajah et al. (1998). For a recent review on AGVs scheduling and
routing problems and issues, the reader is referred to the survey of Qiu et al. (2002).
These authors identified three types of algorithms for AGVs problems: (1) for general
path topology, (2) for path optimization and (3) for specific path topologies. Methods of
the first type can be divided in three categories: (1a) static methods, where an entire path
remains occupied until a vehicle completes its route; (1b) time-window based methods,
where a path segment may be used by different vehicles during different time-windows;
and (1c) dynamic methods, where the utilization of any segment of path is dynamically
determined during routing rather than before routing as with categories (1a) and (1b).
The method presented in this article belongs to the third category (1c) and address the
conflict-free routing problem with an optimization approach. The plan of the article is as
follows. Section 2 presents a description of the problem with a review of relevant works.
Section 3 presents a hybrid Constraint Programming (CP)/Mixed Integer Programming
(MIP) approach. Section 4 describes in detail the experimentation. The conclusion follows.

2 Problem description

Every day, a list of orders is given, each order corresponding to a specific product to
manufacture (here, product means one or many units of the same product). Each order
determines a sequence of operations on the various cells of the FMS. The production
scheduling, i.e., setting the earliest starting time of each operation for each pallet of each
order, is done a priori. The unit load is one pallet. Hence, each material handling request
is composed of the pick-up and the delivery of a pallet with the corresponding earliest
times. The guide path network is bi-directional. The vehicles can stop only at the ends
(intersection nodes) of the guide path segments. There are two types of possible collisions:
the first type may appear when two vehicles are moving toward the same node. The
second type of collision occurs when two vehicles are traveling head-to-head on a segment.
A production delay is incurred when a load is delivered after its planned earliest time. The
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problem is thus defined as follows: Given a number of AGVs (and their starting position)
and a set of transportation requests, find the assignment of the requests to the vehicles and
conflict-free routes for the vehicles in order to minimize the sum of the production delays.
Our problem may be seen as a Vehicle Routing Problem with Time Windows (VRPTW)
in which the objective is to minimize the sum of deviations from the lower bound value of
the time windows of the delivery tasks subject to the following constraints:

• For each pick-up or delivery task, the lower bound of its associate time windows
is equal to its earliest processing time while the upper bound is the length of the
horizon.

• There exist anti-collision constraints on nodes and arcs.

• There exist two types of precedence constraints between some specified pick-up and
delivery tasks.

• All nodes may be visited several times by the AGVs either to perform a task or for
a simple traversal.

A number of authors have addressed the conflict-free routing problem with a static job
set, i.e., with all jobs known a priori. Lee et al. (1998) present a two-staged traffic control
scheme to solve a conflict free routing problem. Their heuristic method consists of gen-
erating off-line k-shortest paths in the first stage before the on-line traffic controller picks
a conflict free shortest path whenever a dispatch command for an AGV is issued (second
stage). Qiu and Hsu (2001) present a method consisting of scheduling and routing a batch
of AGVs concurrently on a bi-directional linear path layout. Regarding the scheduling
part of their approach, jobs are handled one batch at a time. The presence of linear track
enables to find conflict free routes. The major shortcoming of their method is unrealistic
assumptions; for example, the set of AGVs is partitioned in two groups and they are routed
to run on both parallel lanes simultaneously in opposite directions to achieve a high degree
of synchronism. Rajotia et al. (1998) propose a semi-dynamic time window constrained
routing strategy. They use the notions of reserved and free time windows to manage the
motion of vehicles. Krishnamurthy et al. (1993) propose an optimization approach. Their
objective is to minimize the makespan. They assume that the assignment of tasks to AGVs
is given and they solve the routing problem by column generation. Their method gener-
ates very good solutions in spite of the fact that it is not optimal (column generation is
performed at the root node of the search tree only). Oboth et al. (1999) present a heuristic
method to solve the dispatching and routing problems but not simultaneously. Scheduling
is performed first and a sequential path generation heuristic (SPG) is used to generate
conflict free routes. The SPG is inspired from Krishnamurthy et al. (1993) static version
of the AGV routing problem and applied to a dynamic environment while relaxing some
of the limiting assumptions like equal and constant speeds of AGVs. When conflict is
encountered, no feed back is sent to the scheduling module. The AGV being routed has to
be delayed if an alternate route cannot be generated. The authors use rules for positioning
idle AGVs instead of letting the system manage them. Langevin et al. (1996) propose a
dynamic programming based method to solve exactly instances with two vehicles. They
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solve the combined problem of dispatching and conflict-free routing. Desaulniers et al.
(2003) propose an exact method that enables to solve instances with up to four vehicles.
Their approach combines a greedy search heuristic (to find a feasible solution and set bound
on delays), column generation and a branch and cut procedure. Their method presents
however some limits since its efficiency depends highly on the performance of the starting
heuristic. If no feasible solution is found by the search heuristic, then no optimal solution
can be found. The search heuristic performs poorly when the level of congestion increases.

3 A Hybrid CP/MIP Approach

A hybrid CP/MIP decomposition method has been developed for the problem of simul-
taneously scheduling all the pick-up and delivery tasks and routing without conflicts the
AGVs. The basic goal of this decomposition is to benefit from the strengths of CP for
scheduling and of MIP for routing in this particular context. CP is particularly useful
since it can easily handle non linear constraints. The approach is inspired by the logic-
based Benders decomposition. The reader is referred to Hooker and Ottosson (2003) and
Milano (2004) for comprehensive reviews on hybrid methods. Hooker (2000) gives insights
on how CP can be integrated to Benders Decomposition. A number of researchers have
integrated CP in the classical Benders decomposition for MIP (the master problem or the
sub problem is formulated in CP and logic - no goods - cuts are used). Benoist et al.
(2002) formulate their master problem as a CP model. Their master problem is reduced
to a global constraint whereas the sub problems use linear duality. The global constraint
uses the network structure of the original problem and consists of two types of equations
defining the feasible flow problem. This method has been efficiently applied to a workforce
scheduling problem in a telecommunications company calling center. Eremin and Wallace
(2001) also present a hybrid decomposition method in which the master problem is solved
with CP. The major interest of their approach is that the user only needs to specify the
variables of each sub problem. This enables the automatic derivation of the dual form
of each sub problem and an automatic extraction of the Benders decomposition. It can
help researchers focus on CP or mathematical programming (not both fields) for quickly
designing prototypes of models. In other papers, the master problem is solved with MIP
and sub problems are formulated and solved with CP. Thorsteinsson (2001) proposes a
hybrid framework that encapsulates Benders decomposition as a special case. Jain and
Grossmann (2001) use a MIP/CP decomposition method in which the master MIP model
is a relaxation of the original model and feasibility sub problems are solved with CP. They
proposed also a LP/CP-based branch-and-bound algorithm to solve their hybrid models.
Their application example is a scheduling problem of dissimilar parallel machines. In the
same line of research, the paper of Maravelias and Grossmann (2004) presents a concep-
tual similarity with our decomposition. Their master MIP is a relaxation of the original
problem. Then given a relaxed solution, the CP sub problem checks whether there exists a
feasible solution and generates integer cuts. This method is used to solve a batch chemical
process problem. In the same line of research, Hooker (2004) uses a hybrid MIP/CP de-
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composition method to solve a class of planning and scheduling problems for manufacturing
and supply chain management. This method, named logic-based Benders decomposition,
exploits the strengths of MIP in the assignment portion and CP to tackle the schedul-
ing part. Tasks are assigned to facilities by using MIP and then scheduled subject to
release dates and deadlines using CP. The cuts used are based on either the information
on the sets of tasks assigned to facilities (in case of cost minimization) or the information
on the makespan (in case of makespan minimization). This approach gives good results
even though it is less effective when there are more than 30 tasks to schedule. In the
decomposition method developed herein, the master problem, solved by CP, determines
both the assignment of the transportation tasks to the vehicles and the scheduling (i.e.,
the expected time) of the pick-up and the deliveries, based on the shortest path routes.
The CP master problem provides a very good lower bound to the original model objective
function. It contains essentially non linear constraints. For each solution of the master
problem, the MIP sub problem checks whether there is a feasible solution (collision-free
routes) and, if not, generate logic cuts sent back to the master problem. The sub problem
has a very strong minimum cost flow problem structure and thus can be solved efficiently
by the network simplex (together with B&B). This approach is very similar to the logic
Benders decomposition proposed by Hooker and Ottosson (2003) since the master problem
generates an optimal but potentially infeasible solution which is then validated by a sub-
problem. When this solution is infeasible, the subproblem generates a set of feasibility cuts
that are added to the master problem. However our approach does not take advantage of
duality as it is usually the case in logic or classic Benders decomposition. The method is
depicted in Figure 1. The CP and the MIP models are described next.

3.1 The CP model

The model determines which vehicle will be processing what material handling request
at what time by generating an ordered assignment of tasks to AGVs. The total amount
of delays is measured by summing the difference between the planned start time and the
earliest start time of each delivery. In this model, the distance (time) matrix is obtained
by using shortest paths between nodes. Thus, the delays calculated (which don’t take into
account the possible conflicts) provide a lower bound of the actual delays. A transportation
request consists of a pick-up and a delivery tasks. For modeling purposes, dummy start
and end requests (and tasks) are associated with each AGV. If the successor of a dummy
start request is the dummy end request corresponding to the same vehicle, it means that
the AGV is not used during the whole horizon. In addition, we assume that a dummy start
task corresponds to a delivery task of the preceding horizon. Hence the starting (beginning
of the horizon) and final (end of the horizon) positions can be seen as dummy task nodes
for each AGV for the current horizon and the next one. We define the set W as the set of
all tasks including the dummy start ones.
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CP model: Ordered assignment of requests 
to AGVs  to minimize production delays . 

MIP model: Conflict-free routing of A GVs. 
Only the first feasible integer solution is 
needed.

MIP Feasible integer solution ?

Generate logic cuts and add them to the CP 
model. Increase lower bound of CP model of 
one unit if all alternative CP solutions of 
equivalent cost have been explored .

The solution  is optimal for the 
original problem.

Yes

No

Sub problem

Master problem

Figure 1: The hybrid method
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Sets and parameters:
Dummy set of dummy starting requests. Each of them is in fact the

starting node of a vehicle corresponding to the last delivery
node of a vehicle in the previous planning horizon;

nv the starting node of AGV v;
W p set of pick-up tasks;
W d set of delivery tasks;
W set of pick-up and delivery tasks;
D(· , ·) length of the shortest path between the nodes of two tasks;
ni the node for task i;
|V | number of vehicles available;
V set of AGVs;
R set of requests. Each request contains two fields: the pick-up

task and the associated delivery task;
|R| number of requests to plan;
I set containing R and the dummy start requests;
O set containing R and the dummy end requests;
e(·) duration of the processing at a workstation;
P set of couples of tasks linked by a precedence relationship

(the first task is to be performed before the other);
Ej earliest starting time of task j.

The model uses the three following finite domain variables:
Ar = k if request r is assigned to vehicle k;
Su = v if request v is the successor of request u on the same vehicle;
Tj is the start time of task j.

The objective function consists in minimizing the sum of the differences between the
given earliest starting times and the actual starting time of the deliveries (the T variables).
In constraint programming, a boolean expression given in parenthesis represents an indica-
tor variable equal to 1 if the event described is true and 0 otherwise (for instance (X = a)
takes value 1 when if variable X takes value a and 0 if it does not). It is thus possible to
build constraints on indicators.

Minimize
∑

j∈W d

(ST [j] − EST [j])

The constraints used in the model are the following (for concision, we have not included
the starting and ending conditions which are straightforward):

∑

s in I

(Sr = s) = 1 ∀ r in Dummy (1)

Ao = ASo
∀ o in O (2)
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T p
r + 1 + D(rp, rd) ≤ Trd ∀ r∈R (3)

Sr1
= r2 ⇒ Trd

1

+ 1 + P (rd
1 , r

p
2) ≤ Tr

p
2

∀r1, r2 ∈ R (4)

Not(Tu.before ≤ Ti ≤ Tu.after) ∀ u in P, i ∈ W :
(u.before 6= i) ∧ (u.after 6= i) ∧ (ni =nu.after =nu.before)

(5)

Tu.before + 1 ≤ Tu.after

∀ u∈P : (u.before∈W p)∧(u.after∈W d)
(6)

Tu.before + 1 + eu.before ≤ Tu.after

∀ u ∈ P : ( u.before ∈ W d )∧( u.after in W p )
(7)

( Ti ≥ Tj + 1 ) ∨ ( Ti + 1 ≤ Tj )
∀ i , j ∈ W : ( i 6= j ) ∧ ( ni = nj )

(8)

Constraints (1) ensure that the successor of each starting dummy request is either a trans-
portation request or a dummy end request (in this case no transportation requests are
assigned to that vehicle for the whole horizon). This set of constraints can also be modeled
with a Global Cardinality Constraint (Regin, 1996) for better performance. Constraints
(2) ensure that each request and its successor are assigned to the same AGV. Constraints
(3) specify that each vehicle processing a request must have enough time to go from the
pick-up node to the delivery node of the request. Constraints (4) ensure that if one request
is the successor of another request on the same vehicle, the AGV must have enough time to
make the trip from the delivery node of the first request to the pick-up node of the second
request. Constraints (5) enforce that no other task can be processed on a node between
the processing at that node of two tasks linked by a priority constraint. Constraints (6)
state that at least one period (duration of the pick-up) must elapse between the starting
times of a pick-up and a delivery tasks linked by a priority constraint. Furthermore, no
other task can be performed on a node between the execution of two tasks linked by a
priority constraint (more details are given in Section 4.1). Constraints (7) ensure that, if
a delivery precedes a pick-up, there is at least one period (duration of the delivery) plus
the processing time of the delivered product between their starting times. Constraints (8)
ensure that two different tasks cannot start at the same node at the same time.

3.2 The MIP model

The formulation of this part (finding a set of conflict-free routes) may seem counterintuitive
to the CP community as they might see it as a Constraint Satisfaction Problem (CSP).
A CSP formulation has been indeed tried but without much success. Since an AGV may
visit an arc or a node more than once during the horizon, a time-space graph was used to
model the routing of the AGVs. The time-space graph is illustrated in Figure 2 and can be
described as follows: A node is defined for each period (of one time unit) and each endpoint
of the guide path segments of the FMS. Each node of a given period is linked by arcs to the
corresponding adjacent nodes of the next period. Those arcs correspond to the movement
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Figure 2: Time-space network

of an AGV between to adjacent endpoints of the segments of the guide path. Each node of
a given period is also linked by an arc to the corresponding same node of the next period
(i.e., a horizontal arc). This corresponds to waiting one unit of time at that node. There
are no arcs between nodes of a same period. All arcs of the graph have a length of one time
unit. For each AGV, there is a starting node at period 0. The problem corresponds then
to a multi-commodity network flow model where each commodity represents one vehicle.
The master problem solution imposes that each flow visits specific nodes at specific times.

As we only search for a feasible solution, any objective function can be used for the
MIP. We used a constant for the objective function.

Sets and parameters:
V set of AGVs;
Nodes set of nodes;
Periods set of periods;
Arcs set of arcs;
ArcsPlus set of all arcs (including waiting arcs);
ArcsFrom[.] ArcsFrom[i] is the set of arcs coming from node i;
ArcsTo[.] ArcsTo[i] is the set of arcs entering in node i;
nv the starting node of AGV v;
Opp[.] array giving the opposite of each arc;
Wait[.] array of waiting arcs;
Task array of records describing each a task with two fields (node,

earliesttime);
M length of the horizon (number of periods);
A [·], T [·] data obtained from the CP model;
R set of requests. Each request is in fact a record with a pick-

up and a delivery fields;
U set of pick-up and delivery tasks.
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The MIP model uses the following variables:

Xt
k,a = 1 if AGV k starts traversing arc a at period t, 0 otherwise.

The constraints are the following:

∑

a ∈ ArcsFrom[nk]

Xo
k,a = 1 ∀ k ∈ V (9)

∑

a ∈ ArcsP lus

Xt
k,a = 1 ∀ t ∈ Periods, k ∈ V (10)

∑

a ∈ ArcsFrom[i]

Xt
k,a −

∑

a ∈ ArcsTo[i]

Xt
k,a = 0

∀ i ∈ Nodes, k ∈ V, t ∈ [1..(M − 1)]

(11)

∑

k ∈ V

Xt
k,a +

∑

k ∈ V

Xt
k,Opp[a] ≤ 1

∀ t ∈ Periods, a ∈ Arcs

(12)

X
Trp

Ar, Wait[nrp ] = 1 ∀ r ∈ R (13)

X
T

rd

Ar, Wait[n
rd ] = 1 ∀ r ∈ R (14)

∑

k∈V,a∈ ArcsTo[i]

Xt
k,a≤1+





∑

r∈U :(t = Tr−1) ∧ (i = nr)

1



 ×





∑

r∈U :(t = Tr) ∧ (i = nr)

1





∀ i ∈ Nodes, t ∈ Periods : t ≥ 1

(15)

Constraints (9) ensure that each AGV is located at its initial position at the beginning of
the horizon while constraints (10) ensure that each AGV is located at a unique position
at each period. Constraints (11) are flow conservation constraints. Constraints (12) are
collision avoidance constraints. Constraints (13) state that every pick-up task must be
done by the right vehicle at the right time while constraints (14) are the equivalent of
constraints (13) for delivery tasks. Constraints (15) are node capacity constraints stating
that there can be only one AGV on a node at any time except the case where one AGV
leaves a node task while another one is just entering in the same node task (that’s why the
product of the sums is added to the right hand side of constraints (15)). If the above MIP
has a feasible solution then optimality for the global problem is obtained. If not, then cuts
are added to the master problem which is re-solved.

Logic cuts
The logic cuts generated when a feasible routing cannot be found are based on the starting
times of deliveries, the assignments of requests to AGVs and the sequence of tasks on the
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same AGV. If a conflict occurs between two AGVs, at least one of them does not have
enough time to fulfill its next task. Now let’s describe a logic cut generated with regard
to a fixed level of production delay. In addition to the parameters and sets defined in the
CP model, the following ones are used:

PrevT[j] previous starting time of task j;
PrevA[r] = k if the request r was previously assigned to vehicle k;
PrevS[r] = v if request v was previously the successor of request r on

the same vehicle.

A logic cut consists of trying the following four options:

• Keep the assignment of requests to AGVs and increase the time of routing between
the pick-up and the delivery of a same request. This corresponds to extending at least
by one period the time window between a pick-up and a delivery. This conjunction
of constraints can be written as

∑

r ∈ O

( Ar = PrevA[r]) = |R| + |V |

and
∑

r ∈ R

((Trd−Trp)≥ (PrevT [ rd ]−PrevT [ rp ])) ≥ 1

(16)

• Keep the assignment of requests to AGVs and the time of routing between the pick-
up and the delivery of each request but increase the starting time of some tasks. This
corresponds to delaying at least one request, namely

∑

r ∈ O

( Ar = PrevA[r]) = |R| + |V |

and
∑

r ∈ R

(Trd = PrevST [ rd] ) ≤ |R| − 1

(17)

• Keep the assignment of requests to AGVs and the time of routing between the pick-
up and the delivery of each request but increase the starting time of some tasks. This
corresponds to delaying at least one request, namely

∑

r ∈ R

( Sr = PrevS[ r ] ) = |R| + |V |

and
∑

r ∈ O

( Ar = PrevA[r] ) ≤ |R| + |V | − 1

(18)



Les Cahiers du GERAD G–2005–05 11

• Generate a different solution by changing the sequences of tasks and the assignments
of requests to AGVs.

∑

r ∈ R

( Sr = PrevS[ r ] ) = |R| + |V |

and
∑

r ∈ O

( Ar = PrevA[r] ) ≤ |R| + |V | − 1

(19)

Defining good logic cuts is a challenging task since the problem at hand is highly com-
binatorial i.e., there are many different solutions to the scheduling model with the same
production delay. The objective is to define cuts which forbid not only the current infea-
sible (i.e., conflicting) solution but as many other solutions exhibiting the same undesired
properties.

4 Experimentation

This section presents the computational experiments. We first describe the instances used
for the tests and then we report the results. Finally, we discuss some additional features
of the method that were explored.

4.1 The instances

The FMS used for the experiments is presented in Figure 3. The guide path was divided
into segments of 7.5 m. Assuming that the AGVs move at a constant speed of 0.5 meter
per second, these segments are therefore traveled in 15 seconds, which corresponds to one
time unit. The instances we used are built from the dataset of Desaulniers et al. (2003).
They constructed 12 different request sets from several orders of an order book. The details
of the order book can be found in Langevin et al. (1996) and Drolet (1991). A planned
production schedule based on average material handling times provides the processing
work station, the earliest processing start time, and the processing time, as well as the
precedence relationships to satisfy for each pair of operation and part type. The number
of transportation requests in those 12 sets varies from 7 to 10. There are two categories of
sets, differing by the spatial density of the requests. The first category, denoted compact,
corresponds to the case where several requests are planned in the same region of the
FMS. This situation arises when an order requires the transportation of a large number of
components between two or three neighbouring work stations, or when two orders requires
similar treatments. The second category, called spread out, corresponds to the case where
the requests occur in different regions of the FMS. Such a request configuration naturally
leads to an assignment of the AGVs by region, thus reducing the combinatorial aspect of
the problem. We have added to these 12 requests sets three other sets with more requests.
This third category of request sets, denoted mixed, is a mixture of the types spread out and
compact and might reflect more complex situations which are closer to real world instances.
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Figure 3: The FMS layout with the AGV guide path

Table 1 presents the characteristics of the fifteen problem sets tested in this paper. For each
of those 15 request sets, we solved the problem with 2, 3, 4, 5, and 6 AGVs respectively,
which represents 75 instances. We used a time horizon of 150 periods of 15 seconds, which
corresponds to 37.5 minutes. This length of horizon was chosen in order to allow a feasible
solution to all the instances. We implemented the following constraints (not present in
Desaulniers et al., 2003) in our model in order to make it more realistic:

1. When two tasks are linked by priority constraints on the same node, no other task can
be performed at this node between their starting times. For example, when a delivery
precedes a pick-up on a workstation, the product delivered must be processed during a
certain amount of time. And when a product is being processed in a workstation, the
corresponding node can be considered busy for any other potential pick-up/delivery
task.
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Table 1: Description of the problem sets

Number of

Problem set Category Number of requests precedence

relationship

1 Compact 8 7
2 Compact 10 9
3 Compact 8 7
4 Compact 9 7
5 Compact 10 4
6 Spread out 8 1
7 Spread out 10 2
8 Spread out 8 3
9 Spread out 8 5
10 Spread out 8 9
11 Spread out 8 9
12 Spread out 7 8
13 Mixed 12 9
14 Mixed 12 6
15 Mixed 13 7

2. When two tasks are linked by priority constraints on two different nodes, there is an
order relation between the starting times but another task can be performed between
the two times at either nodes.

Table 2 describes in detail three request sets, one per category. The last column gives
the starting position of the AGVs in the instance with 6 AGVs. For each set, the material
handling requests are listed in the second column. In the third (respectively fourth) column,
we have the pick up nodes (respectively delivery nodes) and their associated earliest end
of processing time (EEP) of the pallet at the pick up node (respectively the earliest start
of processing time (ESP) of the pallet at the delivery node). The fifth column presents
the pallet processing time at delivery nodes. The sixth column enumerates the precedence
relationship between the tasks. E.g. DX → DY means that task DX precedes task DY.

4.2 Results

Experiments were performed using OPLScript (2002) on a Pentium 4, 1.5 GHz, 512 Mo
(RAM) PC. We set arbitrarily the limit for the CPU time at 12 minutes which seems
reasonable for a 37.5 minutes horizon. The results are presented in Table 3 to Table 7. In
those tables , ’X : Y’ means that the instance considered is request set X with Y AGVs.
NbCuts is the number of logical cuts generated. An asterisk (*) means that a solution to
the original model is found after the limit of 12 minutes but within the horizon of 37.5
minutes (such solutions could be used future fleet sizing). A hyphen (-) means that no
CP solution was found in less than one hour. Looking at Tables 3–7, one can observe
the following: first when the number of AGVs is not sufficient (Table 3, 2 AGVs), the
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Table 2: Detailed description of request sets 3, 15, and 13 with 6 AGVs

Set Request Pickup Delivery Processing Precedence Initial
number number (Node, EEP) (Node, ESP) time relationship Node
3 1 (15,0) (13,5) 12 D1 → P5 AGV1:15

2 (15,12) (13,19) 12 D2 → P6 AGV2:14
3 (15,24) (13,33) 12 D3 → P7 AGV3:19
4 (15,36) (13,47) 12 D4 → P8 AGV4:27
5 (13,17) (25,28) 10 P5 → D2 AGV5:12
6 (13,31) (25,41) 10 P6 → D3 AGV6:8
7 (13,45) (25,55) 10 P7 → D4
8 (15,24) (13,33) 12

15 1 (15,0) (13,5) 10 D1 → P3 AGV1:15
2 (15,10) (13,17) 10 D2 → P4 AGV2:14
3 (13,15) (19,21) 24 D1 → P3 AGV3:19
4 (13,37) (19,57) 24 D5 → P8 AGV4:27
5 (13,0) (25,18) 40 D3 → P9 AGV5:12
6 (13,60) (25,78) 40 P10 → D7 AGV6:25
7 (25,16) (1,29) 10 D10 → P11
8 (25,79) (1,92) 10 D11 → P12
9 (19,56) (7,64) 18
10 (1,43) (27,55) 10
11 (27,62) (3,86) 10
12 (3,106) (5,110) 20
13 (3,37) (5,41) 20

13 1 (15,0) (13,5) 10 D1 → P5 AGV1:15
2 (15,12) (13,27) 10 D2 → P6 AGV2:14
3 (15,24) (13,49) 10 D3 → P7 AGV3:19
4 (15,36) (13,71) 10 D4 → P8 AGV4:27
5 (13,25) (19,31) 14 D5 → P9 AGV5:12
6 (13,47) (19,57) 14 P6 → D3 AGV6:25
7 (13,69) (19,81) 14 P7 → D4
8 (13,91) (19,107) 14 D10 → P11
9 (19,55) (7,100) 18
10 (13,0) (25,18) 18
11 (25,0) (1,18) 10
12 (3,30) (5,38) 10

production delays are significant. Furthermore it seems that producing a valid schedule is
difficult since 6 out of the 15 problems could not be solved within an hour. By increasing
the number of AGVs (Table 4), it becomes possible to solve all instances in the given time
horizon and the added flexibility allows to reduce the production delays of most instances.
If we try to increase again the number of AGV to 4 (in Table 5), some instances start
to experience congestion as problems 7 and 13 are now solved in about 20 minutes. The
solution times reported for problem 7 show that it is easy to schedule but complex to route,
which indicate that conflicts on arcs are probably difficult to avoid. Again the increase
number of AGVs allows to decrease the production delays of several problems. Considering
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Table 3: 2 AGVs problem set

First CP Model

Instance Solution Choice Global NbCuts Production

time points solution time delay

1 : 2 0.51 2057 17.45 0 0
2 : 2 0.52 1696 16.53 0 4
3 : 2 0.48 2213 102.94 0 14
4 : 2 - - - - -
5 : 2 - - - - -
6 : 2 0.28 1816 58.26 0 2
7 : 2 4.62 17187 57.25 0 2
8 : 2 - - - - -
9 : 2 0.61 3628 13.65 0 12
10 : 2 - - - - -
11 : 2 .50 2681 44.97 0 13
12 : 2 0.03 239 11.13 0 6
13 : 2 - - - - -
14 : 2 - - - - -
15 : 2 154.53 415873 212.47 1 60

a higher number of AGVs (5 AGVs in Table 6 and 6 AGVs in Table 7) does change this
picture very much. In both situations, congestion problems prevent two instances to be
solved in the given 12 minutes time horizon. Furthermore, production delays are now only
slightly reduced (problem 11 in Table 6 and problem 9 in Table 7). The increase number of
vehicles is thus of no help to accelerate production and even counter productive since they
congest the network. For compact and spread out instances, around 90 % of time solution
is consumed by the MIP model. The drawback of using a time space graph is that the
number of variables and constraints of the MIP formulations rapidly grow with the size
of the instance. But this representation is necessary since we need to track the position
of every AGV at every period. For mixed problems, the scheduling problem (modeled in
CP) becomes more difficult to solve. The tables of results also show that the CP model
needs to be enhanced since in almost half of the instances the number of choice points
(branching tree nodes) is very large, due to the lack of a more efficient search strategy for
all types of problems. We mention that in each instance solved, no AGV remains idle.
This is why the solution of our problem can be seen as a way of finding a balance between
two objectives: increasing the number of available AGVs to decrease production delays
and avoiding congestion.
Table 8 presents the average number of variables and constraints for the first CP and
final MIP models with a specified number of AGVs available in the FMS. In these two
types of models, NbVar denotes the number of variables while NbConstr is the number of
constraints. The MIP model is “stable” since we have almost the same number of variables
and constraints in each table shown above.
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Table 4: 3 AGVs problem set

First CP Model

Instance Solution Choice Global NbCuts Production

time points solution time delay

1 : 3 2.56 17038 84.79 0 0
2 : 3 0.45 2585 147.72 0 0
3 : 3 1.39 10331 199.48 0 0
4 : 3 7.11 43674 210.54 0 0
5 : 3 7.55 40898 140 0 1
6 : 3 0.19 1461 212.63 0 2
7 : 3 2.52 15638 229.35 0 2
8 : 3 0.25 1771 198.84 0 2
9 : 3 0.70 3786 234.06 0 6
10 : 3 0.67 5737 84.04 0 8
11 : 3 1.36 6689 88.35 0 10
12 : 3 0.11 848 45.86 0 6
13 : 3 298.74 1052988 534.79 20 26
14 : 3 101.30 530036 358.67 2 0
15 : 3 144.50 471880 282.16 4 25

Table 5: 4 AGVs problem set

First CP Model

Instance Solution Choice Global NbCuts Production

time points solution time delay

1 : 4 5.62 33471 90.17 0 0
2 : 4 0.47 2698 195.19 0 0
3 : 4 2.58 18133 182.75 0 0
4 : 4 20.32 123212 424.41 0 0
5 : 4 4.47 20221 86.05 0 1
6 : 4 0.22 1616 203.00 0 2
7 : 4 4.62 28238 1117.05 * 1 2
8 : 4 0.44 3286 105.25 0 2
9 : 4 0.44 2301 99.84 0 5
10 : 4 0.89 7347 158.04 0 8
11 : 4 0.98 4070 129.44 0 9
12 : 4 0.01 142 75.86 0 6
13 : 4 974.21 314 1290.94 * 24 26
14 : 4 183.81 939828 602.11 24 0
15 : 4 273.10 1284629 632.27 0 17
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Table 6: 5 AGVs problem set

First CP Model

Instance Solution Choice Global NbCuts Production

time points solution time delay

1 : 5 6.81 41772 140.02 0 0
2 : 5 0.58 2698 117.52 0 0
3 : 5 3.68 21899 257.95 0 0
4 : 5 33.00 203897 338.83 0 0
5 : 5 5.18 22146 109.09 0 1
6 : 5 0.44 3070 1011.13 * 1 2
7 : 5 4.64 25293 336.83 0 2
8 : 5 0.32 2093 194.46 0 2
9 : 5 - - - - -
10 : 5 0.06 347 89.69 0 8
11 : 5 0.70 4647 199.41 0 8
12 : 5 0.01 123 68.47 0 6
13 : 5 325.583 1566728 395.85 0 26
14 : 5 10.16 53178 625.59 16 0
15 : 5 519.14 2073129 706.61 4 17

Table 7: 6 AGVs problem set

First CP Model

Instance Solution Choice Global NbCuts Production

time points solution time delay

1 : 6 7.96 45628 84.57 0 0
2 : 6 0.54 2698 268.11 0 0
3 : 6 4.05 23544 937.97 * 1 0
4 : 6 45.79 2613777 138.20 0 0
5 : 6 5.73 23078 78.69 0 1
6 : 6 0.50 3129 833.00 * 1 2
7 : 6 2.01 10903 108.55 0 2
8 : 6 0.36 2101 120.45 0 2
9 : 6 0.13 255 229.01 0 3
10 : 6 0.06 347 178.03 0 8
11 : 6 0.70 4553 93.59 0 8
12 : 6 0.02 123 123.50 0 6
13 : 6 72.31 282457 509.81 20 26
14 : 6 25.41 115965 455.27 20 0
15 : 6 525.93 2301091 605.09 0 17
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Table 8: Some statistics on the first CP and final MIP models

NbAGV First CP model Final MIP model

NbVar NbConstr NbVar NbConstr

2 75 338 42600 76400
3 83 374 63900 103100
4 89 428 85200 129800
5 96 470 106500 156400
6 101 496 127800 183100

Search strategy
To help the CP model, we implemented some selection heuristics used in combination to
the pre-implemented Slice-Based Search (SBS)) a technique similar to Limited Discrepancy
Search (LDS)). See Ilog OPL Studio (2002). In fact SBS determines the shape of the
branching tree while our heuristics specify how to move inside the tree. The basic idea
behind SBS (or LDS) is to minimize the number of decisions that go against the heuristics.
To implement this search, one needs a selection heuristic that ranks all branches of a node.
Then at each node of the search tree, a discrepancy is counted each time a branch, not
ranked first, is taken. The overall process thus starts by traversing the search tree without
allowing any discrepancy, and then it iteratively augments the number of discrepancies
tolerated and traverses the search space again. The description of our heuristic procedure
is as follows: variables are chosen according to a first-fail strategy, i.e., the variable with the
smallest domain is instantiated first. Regarding the order of values for the instantiation
of the variables, the following strategy was used: for the A variables, similar requests
(same pick-up node and same delivery node) are assigned as much as possible to the same
AGV, the closest AGV to the pick-up node being chosen first. The T and S variables are
instantiated to values in increasing order. The search strategy described in next section
helped to avoid a number of conflicts (particularly for compact or spread out instances)
early in the scheduling stage (CP model). For compact instances, no production delay
occurs with more than 3 AGVs. For spread out and mixed instances, they are all solved
with 3 AGVs but with a certain level of production delay. To decrease the production
delay, the number of AGVs must be increased. But this has a major drawback: it increases
congestion with unsolved instances as a final result.

4.3 Additional features

We report here some features that we explored, unfortunately without much success, in the
hope of improving our the method. We nevertheless present them as they could possibly
be useful in another AGV context.

• Search strategy based on space proximity: This strategy assigns requests to
AGVs according to the proximity of the associated pick–up node of each request to
the starting node of each AGV. This strategy worked well only for problems with a
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compact set of requests (i.e., with many requests planned in the same region of the
FMS).

• Conflict detection variables: We tried to use conflict detection variables in the
MIP that would enable to send information (cuts) to the CP model. The following
Boolean conflict detection variables were used:
N i

t = 1 if there is a conflict on node i at period t, 0 otherwise.
Aa

t = 1 if there is a conflict on arc a at period t, 0 otherwise.

The following non constant objective function is then to minimize (the sum of conflicts
on arcs and nodes):

∑

i ∈ Nodes , t ∈ Periods

N i
t +

∑

a ∈ Arcs, t ∈ Periods

Aa
t (20)

These conflict detection variables are present in the following two families of con-
straints which respectively replace constraints 12 and 15:

∑

k ∈ V , a ∈ ArcsTo[ i ]

Xt
k,a ≤ 1 + N i

t +





∑

r ∈ U : (t = Tr − 1 ) ∧ (i = nr)

1



 ×





∑

r ∈ U : (t = Tr ) ∧ ( i = nr )

1





∀ i ∈ Nodes , t ∈ Periods : t ≥ 1

(21)

∑

k ∈ V

Xt
k, a +

∑

k ∈ V

Xt
k, Opp[ a ] ≤ 1 + Aa

t

∀ t ∈ Periods , a ∈ Arcs

(22)

However, these would not give enough insight about the origin of a conflict and the
way to repair it. When two tasks generate a conflict on a segment, it is not sufficient
to simply try to remove one of the two tasks from the list of tasks assigned to a vehicle
to resolve the conflict. There may exist a solution with the same assignments of tasks
but with a third task delayed. In the example (Figure 4), the distance between node
1 and node 3 and between node 3 and node 2 is 1. The arc between node 1 and
node 2 is of length 2. Here, tasks 1 and 2 cannot be delayed because their starting
time is equal to their maximum starting time. But task 3 can be delayed. A conflict
detection variable would detect a conflict between AGV A and AGV B even though
an optimal solution may exist when delaying task 3 and allowing a detour for AGV
A or AGV B.

• Time windows for pick-ups: In order to reduce the number of equivalent solutions
to the scheduling problem, we attempted to transfer the starting time decision to the
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Figure 4: Why conflict detection variables are not effective

routing problem. This means that the scheduling model only defines feasible time
windows for each task. These time windows are transferred to the routing problem
so that they can be exploited to avoid conflicts. These time windows are intervals
between the starting time and the associated maximum value of each pick-up. This
strategy yielded interesting results (the presence of time windows helps the MIP
model to be solved faster), but unfortunately it was no longer possible to guaranty
that the precedence and consecutiveness constraints would be satisfied a posteriori.
If precedence constraints could also be modeled in the routing model it was not the
case of consecutiveness constraints since they are not linear.

5 Conclusion

In this paper, we used an original decomposition method to solve a difficult combinatorial
integrated scheduling and conflict-free routing problem. This hybrid method consists in
dividing the problem into two interrelated sub problems. The first sub problem is modeled
with CP, a very strong tool to address scheduling problems that allows us to design a
specific search strategy. The second sub problem is basically a CSP problem but modeled
in a counter intuitive way as a MIP problem to benefit from its network substructure. The
two main reasons for choosing a logic-based Benders decomposition method are the need
to instantiate assignment variables before routing and the existence of many non linear
constraints in the scheduling part of the problem. We solved problems with up to six
AGVs, thirteen requests on a rolling horizon of 37.5 minutes. However the CP part needs
to be improved to tackle problems with more AGVs, requests on a longer horizon. Our
method can also be used to determine size of the AGVs fleet. An interesting avenue of
research consists in designing better logic cuts. This would be useful, as the cuts presented
herein tend to be less effective when the level of production delay increases. The design of
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a better search strategy for the CP model could also allow to work address problems with
a longer horizon, more tasks or more AGVs. In such instances, the CP model tends to
perform poorly. When the domain size significantly increase, an efficient search strategy
becomes essential in identifying the good values in each domain.
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