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auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la
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C.P. 6079, Succ. Centre-ville
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Abstract

Dynamic programming is applied to the economic dispatch problem with spin-
ning reserve constraint. A first algorithm, based on a direct application of Bellman’s
equation with two state variables turns out to be slow for large systems. A second
algorithm exploiting state dominance is much more efficient. Computational results
are presented. Moreover, we show that well-known heuristic approaches do not provide
optimal solutions even for small systems.

Key Words: Economic dispatch, spinning reserve, dynamic programming.

Résumé

Pour le problème de chargement optimal avec contrainte de réserve tournante, on
utilise la programmation dynamique. Un premier algorithme, basé sur une applica-
tion directe du principe de Bellman, avec deux variables d’état, s’avère trop lent pour
de grands systèmes. Un second algorithme, exploitant la dominance entre états est
développé et s’avère beaucoup plus éfficace, comme le montrent des expériences de
calcul. De plus, on montre que certaines approches heuristiques développées dans la
littérature ne sont pas optimales même pour de petits systèmes.

Mots clés : chargement optimal, réserve tournante, programmation dynamique.
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1 Introduction

Production and distribution of electricity are economic activities of paramount importance.
The cost of a large power plant can indeed be in billions of dollars, and the annual produc-
tion cost of electricity in 100 millions of dollars [13]. The need for optimization of design
and management of power plants is therefore considerable. The goal of this paper is to
determine an optimal policy for the production of several turbo-alternator groups with a
one period spinning reserve constraint. This constraint arises when the startup time of
the groups is rather moderate. A breakdown of one of the groups or any other random
event in the network often triggers a sudden change in the demand for production. As a
consequence, a powerful spinning reserve has to be envisaged and distributed to a sufficient
number of groups. In this paper, we assume that the thermo-electrical group have several
vapor inlets. This entails a piecewise concave production cost function for each of them
(see Figure 1).

Several heuristic methods for solving the optimal loading problem were proposed in the
literature, prominent among which are the Lagrange multiplier method [7, 13] that assumes
the convexity of the input-output function, the mixed-integer programming approach, the
dual method of optimization, the classic optimization [5, 10], the simulated annealing [14]
and the genetic search [2, 12, 15].

Another way of tackling the optimal loading problem is to use dynamic programming.
This approach can be defined as a way to solve sequential decision problems that relies on
the Bellman optimality principle. When applied to the optimal loading problem, the Bell-
man principle can be expressed as follows: ’any optimal production policy for N groups can
only have optimal sub-policies for any subset of these groups’. In this paper, we propose a
dynamic programming formulation of the optimal loading problem with spinning reserve.

Fi(Pi)

(in $/h)

Pi(MW)
P Pi i

min max

Figure 1: Cost function of a turbo-alternator group with several vapor inlet valves
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It generalizes the standard dynamic programming formulation of the optimal loading prob-
lem with minimum and maximum power constraints which relies on the following recursive
equation:

F ∗

i (Di) = MinPi
( F ∗

i−1(Di − Pi) + Fi(Pi)) (1)

where

• F ∗

i (Di): denotes the minimum cost for satisfying a demand Di (in MW while using
the groups 1, 2, . . . , i,

• Pi: denotes the power of group i.

Moreover, we show that exploiting state dominance drastically improves this approach.
The paper is organized as follows: the economic dispatch problem with spinning reserve
is stated mathematically in the next section. Two standard heuristics for its solution
are presented and discussed in Section 3. Our dynamic programming method is given in
Section 4, in two versions, not exploiting and exploiting state dominance. Comparative
computational experience is reported in Section 5.

2 Formulation

The economic dispatch problem with spinning reserve constraint may be expressed math-
ematically as follows:

Min

N∑

i=1

Fi(Pi) (2)

subject to the constraints

N∑

i=1

Pi = PR (3)

N∑

i=1

Si ≥ SR (4)

Pmin
i ≤ Pi ≤ Pmax

i (5)

Si = Min (Pmax
i − Pi, S

max
i ) (6)

where symbols are defined as follows:

• Fi(Pi): cost function of the ith turbo-alternator unit (in $/h);

• N : number of units;

• Pi: power of unit ith (in MW );

• Pmin
i , Pmax

i : minimum and maximum power of the ith unit (in MW );

• PR: power demand (in MW );

• Si: contribution of the ith unit to the spinning reserve (in MW );



Les Cahiers du GERAD G–2004–90 3

• SR: minimal value of the spinning reserve (en MW );

• Smax
i : maximum contribution of the ith unit to the spinning reserve.

The objective function expresses that the total cost is additive over the units, constraint
(2) that the demand must be exactly satisfied, constraint (3) that the spinning reserve must
be at least equal to a given minimum value, constraints (4) that any unit must produce a
power within a given range (we assume here that all units will produce; the more general
case where unit commitment is made together with economic dispatch, or in other words
where those units which will produce are chosen together with the power they are assigned
to produce, is a straightforward extension e.g. see Hansen and Mladenović [6] for its
treatment without spinning reserve constraint). Constraints (5) are a consequence of the
following pairs of constraints:

Si ≤ Pmax
i − Pi (7)

and

0 ≤ Si ≤ Smax
i (8)

which express that the contribution of the ith unit to the spinning reserve cannot exceed
the maximum increase in power of that unit, nor a given maximum value, imposed in order
to spread out the spinning reserve over the units.

3 Heuristic solution methods

A first heuristic for problem (1)–(5) is due to Lee and Breipohl [9]. It consists in decoupling
the problem of allocating the spinning reserve and the problem of economic dispatch. So,
it solves two dynamic programming problems with a single state variable.

The first problem is the following:

Min
N∑

i=1

Fi(Pi) (9)

subject to

N∑

i=1

Pi =
N∑

i=1

Pmax
i − SR (10)

Pmax
i − Smax

i ≤ Pi ≤ Pmax
i i = 1, 2, . . . , N. (11)

This problem expresses that one proceeds to produce a power equal to the maximum
which can be obtained minus the lower bound on the spinning reserve. In other words, one
proceeds to distribute the spinning reserve among the groups assuming the production to
be the largest possible. If the power demanded PR is equal to this power, the allocation of
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spinning reserve to the units is optimal; however if PR is smaller this may not be the case
anymore.

The contribution to the spinning reserve of the units are obtained, by solving problem
(9)–(11), noted S∗

i = Pmax
i −P ∗

i for i = 1, 2, . . . , N , and kept fixed in the second problem:

Min

N∑

i=1

Fi(Pi) (12)

subject to

N∑

i=1

Pi = PR (13)

Pmin
i ≤ Pi ≤ Pmax

i − S∗

i i = 1, 2, . . . , N (14)

The recurrence relation used in both cases is the following:

F ∗

1 (D1) = F1(D1)

F ∗

i (Di) = MinPi
( F ∗

i−1(Di − Pi) + Fi(Pi)),

for i = 2, 3, . . . , N .

A second heuristic for problem (2)–(6) was proposed by Wood [17]. Again, it is a
two stage process. First, the problem is solved while ignoring the constraint on spinning
reserve. Then it is checked weither this constraint is satisfied or not by the solution found.
If it is, the process stop otherwise, feasibility of the constrained problem is checked and
local modifications brought to the solution to transform it at least cost into a feasible one.

We next recall the precise rules of this heuristic.

(a) Solve problem (2) (3) (5). Let P ∗

1 , P ∗

2 , . . . , P ∗

N denote the solution so obtained. Check
if the constraint on spinning reserve is satisfied or not, using

N∑

i=1

Min(Pmax
i − P ∗

i , Smax
i ) ≥ SR (15)

If it is, stop, the optimal solution being found.

(b) Otherwise, let δ denote the amount by which this constraint is violated, i.e., the
difference between the right and left-hand sides of (14). Then partition the units in two
classes:

(b1) those for which the production Pi = P ∗

i can be marginally augmented without chang-
ing their contribution to the spinning reserve (which is presently maximum):

I1 = {i/P ∗

i < Pmax
i − Smax

i }; (16)
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(b2) those for which a marginal decrease of the production Pi = P ∗

i would increase their
contribution to the spinning reserve:

I2 = {i/P ∗

i > Pmax
i − Smax

i }. (17)

The production P ∗

i of units for which P ∗

i = Pmax
i − Smax

i will not be changed.

Compute the maximum total increase in power of units with index in I1 which will not
change their contribution to the spinning reserve:

UP =
∑

i∈I1

(Pmax
i − Smax

i − P ∗

i ) (18)

and the maximum total decrease in power of units with index in I2 which will increase
their contribution to the spinning reserve (by the same amount):

DOWN =
∑

i∈I2

(P ∗

i − Pmax
i + Smax

i ) (19)

If UP < δ or DOWN < δ, stop, the problem being infeasible.

(c) Otherwise, augment by δ the production of units with index in I1 at least cost by
solving the problem:

Min
∑

i∈I1

Fi(Pi) (20)

subject to

∑

i∈I1

Pi =
∑

i∈I1

P ∗

i + δ (21)

Pmin
i ≤ Pi ≤ Pmax

i i ∈ I1 (22)

then decrease by δ the production of units with index in I2 at least cost (or largest benefit)
by solving the problem:

Min
∑

i∈I1

Fi(Pi) (23)

subject to

∑

i∈I2

Pi =
∑

i∈I2

P ∗

i − δ (24)

Pmin
i ≤ Pi ≤ Pmax

i i ∈ I2 (25)

As mentioned in the introduction neither of these heuristics does always provide an optimal
solution, even for small instances. To show this is indeed the case, we consider an example
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Table 1: Example data: breakpoints of unit cost functions and corresponding costs

unit i breakpoint j 1 2 3 4

Pj(MW ) 50 100 150 200

1 Fi(Pj)($/h) 400 700 900 1150

2 Fi(Pj)($/h) 450 600 1100 1300

3 Fi(Pj)($/h) 200 400 700 1100

with three units where the cost functions are piecewise concave. In [1] we show that in such
a case at most one unit will have an optimal production elsewhere than at a breakpoint
of its cost function. Moreover, to simplify matters, we choose breakpoints regularly and
consider values of the demand for which all units will produce at breakpoints. Data for
the three units are given in Table 1.

Let Smax
i = 50MW for i = 1, 2, 3, PR = 400MW and SR = 100MW . Lee and

Breipohl’s heuristic is then used to solve problem (1)–(5) with PR =
∑

3

i=1
Pmax

i − SR =
500MW . The optimal solution is P ∗

1 = 150MW , P ∗

2 = 200MW and P ∗

3 = 150MW with
a total cost equal to 2900$/h. We next compute contributions S∗

i to the spinning reserve
corresponding to this solution, i.e., S∗

1 = 50MW , S∗

2 = 0, S∗

3 = 50MW , and use them to
obtain new upper bounds on the powers Pmax

i , i.e., Pmax
1 = 150MW , Pmax

2 = 200MW ,
Pmax

3 = 150MW . We then solve the problem for an initial demand equal to 400MW .
We find that the optimal solution is: P ∗

1 = 150MW , P ∗

2 = 100 and P ∗

3 = 150MW with
a total cost equal to 2200$/h. Since, as is easily checked, the optimal solution for the
loading problem with a demand PR = 400MW and a contribution to the spinning reserve
of 100MW is P ∗

1 = 200MW , P ∗

2 = 100MW and P ∗

3 = 100MW with a total cost equal to
2150$/h, this illustrates the non-optimality of the Lee and Breipohl approach [9].

For the heuristic developed by Wood [17], we consider the same example of three groups,
with a power demand of 450MW and a spinning reserve demand of 100MW . The approach
of Wood [18] solves the problem without taking into account the spinning reserve. This
yields the following optimal solution: P ∗

1 = 50MW , P ∗

2 = 200MW and P ∗

3 = 200MW
with a total cost equal to 2400$/h. However, this solution violates the spinning reserve
constraint. We overcome this drawback by forming two classes of groups. The first class
contains groups whose production cannot be increased without decreasing their contribu-
tion to the spinning reserve whereas the second one contains groups whose production
cannot be decreased without increasing the contribution to the spinning reserve. It then
comes that I1 = 1, I2 = {2, 3}, UP = 100MW and DOWN = 100MW . The power
of the first class will be increased by 50MW and the production of the second one de-
creased by 50MW at the lowest cost. The new solution is P ∗

1 = 100MW , P ∗

2 = 150MW
and P ∗

3 = 200MW with a total cost equal to 2500$/h whereas the optimal solution is
P ∗

1 = 150MW , P ∗

2 = 150MW and P ∗

3 = 150MW with a total cost equal to 2450$/h. This
illustrates the non optimality of the Wood approach [17].
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4 A Dynamic Programming Algorithm

The economic dispatch problem with spinning reserve constraint can be solved by dynamic
programming, extending the standard algorithm for the case where there is no such con-
straint (see e.g. Wood and Wollenberg [17] for an exposition of the latter). Nevertheless, it
is worth observing that this problem involves two state variables, Di and Ri. These state
variables characterize groups 1 to i’s production policy:

i∑

k=1

Pk = Di (26)

and

i∑

k=1

Sk = Ri (27)

The Bellman equation is then expressed as follows:

F ∗

i (Di, Ri) = MinPi,Si
[F ∗

i−1(Di − Pi, Ri − Si) + Fi(Pi)] (28)

where:

Pmin
i ≤ Pi ≤ Min(Pmax

i , Di − Dmin
i−1 ) (29)

with Pmin
i−1 equal to the sum of minimum production for units 1, 2, . . . , i − 1 and

0 ≤ Si ≤ Min(Smax
i , Pmax

i − Pi) (30)

The algorithm works as follows:

1. Discretize the output and the contribution to the spinning reserve of unit i with a
dicretization step of ∆ MW .

2. Discretize the demand Di ∈ [Dmin
i , Dmax

i ] which may be satisfied by the i first units,
with

Dmin
i =

i∑

k=1

Pmin
k

and

Dmax
i =

i∑

k=1

Pmax
k

with the same step as above.
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3. For i = 1, set F ∗

i (Di, Si) = F1(P1) for
P1 ∈ [Dmin

i , Dmax
i ] and 0 ≤ S1 ≤ Min(Smax

1 , Pmax
1 −D1) and set F ∗

1 (D1, S1) = M (an
arbitrarily large value) otherwise. Then compute F ∗

i (Di, Ri) for Di ∈ [Dmin
i , Dmax

i ]
and 0 ≤ Pi ≤ Pmax

i where

Rmax
i = Min(SR,

i∑

k=1

Smax
i ),

using equation (27), where the values of the Pi and Si to the taken into account are
those of (28) and (29).

Let us next evaluate the number of computation required by this algorithm. This
depends on N , the number of units, and the number of possible states for each value
of i = 1, 2, . . . , N . For simplicity, we assume that the lower and upper bounds on
the power produced and the contribution to the spinning reserve are the same for all
units, i.e., Pmin

i = Pmin, Pmax
i = Pmax and Smax

i = Smax for all i = 1, 2, . . . , N . The
number of states for Di is then

i(Pmax − Pmin)

∆
+ 1

and the number of states for the spinning reserve

i(Smax)

∆
+ 1.

The maximum number of computations for a value of Di is at most (Pmax − Pmin).
The number of computations for a value of Ri is at most Smax. Hence, assuming
that ∆ = 1MW the total number of computations is

N∑

i=1

i2(Pmax − Pmin)2S2
max.

Setting Pmax − Pmin = E and Smax = S, the order of magnitude of the number of
computations is in

O(N3E2S2).

Based on this expression, the dynamic programming algorithm for economic dispatch with
spinning reserve constraint turns out to be both time and space consuming.

Indeed, the use of a second state variable drastically increases the number of computa-
tions and the set of optimal solution for the sub-policies that use the i first groups. This
clearly shows that this method can only be applied for small size problems. This difficulty
can be alleviated however as the use of some dominance rules allows us to reduce the num-
ber of computations at each step and substantially improve the efficiency of the dynamic
programming algorithm. The dominance rule can be defined as follows:
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State j dominates state i if and only if:

Fk(Di, Ri) ≥ Fk(Dj , Rj),

Di ≤ Dj

and
Ri ≤ Rj .

We then have

Proposition 1 Any dominated solutions for sub-policies that uses i groups can only gen-

erate dominated solutions for sub-policies that use i + 1 groups.

Proof Consider two states j and k implied by the Bellman’s equation for i groups such
that

F ∗

i (Dk, Rk) ≥ F ∗

i (Dj , Rj),

Rk ≤ Rj .

In state i + 1 we get:

F ∗

i+1(Dk + Pi+1, Rk + Si+1) ≥ F ∗

i+1(Dj + Pi+1, Rj + Si+1)

and
Rk + Si+1 ≤ Rj + Si+1.

Thus any solution computed for i + 1 groups from the dominated solution for i groups is
itself dominated. �

By taking into account this rule, we reduce the number of computations by eliminating
the dominated solution at each step. Moreover, because the optimal solution satisfies the
power and spinning reserve demands in state N at the lowest cost and therefore cannot be
dominated, it remains unchanged.

The dynamic programming algorithm with state dominance proceeds as follows:

1. Discretize the output of group i using a discretization step ∆ in MW .

2. Discretize the demand Di ∈ [Dmin
i , Dmax

i ] that can be satisfied for the i first group
using the same discretization ∆

3. If i = 1 then F ∗

1 (D1, S1) = F1(P1) for D1 ∈ [Dmin
1 , Dmax

1 ], otherwise set F ∗

1 (D1, S1) =
M , where M is a large number and S1 = Min(Smax

1 , Pmax
1 − D1).

Else, compute F ∗

i (Di, Ri) as in (28) for Di ∈ [Dmin
i , Dmax

i ] and 0 ≤ Ri ≤ Rmax
i

where

Rmax
i = Min(SR,

i∑

k=1

Smax
i )

and the values of Pi et Si in the expression are

Pmin
i ≤ Pi ≤ Min(Pmax

i , Di − Dmin
i−1 )
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and
0 ≤ Si ≤ Min(Ri, S

max
i , Pmax

i − Pi).

If
Fi(D

j
i , R

j
i ) ≥ Fi(D

k
i , Rk

i ),

Dj
i ≤ Dk

i

and
Rj

i ≤ Rk
i ,

then eliminate the state (Dj
i , R

j
i ) of the non dominated solutions for the i groups and

iterate this step until i = N .

Although the number of computations in the dynamic programming algorithm combined
with state dominance is in worst case of the same order of magnitude as in the previous
algorithm, the use of the dominance rule reduces substantially the computation time in
practice.

The efficiency of the algorithm can be further improved, in some cases, by adding a sim-
ple test. The optimal solution is first computed omitting the spinning reserve constraint; if
this latter is satisfied, the algoritm stops. Otherwise, the dynamic programming algorithm
with state dominance is used to sove the problem.

5 Results

In order to evaluate their performance, the classical dynamic programming algorithm for
the economic dispatch problem with spinning reserve as well as the version using state
dominance were programmed in C and tested on a SUN ULTRA 2 computer (300 MHz).

Both algorithms were tested on several examples constructed from the data of Bakirtzis
et al. [2]. Tables 2 and 3 give the minimum and maximum power, their cost and the
maximum contribution to spinning reserve for 4 units and 9 units examples.

In Tables 4 and 5 optimal solutions for there two problems are given, when the demand
in power is of 800 MW and in spinning reserve 100 MW for 4 units, and 2500 MW and
250 MW respectively for 9 units. These optimal solutions have a cost of 15556.5$/h and
of 57292$/h. Table 6 compares the computing times for the two algorithms. It appears
that state dominance reduces the computational burden quite drastically, i.e., by a factor
of about 3000 for 4 units and of about 80 for 9 units.

Further examples with 8 and 16 units were constructed by doubling once or twice the
Bakirtzis et al. [2] data for 4 units. The demand and spinning reserve were also doubled
accordingly. Table 7 presents the cost of the optimal solution and the corresponding
computing times. To conclude, it appears that large economic dispatch problem with
spinning reserve constraint may be solved exactly by dynamic programming with two
state variables. To render this method feasible in practice (in particular if the problem is
to be solved repeatedly at short intervals in time) one must exploit dominance between
states: computation times are then cut by a factor which can exceed 1000.
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Table 2: Example data: breakpoints of 4 units cost functions and corresponding costs

unit i 1 2 3 4

Pmax(MW ) 600 220 560 360

Pmin(MW ) 190 70 50 170

Smax(MW ) 100 50 100 60

F (Pmin)($/h) 4000 1600 3900 2000

F (Pmax)($/h) 10927.5 5005 3910537.5 4300

Table 3: Example data: breakpoints of 9 units cost functions and corresponding costs

unit i 1 2 3 4 5 6 7 8 9

Pmax(MW ) 560 185 220 570 360 640 640 600 600

Pmin(MW ) 50 50 70 210 170 130 130 190 190

Smax(MW ) 100 100 100 100 100 100 100 100 100

F (Pmin)($/h) 2000 1400 1600 4300 3200 7500 7500 4000 3900

F (Pmax)($/h) 10690 5045 5005 11035 7186 26985 26205 10927.5 10537.5

Table 4: Optimal solution for 4 units example

unit i 1 2 3 4 total

Pi(MW ) 360 70 200 170 2500

Si(MW ) 100 0 0 0 100

Fi($/h) 6339.50 1600 4417 3200 15556.53

Table 5: Optimal solution for 9 units example

unit i 1 2 3 4 5 6 7 8 9 total

Pi(MW ) 460 50 145 215 170 130 130 600 600 2500

Si(MW ) 50 50 50 50 50 0 0 0 0 250

Fi($/h) 8765 1400 3055 4407 3200 7500 7500 10927.50 10537.50 57291.96

Table 6: Comparing the efficacity of dominance programming algorithm without and with
state dominance

Number Dynamic programming Dynamic programming

of units (sec CPU) with state dominance (sec CPU)

4 2176.28 0.7

9 87120 1475.41
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Table 7: Computational time for dynamic programming with state dominance

Number of units PR (MW ) SR (MW ) time CPU Optimal value ($/h)

4 800 100 0.25 15978.89

8 1600 200 17.05 31952.68

16 3200 400 3991.21 63882.708
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