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Abstract

This paper proposes an efficient heuristic to solve the topological design of a next
generation optical network that provides fully meshed connectivity between electronic
edge nodes. Such an architecture, nicknamed “PetaWeb”, is simple to manage and
offers a total capacity of several petabits per second. From the topology standpoint,
the PetaWeb presents a very unusual structure as the backbone nodes are totally dis-
connected. The network design problem leads to a very hard combinatorial problem
that is very difficult to solve for large-sized instances. The heuristic we have developed
is based on repeated matchings. Computational results will be presented and discussed.

Key Words: PetaWeb, composite-star network, topological design, dimensioning,
capacitated location problem, heuristic, matching.

Résumé

Cet article propose une heuristique efficace pour résoudre le design topologique
d’un réseau optique de prochaine génération qui produit des chemins directs entre des
noeuds d’accès électroniques. Une telle architecture, appelée “PetaWeb”, est facile à
gérer et offre une capacité totale de plusieurs petabits par seconde. D’un point de
vue topologique, le PetaWeb présente une structure originale dans laquelle les noeuds
centraux sont complètement disconnectés. Ce problème de design de réseau conduit à
un problème combinatoire très lourd qu’il est très difficile de résoudre pour de grands
réseaux. L’heuristique que nous avons développée est basée sur des couplages répétés.
Des résultats comparatifs sont discutés.

Acknowledgments: This work was supported by cooperative Grant CRDPJ 248035-
01 between NSERC and Nortel Networks and by Strategic Grant STPGP 246159.



Les Cahiers du GERAD G–2004–87 1

1 Introduction

The PetaWeb is a new network structure that offers a total capacity of several petabits
per second (1015 bit/s) and that has been proposed for a next generation Internet [1, 2, 3].
The structure provides fully meshed connectivity with direct optical paths between some
electronic edge nodes. It is composed of several OXCs (Optical Cross-Connectors), also
named core nodes, that commute the traffic exchanged by the edge nodes. One particular
feature is that each optical core node is connected to all edge nodes. Thus, another way
of interpreting the PetaWeb is as a superposition of star structures as shown in Figure 1.
Such a structure greatly simplifies some network functionalities such as routing, addressing
and scheduling. It also leads to higher reliability.

The PetaWeb is based on WDM technology (Wavelength Division Multiplexing). The
fiber is composed of a fixed number of channels, each channel corresponding to one wave-
length. When the fiber enters a core node, it is demultiplexed in its channels and each
channel is connected to its associated switching plane. In Figure 2, W switching planes
corresponding to the wavelengths λ1, λ2, ..., λW are shown. The channels that are sent to
the same destination edge node are re-multiplexed together. Note that, to ease the figure
interpretation, only the channels from and to edge node 1 are pictured.

The relevance of the PetaWeb network was previously studied by Blouin and al. in [3].
They compared the PetaWeb with an optical multi-hop network. Although the PetaWeb
requires a higher fiber length, it needs much fewer ports and no wavelength conversion as
the traffic is carried out in one hop.

The most advanced version of the PetaWeb network uses TDM technology (Time Di-
vision Multiplexing). Connexions between edge nodes pairs are temporally multiplexed
and sent over optical fiber. This technology is very common for electronic switches but
not for optical switches. since it needs very fast switches. Using TDM in the PetaWeb is

edge node

core node

Figure 1: The PetaWeb architecture : a composite-star structure
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Figure 2: Connection between the edge nodes and a core node

very interesting since the traffic of one pair of edge nodes can fill only a small part of the
channel bandwidth, thus greatly improving the network granularity.

Now, in order to construct a PetaWeb, it is necessary to efficiently tackle the network
design problem. This is particularly important given that the PetaWeb may be one of the
largest networks ever designed and that it has been proposed as a building block for the
YottaWeb, a mega-network with aggregated capacities in the order of yottabits per second
(1024 bits/s) [4, 5].

The PetaWeb design problem, however, is very difficult to classify given that it consists
of a structure with no backbone [6]. Indeed, the composite star topology greatly differs
from the classical concept of a network made up of access nodes that connect to backbone
switches interconnected between themselves.

In mathematical terms, the PetaWeb design can be seen as a particular location problem
since it has some similarities with the Capacitated Facility Location Problem where a set
of capacitated plants send a product to a set of customers [7]. In [8], we use this approach
to propose a mathematical formulation of the PetaWeb design. However the design leads
to a very hard combinatorial problem that is very difficult to solve for large-sized instances.

The objective of this article is to present a completely new resolution approach to be
able to tackle large instances of the PetaWeb design problem. For this, a method based
on an adaptation of the repeated matching heuristic for the capacitated facility location
problem by Rönnqvist [9, 10] will be presented.

This article is divided as follows. In the next section we present the mathematical
formulation of the PetaWeb design. The heuristic is developed in Section 3. Computational
results are presented in Section 4, followed by conclusions and recommendations for further
work.

2 Mathematical formulation

For the sake of completeness, we now give a mathematical formulation of the PetaWeb
design problem. Details can be found in [8]. The problem consists in determining both the
number and the optimal location of the core nodes given a traffic matrix. In other words,
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we want to know which core nodes should be opened and through which core node each
traffic connection should be switched.

We assume that the location of edge nodes, the matrix of traffic between the edge nodes
and the potential locations for the core nodes are given. Furthermore, it is also assumed
that the potential locations for the core nodes are the sites of the edge nodes.

The restrictions are all related to the maximum capacity supported by the equipment
: the maximal capacities for the core nodes, the maximal capacity for the edge nodes and
the maximal capacities for the links. The objective is to minimize the total cost of the
network.

Let us introduce some useful notation.

M = the edge node set,

N = the set of potential core node locations,

T = the set of edge node pairs, T ∈ M × M ,

V = the set of core node types,

E = the number of core nodes of one type that can be opened at one site, E ⊂ N.
In practice, this number can be kept quite small by analyzing the cost structure of
the cores.

Cchannel = the channel capacity (in Gbit/s),

W = the number of channels per link,

sr = the number of groups of W switching planes for the core node of type r, r ∈ V ,

Cj = the capacity of edge node j, j ∈ M , (in Gbit/s),

Kr = the total capacity of a core node of type r, r ∈ V , (in Gbit/s),

Kr = sr × W × |M | × Cchannel, r ∈ V (1)

fr = the cost of one core node of type r, r ∈ V ,

P = the cost of one port in a core node,

γ = the scale factor for the cost of the ports in a core node,

F = the fiber cost per length and wavelength unit,

β = the cost representing the propagation delay, per length and traffic unit,

Qp = the traffic of the origin/destination pair p,
p ∈ T , (in Gbit/s)

δij = the distance between the site i, i ∈ N , and the edge node j, j ∈ M ,

dip = the sum of the distance between the origin edge node of the pair p, p ∈ T , and the
site i, i ∈ N , and the distance between the site i and the destination edge node of
the pair p. For instance, if j and k are, respectively, the origin and the destination
on node pair p, then dip = δij + δik.
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In this model, we use two types of variables : location and traffic variables denoted by
y and x respectively.

The objective (2) is to minimize the total network cost. We have three cost terms :
the costs of the core nodes which are composed of a fixed cost and the cost of the ports,
the costs of the links between edge and core nodes which are proportional to the distance
between edge and core nodes and the costs representing the propagation delay which are
proportional to the distance between the edge node pairs and the amount of exchanged
traffic.

Then we have the following formulation :

minF (yire, xire,p) =
∑

i∈N

∑

r∈V

∑

e∈E

(2 |M |W sr γ(sr−1) P + fr) yire

+
∑

i∈N

∑

r∈V

∑

e∈E

2 W F sr (
∑

j∈M

δij)yire

+
∑

i∈N

∑

r∈V

∑

e∈E

∑

p∈T

βdipQpxire,p (2)

subject to :

∑

i∈N

∑

r∈V

∑

e∈E

xire,p = 1,∀p ∈ T (3)

xire,p ≤ yire,∀i ∈ N, ∀r ∈ V, ∀e ∈ E, ∀p ∈ T (4)

∑

p∈T

Qpxire,p ≤ Kryire,∀i ∈ N, ∀r ∈ V, ∀e ∈ E (5)

Cchannel × W ×
∑

i∈N

∑

r∈V

∑

e∈E

sr yire ≤ Cj ,∀j ∈ M (6)

∑

p∈T origin j

Qpxire,p ≤ Cchannel × W × sr yire, (7)

∀j ∈ M,∀i ∈ N, ∀r ∈ V, ∀e ∈ E

∑

p∈T destination k

Qpxire,p ≤ Cchannel × W × sr yire, (8)

∀k ∈ M,∀i ∈ N, ∀r ∈ V, ∀e ∈ E



Les Cahiers du GERAD G–2004–87 5

yire =







1 if the eth core node of type r
located at i is opened,

0 else
(9)

xire,p =















1 if the traffic Qp is switched by the
eth core node of type r
located at i,

0 else

(10)

We now describe the constraints of the problem.

(3) indicates that the total traffic exchanged by a pair of edge nodes must be routed
through a core node.

(4) specifies that the traffic can be routed through the eth core node of type r located
at site i only if this core node is active.

(5) states that the capacity of each core node must be respected.

(6) indicates that the edge node capacity must be respected.

(7) is a link capacity constraint for all the links between each origin edge node and each
core node.

(8) ensures that the link capacity is respected for all the links between each core node
and each destination edge node.

(9) and (10) respectively indicate that yire and xire,p are binary variables.

3 The heuristic

The mathematical model leads to a very hard combinatorial problem that cannot be solved
by a general purpose solver such as CPLEX for large networks. Therefore, we now propose
a heuristic for solving the PetaWeb design.

3.1 Reformulation of the PetaWeb design problem

Our heuristic is based on a series of matching problems. Thus, we first reformulate the
problem of the PetaWeb design to adapt it to a matching problem.

We use the same notation as in the mathematical formulation in Section 2. An index
number associated with a set indicates which exemplar of the set is meant.

An edge node pair is designated by the letter p, p ∈ T .

A subset k of edge node pairs is designated by Dk so that Dk ∈ T . For example,
with three edge nodes, we could have : T = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}, D1 =
{(1, 2), (1, 3), (2, 3)} and D2 = {(1, 3)}.
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A core node is designated by the triplet (i, r, e), i ∈ N, r ∈ V, e ∈ E. i indicates the site
of the core node, r indicates the type of the core node and e indicates which exemplar of
the core node of type r at site i we are dealing with.

We now define a “kit”. A kit is composed of a core node (i, r, e), i ∈ N, r ∈ V, e ∈ E,
and a subset Dk of edge node pairs. A kit has a special signification. It means that the
edge node pairs of Dk are assigned to the core node (i, r, e), i.e. each edge node pair of Dk

commutes its traffic through the core node (i, r, e). The core node (i, r, e) and its assigned
edge node pairs Dk will be noted : ((i, r, e), Dk).

A kit ((i, r, e), Dk) is said to be feasible if : the capacity constraint of the core node
(i, r, e), the capacity constraints of the links between each origin edge node of Dk and the
core node (i, r, e), and the capacity constraints of the links between the core node (i, r, e)
and each destination edge node of Dk are satisfied.

We define a “packing” as a union of feasible kits. Let ((i1, r1, e1), D1) and ((i2, r2, e2),
D2) be two feasible kits. ((i1, r1, e1), D1) is composed of the core node (i1, r1, e1) and the
edge node pairs of D1. ((i2, r2, e2), D2) is composed of the core node (i2, r2, e2) and the
edge node pairs of D2.

These two kits form a packing Π if the following is true :

((i1, r1, e1), D1), ((i2, r2, e2), D2) ∈ Π ⇒ (i1, r1, e1) 6= (i2, r2, e2) and D1 ∩ D2 = ∅.

Given a packing Π, we define :

L1 : the set of core nodes that are not active, i. e. that do not commute traffic,

L2 : the set of edge node pairs that are not assigned to a core node,

L3 : the set of active core nodes with their associated edge node pairs, i. e. the set of
feasible kits.

These three sets can be mathematically described by :
L1 = {(i, r, e) | ((i, r, e), D) /∈ Π}
L2 =

⋃

((i,r,e),D)/∈Π D
L3 = Π.

Figure 3 illustrates the three sets L1, L2 and L3. An edge node pair is represented by a
circle. A core node is represented by a square. A line binds an edge node pair and a core
node if the pair is assigned to this core node, i. e. if the traffic of this edge node pair is
commuted by this core node.

Let us assume that L1 has n1 elements, L2 has n2 elements, and L3 has n3 elements.
For example, in Figure 3, n1 = 2, n2 = 3 and n3 = 2.

Figure 3 shows a packing Π whose cost can be determined as the sum of :

1. the cost of the active core nodes of L3 and the cost of the fiber between each active
core node of L3 and each edge node in the network :
∑

{(i,r,e)|((i,r,e),D)∈L3}
( (2M W sr γ(sr−1) P + fr)

+2W F sr
∑

j∈M δij)
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L2

L1

L3

a core node

a pair
of edge nodes

Figure 3: The sets L1, L2 et L3 associated with a packing Π

2. the cost of the propagation delay for the assigned edge node pairs of L3 :
∑

{((i,r,e),p)|((i,r,e),D)∈L3,p∈D} β dip Qp

3. the cost of the edge node pairs of L2 because unassigned pairs must be penalized so
as to make them progressively disappear :
M ∗ n2, where M is a very large number.

In a repeated matching approach, we want to match elements of L1, L2 and L3 so as
to generate new sets L′

1, L′
2 and L′

3 that have a lower total cost. The cost of the packing
is reduced at each iteration, details will be given in Section 3.2 and in Appendix A.

The value of M is chosen very high. Consequently, the matching aims at reducing the
number of elements in L2. At last, all edge node pairs will be assigned to a core node.
Then the path for each edge node connection will be known and the active core nodes will
be identified. The problem of the PetaWeb design will be solved.

3.2 The matching problem

The classical matching problem can be described as following :

Let A be a set of q elements h1, h2, ..., hq. A matching over A is so that each hi ∈ A can
be matched with only one hj ∈ A. An element can be matched with itself, which means
that it remains unmatched.

Let cij be the cost of matching hi with hj . We have cij = cji.

We introduce the variable :

zij =

{

1 if hi is matched with hj ,
0 else
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The matching problem consists in finding the matching over A that minimizes the total
cost of matched pairs :

min

q
∑

i=1

q
∑

j=1

cijzij (11)

subject to :

q
∑

j=1

zij = 1, i = 1, ..., q (12)

q
∑

i=1

zij = 1, j = 1, ..., q (13)

zij = zji, i, j = 1, ..., q (14)

zij ∈ 0, 1, i, j = 1, ..., q (15)

Constraints (12) and (13) ensure that each element is exactly matched with another
one.

Constraint (14) imposes that if hi is matched with hj , then hj is matched with hi.

Constraint (15) indicates that variable zij is binary.

In our heuristic, one matching problem is solved at each iteration between the elements
of L1, the elements of L2 and the elements of L3. At each iteration, the number of elements
to be matched is n1 +n2 +n3, where n1, n2 and n3 are the current cardinalities of the sets
L1, L2 and L3.

For each matching problem, the costs cij have to be evaluated. The cost cij is the cost
of the resulting packing after having matched element hi of L1, L2 or L3 with element hj

of L1, L2 or L3.

The costs cij are stored in a matrix C. The dimension of cost matrix C is (n1 ∗ n2 ∗
n3) ∗ (n1 ∗ n2 ∗ n3). Note that this dimension changes at each iteration.

C is a symmetric matrix composed of nine sub-matrices. Given the symmetry, only
six blocks must be considered. The notation [Li − Lj ] is used to indicate the matching
between the elements of Li and the elements of Lj .

C =





[L1-L1] [-] [-]
[L2-L1] [L2-L2] [-]
[L3-L1] [L3-L2] [L3-L3]





=





[1] [-] [-]
[2] [3] [-]
[4] [5] [6]
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Calculating the matching costs for blocks 1 and 3 is a very easy task. For the other
blocks, it requires great attention since the feasibility of the matching result has to be
verified. Furthermore, a matching between two elements can produce several results. In
such a case, the result with minimal cost is chosen. We develop the matching costs for
each block in the Appendix A.

Once the cost matrix is calculated, the matching problem (11)–(15) is solved. The
resolution is not easy because of the symmetry constraint (14). We have implemented
the algorithm of Forbes [11] that is based on the method of Engquist [12]. The starting
point for Forbes’ algorithm is the solution of the matching problem without the symmetry
constraint (14)). Such a starting solution is obtained with the algorithm of Jonker and
Volgenant [13] which was chosen for its speed performance.

Figure 4 illustrates a possible solution of the matching problem.

The solution of the matching problem is then analysed. Some matchings result in new
elements in L′

1, L′
2 and L′

3 whereas other elements disappear. For example, the matching
between an inactive core node (i, r, e) of L1 and an unassigned edge node pair p of L2

results in the new element ((i, r, e), D = {p}) of L3.

3.3 The repeated matching heuristic for the PetaWeb design

A global chart of the heuristic is given in Figure 5.

The algorithm starts with a feasible packing. We choose a packing where no core node
is opened and no edge node pair is assigned:

L1 = {all potential core nodes},

L2 = {all origin/destination edge node pairs exchanging traffic},

L3 = ∅.

A series of feasible packings with decreasing cost is formed.

L1L1

L2

L3 L3

L2

JI zij

Figure 4: The solution of the matching problem
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Calculation of the cost matrix

Resolution of the matching problem

Local improvement ? Yes

No

Yes

No

No Yes

Search of a feasible solution :
closing of some core nodes and
optimal assignation of edge node pairs

End of the algorithm

Start : one feasible packing

according to cost scale economy ?
Agglomération of core nodes

Edge node capacity respected ?

Figure 5: Chart of the repeated matching heuristic for the PetaWeb design, figure inspired
by the article of Rönnqvist [9]

When the cost of the packing can not be reduced any more, active core nodes are
agglomerated so as to take into account the scale economy in the core node cost. Indeed,
a core node of type 2 opened at a site presents the same capacity but it is less expensive
than two core nodes of type 1. The same can be said for one type 3 compared with two
type 2 core nodes. We underline that the heuristic could not do these agglomerations while
building packings with lower cost.

If one agglomeration at least is relevant, a new series of feasible packings is generated.
Such a process is repeated until no progress can be done. Finally, one constraint must yet
be verified : the edge node capacity constraint. This constraint has been omitted by now
in order to allow multiple little kits to be built at the beginning of the algorithm and then
be agglomerated. Knowing the active core nodes in the current best solution, we verify if :

∑

r∈V active

∑

i∈N active

sr yir ∗ Cchannel ∗ W ≤ Cj ,∀j ∈ M.
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– If the constraint is respected, the heuristic stops.

– If the constraint is not respected, the heuristic searches for a feasible solution in
restricting the number of active core nodes.

• If one edge node capacity is exceeded by one link, a core node of type 1 or the
equivalent capacity must be closed in the network. Step by step, at each site, the
equivalent of a core node of type 1 is closed and the optimal assignment of all edge
node pairs to the core nodes remaining active is calculated. This assignment must
verify the capacity of each core node still active and the link capacity between each
edge node and each active core node. The optimal assignment is solved by the
software CPLEX. Whenever the equivalent of a core node of type 1 is closed at one
site, the total cost of the network with optimal assignment of the pairs is calculated.
Finally, we choose the solution with the lowest total network cost.

• If one edge node capacity is exceeded by two links, a core node of type 2 or the
equivalent capacity must be closed in the network. Each combination is tried to
close the equivalent of a core node of type 2 in the network.

• If one edge node capacity is exceeded by more than two links, we sporadically choose
the core nodes that will be reduced in capacity or entirely closed.

4 Computational results

The proposed heuristic was tested using two networks, respectively composed of 10 and 34
edge nodes. The locations of the edge nodes are specific cities of the United States.

Two matrices were used :

• Traffic matrix A, which is a sparse matrix provided by industrial data,

• Traffic matrix B, that is calculated using a gravity model based on urban populations
and distances between cities. The urban populations were found in [14]. Note that
this matrix does not include any zeros, except on its diagonal entry.

Note that the distance matrix between edge nodes was calculated as follows. To work
with realistic distances, geographical coordinates were first found in an American national
atlas [15] and a formula to assess the distance between two points on a sphere [16] was
used. The calculated distances were later compared and validated with a few air distances
estimated at the University of Minnesota [17].

The following default values were used.
W = 16 channels per link,
Cchannel = 10 Gbit/s for the channel capacity,
Number of types of core nodes : v = 3,
Maximal number of core nodes of one type at one site : e = 3, except for the 34 edge nodes
network, traffic matrix B, where e = 4 for the core node of type 3,
Number of space switches for the core node of type 1 : s1 = 1 ∗ W ,
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Number of space switches for the core node of type 2 : s2 = 2 ∗ W ,
Number of space switches for the core node of type 3 : s3 = 4 ∗ W ,
Scale ratio for the cost of the ports : γ = 0.95,
Ratio cost of a core node port divided by the fiber unitary cost : P/F = 150,
Ratio propagation delay unitary cost divided by the the fiber unitary cost : β/F = 0.1,
Ratio cost of a core node of type 1 divided by the fiber unitary cost : f1/F = 20,
Ratio cost of a core node of type 2 divided by the fiber unitary cost : f2/F = 50,
Ratio cost of a core node of type 3 divided by the fiber unitary cost : f3/F = 100,
Edge node capacity in the 10 edge nodes network, traffic matrices A and B : Cj = 1000
Gbit/s,
Edge node capacity in the 34 edge nodes network, traffic matrix A : Cj = 2000 Gbit/s,
Edge node capacity in the 34 edge nodes network, traffic matrix B : Cj = 2800 Gbit/s.

4.1 Results with default parameters

The results are presented in Table 1 where we portray the total cost of the design for each
case and traffic matrix as well as the percentage of the core, fiber and delay costs that
compose the solution. The number of iterations and the solution time are given at the
end. The actual solutions obtained for all instances treated are presented in Figure 7 and
in Figure 8. The legend used is portrayed in Figure 6.

We can see that, in all instances, the fiber costs predominate over all the other network
costs, representing about 80 % of the total cost.

In terms of computational complexity, the number of iterations is quite small. The
solution time is really short : it is about 10 seconds for the 10 edge nodes network and
about 5 minutes for the 34 edge nodes network.

4.2 Relevance of the heuristic

It is interesting to compare the results obtained by the heuristic with the results obtained by
CPLEX for the mathematical model previously presented in[8] so as to assess the relevance
of the heuristic. The results are presented in Table 2 for the 10 edge nodes network and in
Table 3 for the 34 edge nodes network. The gap in the next to last line is the optimality
gap given by the CPLEX solution. The gap in the last line is the discrepancy in percentage
between the total network cost found by the heuristic and the total network cost found by
CPLEX for the mathematical model.

We note that the gaps between the total network cost found by the heuristic and the
one found by CPLEX are very tightened. They lie below 0.4% for the 10 edge nodes
network and below 5.5% for the 34 edge nodes network. The opened sites vary between
the two results but no trend can be clearly identified. The percentages of the several costs
in the objective function are quite identical between the heuristic solution and the CPLEX
solution.
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The great difference between the two results concerns the solution time : the solution time
of the heuristic is insignificant in comparison to CPLEX’s. For example, for the 10 edge
nodes network with traffic matrix A, the solution time of the heuristic is about 6 seconds
while it is about 6.6 hours for CPLEX. For the 34 edge nodes network with traffic matrix
B, the solution time of the heuristic is about 6 minutes while it is about 448 hours for
CPLEX.
We can conclude that the heuristic finds solutions similar to CPLEX’s but with great time
economy. The use of the heuristic is strongly relevant.

4.3 Sensitivity of the heuristic to the propagation delay cost

In the heuristic solution for the 34 edge nodes network with traffic matrix B, all active
core nodes are located in Topeka. They are all opened at the geographical barycenter of
the country, as if the propagation delay cost has not been taken into account. Therefore
we can wonder if our heuristic is sensitive to the propagation delay weight.

Some tests were made for the 34 edge nodes network in order to measure the heuristic
sensitivity to the propagation delay cost. The parameter β that represents the propagation
delay cost was progressively increased. The results for the traffic matrix A are presented
in Table 4 and in Figure 9.

It clearly appears that the heuristic is sensitive to the propagation delay cost. When
the coefficient β increases, the active core nodes are more spread in the country. The total
cost of the network increases, as well as the proportion of the delay cost in the total cost.
These results are coherent.
We can notice that the percentages of the core node cost and of the fiber cost in the total
cost decrease. In fact, the number and the type of the active core nodes are constant when
β increases. The fiber cost increases with the weight of the propagation delay because the
core nodes are more spread. However, as the delay cost increases faster, the proportion of
the fiber cost in the total cost decreases.

4.4 Limits of the heuristic

The heuristic has given very good results for the 10 and 34 edge nodes networks. We are
now looking for the limits of the heuristic when the size of the network increases.

Some tests were made adding at each time some cities of the United States according to
their decreasing population importance. For each test, a full traffic matrix was elaborated
using the gravity model. The sum of the total exchanged traffic was the same for all cases.

The values of the parameters were default values. The parameter representing the
propagation delay was increased to β = 1. The maximum core nodes of one type that
could be opened at one site was 4 and the maximum edge node capacity was Cj = 3000
Gbit/s.

The results given by the heuristic within one week for 40 to 136 edge nodes are given
in Tables 5 and 6. Three cases are illustrated in Figure 10.
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We note that the heuristic finds a solution for all cases within one week except for the
90 edge nodes network that will be explained later on. The total network cost increases
when the network size is growing. The proportions of the several costs in the total cost
keep quite constant. The fiber cost predominates with a percentage of 60% to 70% of the
total cost. The delay cost comes next with a percentage of 25% to 35% of the total cost.
The core node cost is the lowest with a percentage of 4% to 5.5% of the total cost. Opened
sites vary slightly from one case to another.

As expected, the resolution time increases with the network size. However, it appears
that some cases are quite more difficult to solve. For example, the 90 edge nodes network
calculation needs more than one week. The difficulty is located in the matching problem
resolution. Other tests were triggered to better characterize the solution time. Figure 11
illustrates the solution time diagram for 10 to 130 edge nodes networks with all default
parameters. The time limit was fixed at one day.

5 Conclusions and further work

In this paper, we developed a specialized method to treat large-scale instances of the
PetaWeb design problem. The problem was previously defined as a unique network de-
sign problem that is equivalent to the design of composed stars with specific capacity
constraints. The proposed resolution approach is a heuristic based on repeated matchings.

We included in the design three types of costs : core, fiber and delay-related costs. We
found that the cost distribution in both formulations were quite similar. In particular, in
both cases up to 80% of the costs were due to fiber costs. We verified that the heuristic
was sensitive to the weight of the propagation delay cost.

We also proved the great relevance of the heuristic. We noticed that the gap between
the network cost found by the heuristic and the network cost found by a solver for the
mathematical model is kept within 5.5%.

In terms of computational complexity, it appeared that the solution time of the heuristic
is amazingly short in comparison to CPLEX time. The heuristic lasts some minutes, while
the resolution of the mathematical model by a solver may need many days.

The proposed method is very robust and scalable. In fact, networks with more than
hundred edge nodes were treated. As expected, the solution time increases exponentially
with the network size but some cases are more difficult to solve than others. We have
observed that the difficulty lays on the resolution of the matching problem. This provides
an avenue to improve our resolution method.
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Table 1: Results obtained with the default parameters by the heuristic

Network 10 edge nodes 10 edge nodes 34 edge nodes 34 edge nodes
traffic A traffic B traffic A traffic B

Objective function 2289564 2153868 31940857 44757016

Percentage of the core node cost 11.4% 11.9% 5.5% 5.4%

Percentage of the fiber cost 77.1% 83.3% 82% 82.2%

Percentage of the delay cost 11.5% 4.8% 12.6% 12.5%

Number of iterations 9 15 17 12

Solution time 6s 11s 217s 322s

Table 2: Results obtained with the default parameters for the 10 edge nodes network

Network Traffic A Traffic A Traffic B Traffic B
heuristic math. model heuristic math. model

CPLEX CPLEX

Objective function 2289564 2280980 2153868 2152920

Percentage of the core node cost 11.4% 11.2% 11.9% 12.1%

Percentage of the fiber cost 77.1% 77.8% 83.3% 83.8%

Percentage of the delay cost 11.5% 11% 4.8% 4.1%

Solution time 6s 23650s 11s 232s

Optimality gap (CPLEX) N/A 0.01% N/A 0%

Gap between heuristic and math. model 0.38% N/A 0.04% N/A

Table 3: Results obtained with the default parameters for the 34 edge nodes network

Network Traffic A Traffic A Traffic B Traffic B
heuristic math. model heuristic math. model

CPLEX CPLEX

Objective function 31940857 31837547 44757016 42406000

Percentage of the core node cost 5.5% 5.3% 5.4% 5.3%

Percentage of the fiber cost 82% 81.7% 82.2% 81.6%

Percentage of the delay cost 12.6% 13% 12.5% 13.1%

Solution time 217s 579998s 322s 1614383s

Optimality gap (CPLEX) N/A 7.22% N/A 0%

Gap between heuristic and math. model 0.32% N/A 5.5% N/A
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Table 4: Influence of the propagation delay weight for the 34 edge nodes network, traffic
matrix A, with default parameters (heuristic)

β value 0.1 0.5 1 1.5

Objective function 31940857 46864904 61244206 74650622

Percentage of the 5.5% 3.7% 2.9% 2.4%
core node cost

Percentage of the 82% 60.3% 46.6% 41.7%
fiber cost

Percentage of the 12.5% 36.0% 50.5% 55.9%
delay cost

Solution time 217s 234s 349s 386s

Table 5: Results for scalable networks with β = 1 and the default other parameters
(heuristic)

Network 40 nodes 50 nodes 60 nodes 70 nodes 80 nodes
traffic B traffic B traffic B traffic B traffic B

Total cost 66790998 66213371 71377149 72220022 83079134

Percentage of the core node cost 3.9% 4.6% 4.6% 5.0% 5.5%

Percentage of the fiber cost 60.0% 59.3% 62.8% 64.7% 70.5%

Percentage of the delay cost 36.1% 36.2% 32.7% 30.3% 24.0%

Number of iterations 22 19 26 33 23

Solution Time 981s 2109s 6226s 13497s 13016s

Table 6: Results for scalable networks with β = 1 and the default other parameters
(heuristic)

Network 100 nodes 110 nodes 120 nodes 130 nodes 136 nodes
traffic B traffic B traffic B traffic B traffic B

Total cost 88692651 89806499 103524125 102858855 104526279

Percentage of the core node cost 5.3% 5.2% 5.4% 5.4% 5.8%

Percentage of the fiber cost 65.4% 66.4% 67.4% 69.3% 70.6%

Percentage of the delay cost 29.3% 28.4% 27.2% 25.3% 23.6%

Number of iterations 28 27 27 30 38

Solution Time 90369s 71619s 555416s 155500s 505115s
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Figure 8: 34 edge nodes network with default parameters (heuristic)
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Appendix A Matching costs

In this section, we develop the matching costs for each block of the symmetric cost matrix
presented in Section 3.2.

Block 1

Matching two inactive core nodes.

Let (i1, r1, e1) be the sth core node of L1 and (i2, r2, e2) be the tth core node of L1.

The matching cost for block 1 is :

cs,t =

{

∞ if s 6= t,
0 if s = t

Block 2

Matching an unassigned edge node pair with an inactive core node.

Let p be the sth pair of L2 with origin/destination (j,k) and (i, r, e) be the tth core node
of L1.

The matching is allowed if :

1. the capacity of core node (i, r, e) is respected :
Qp ≤ Ccanal ∗ M ∗ W ∗ sr,

2. the link capacity between the origin j of the pair p and the core node (i, r, e) on the
one hand, and the link capacity between the core node (i, r, e) and the destination k
of the pair p on the other hand, are respected :
Qp ≤ Ccanal ∗ W ∗ sr.

If the capacity constraints are verified, the matching results in a new element ((i, r, e),
D = {p}) of L3 whose cost is the sum of :

• the cost of the core node (i, r, e) : 2 |M |W sr γ(sr−1) P + fr

• the cost of the fiber between the core node (i, r, e) and all edge nodes in the network
: 2W F sr

∑

j∈M δij

• the cost of the propagation delay of the pair p traffic via the core node (i, r, e) :
βdipQp.

The matching cost for the block 2 is finally :

cn1+s,t =















2 |M |W sr γ(sr−1) P + fr

+2W F sr
∑

j∈M δij + βdipQp

if Qp ≤ Ccanal ∗ W ∗ sr,
∞ otherwise
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Block 3

Matching two unassigned edge node pairs.

If the two pairs are different, the matching is impossible and the cost is set to infinity.

If a pair is matched with itself, it remains unmatched. The cost is twice the cost of one
unassigned pair because each matching cost must appear twice in the objective function.

Let p1 be the sth unassigned edge node pair of L2 and let p2 be the tth unassigned edge
node pair of L2.

The matching cost for the block 3 is :

cn1+s,n1+t =

{

∞ if s 6= t,
2M if s = t

Block 6

Matching two kits of L3.

Let ((i1, r1, e1),D1) be the sth kit of L3 and ((i2, r2, e2),D2) be the tth kit of L3.

If s = t, the element is matched with itself. The matching cost is twice the cost of one
element as explained above. We remind the reader that the cost of the kit ((i1, r1, e1),D1)
is composed of :

• the cost of the core node (i1, r1, e1) : 2 |M |W sr1
γ(sr1

−1) P + fr1

• the cost of the fiber between the core node (i1, r1, e1) and all edge nodes : 2W F sr1
∑

j∈M δi1j

• the cost of the propagation delay of the D1 traffic pairs via the core node (i1, r1, e1)
: β

∑

p∈D1
di1p Qp.

The self-matching cost is then :
2 ∗ (2M W sr1

γ(r1−1) P + fr1
+ 2W F

∑

j∈M δi1j

+ β
∑

p∈D1
di1p Qp)

If s 6= t, three cases must be considered :

Case I : All edge node pairs of D1 and D2 are assigned to the core node (i1, r1, e1).

This case is possible if :

• the capacity of the core node (i1, r1, e1) is respected, that is :
∑

p∈D1
Qp +

∑

p∈D2
Qp ≤ Ccanal M W sr1

.

• the link capacity between each origin edge node of D1 and D2 and the core node
(i1, r1, e1) on the one hand, and the link capacity between the core node (i1, r1, e1)
and each destination edge node of D1 and D2 on the other hand, are respected :
∑

p∈(D1∪D2)∈Origj
Qp ≤ Ccanal W sr1

,

∀origin j ∈ (D1 ∪ D2)
and

∑

p∈(D1∪D2)∈Destk
Qp ≤ Ccanal W sr1

,
∀destination k ∈ (D1 ∪ D2).
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The matching cost for this case is then :

vI =



















































2 M W sr1
γ(sr1

−1) P + fr1

+2W F sr
∑

j∈M δi1j + β
∑

p∈(D1∪D2) di1pQp

if
∑

p∈D1
Qp +

∑

p∈D2
Qp ≤ Ccanal W M sr1

and
∑

p∈(D1∪D2)∈Origj
Qp ≤ Ccanal W sr1

,

∀ origin j ∈ (D1 ∪ D2),
and

∑

p∈(D1∪D2)∈Destk
Qp ≤ Ccanal W sr1

,

∀ destination k ∈ (D1 ∪ D2),
∞ otherwise

(16)

Case II : All edge node pairs of D1 and D2 are assigned to the core node (i2, r2, e2).

This case is the same as the one before if we reverse the roles of the core nodes.

The matching cost for this case is then :

vII =



















































2 M W sr2
γ(sr2

−1) P + fr2

+2W F sr
∑

j∈M δi2j + β
∑

p∈(D1∪D2) di2pQp

if
∑

p∈D1
Qp +

∑

p∈D2
Qp ≤ Ccanal W M sr2

and
∑

p∈(D1∪D2)∈Origj
Qp ≤ Ccanal W sr2

,

∀ origin j ∈ (D1 ∪ D2),
and

∑

p∈(D1∪D2)∈Destk
Qp ≤ Ccanal W sr2

,

∀ destination k ∈ (D1 ∪ D2),
∞ otherwise

(17)

Case III : The core nodes (i1, r1, e1) and (i2, r2, e2) are both active.

This is a difficult case because the core nodes may exchange some edge node pairs. We
then need to find the optimal assignment of the pairs to the two core nodes. A mathematical
formulation of this integer problem must be given.

Let us introduce some additional variables :

wp =







1 if the pair p ∈ D1 switches its core node
and is assigned to the core node (i2, r2, e2),

0 otherwise

zp =







1 if the pair p ∈ D2 switches its core node
and is assigned to the core node (i1, r1, e1),

0 otherwise

The pair exchange problem can be formulated as :

v∗ = min
∑

p∈D1

gpwp +
∑

p∈D2

hpzp (18)
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subject to :

∑

p∈D1

−Qpwp +
∑

p∈D2

Qpzp ≤ δw, (19)

∑

p∈D1

Qpwp −
∑

p∈D2

Qpzp ≤ δz, (20)

∑

p∈D1∈Origj

−Qpwp +
∑

p∈D2∈Origj

Qpzp ≤ ǫwj

∀ origin j ∈ (D1 ∪ D2), (21)

∑

p∈D1∈Origj

Qpwp −
∑

p∈D2∈Origj

Qpzp ≤ ǫzj

∀ origin j ∈ (D1 ∪ D2), (22)

∑

p∈D1∈Destk

−Qpwp +
∑

p∈D2∈Destk

Qpzp ≤ ηwj

∀ destination k ∈ (D1 ∪ D2), (23)

∑

p∈D1∈Destk

Qpwp −
∑

p∈D2∈Destk

Qpzp ≤ ηzj

∀ destination k ∈ (D1 ∪ D2), (24)

wp, zp ∈ 0, 1, ∀p ∈ (D1 ∪ D2). (25)

gp and hp are the marginal costs if the edge node pair p switches its core node.
δw and δz are the surplus capacity of the core nodes (i1, r1, e1) and (i2, r2, e2) respectively.
ǫwj is the surplus capacity of the links between the origin edge node j and the core node
(i1, r1, e1).
ǫzj is the surplus capacity of the links between the origin edge node j and the core node
(i2, r2, e2).
ηwk is the surplus capacity of the links between the core node (i1, r1, e1) and the destination
edge node k.
ηzk is the surplus capacity of the links between the core node (i2, r2, e2) and the destination
edge node k.

gp = βdi2pQp − βdi1pQp,∀p ∈ D1,

hp = βdi1pQp − βdi2pQp,∀p ∈ D2,



Les Cahiers du GERAD G–2004–87 24

δw = Ccanal ∗ M ∗ W ∗ sr1
−

∑

p∈D1

Qp,

δz = Ccanal ∗ M ∗ W ∗ sr2
−

∑

p∈D2

Qp,

ǫwj = Ccanal ∗ W ∗ sr1
−

∑

p∈D1∈Origj

Qp,

∀ origin j ∈ (D1 ∪ D2),

ǫzj = Ccanal ∗ W ∗ sr2
−

∑

p∈D2∈Origj

Qp,

∀ origin j ∈ (D1 ∪ D2),

ηwk = Ccanal ∗ W ∗ sr1
−

∑

p∈D1∈Destk

Qp,

∀ destination k ∈ (D1 ∪ D2),

ηzk = Ccanal ∗ W ∗ sr2
−

∑

p∈D2∈Destk

Qp,

∀ destination k(D1 ∪ D2).

The objective (18) is to minimize the cost of the packing.

(19) and (20) impose that the capacity surplus in the core node be respected.

(21) and (22) are surplus capacity constraints for the links between each origin edge
node j and the core nodes (i1, r1, e1) and (i2, r2, e2) respectively.

(23) and (24) are surplus capacity constraints for the links between the core nodes
(i1, r1, e1) and (i2, r2, e2) respectively and each destination edge node k.

(25) indicates the variables wp and zp are binary.

The matching cost for this case is finally :

vIII = 2M W sr1
γ(r1−1) P + fr1

+ 2W F
∑

j∈M

δi1j

+ β
∑

p∈D1

di1pQp + 2M W sr2
γ(r2−1) P + fr2

+ 2W F
∑

j∈M

di2jQp + β
∑

p∈D2

di2pQp + v ∗

(26)

Among the three cases whenever s 6= t, we choose the solution with minimal cost :
min {vI , vII , vIII}.
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At last, the matching cost for the block 6 is :

cn1+n2+s,n1+n2+t =























2(2M W sr1
γ(r1−1) P + fr1

+2W F
∑

j∈M δi1j

+β
∑

p∈D1
di1p Qp)

if t = s
min {vI , vII , vIII} otherwise

where vI , vII and vIII are given by the expressions (16), (17) and (26) respectively.

Block 4

Matching a kit of L3 with an inactive core node of L1. Note that this is a particular case
of block 6.

Let ((i1, r1, e1),D1) be the sth kit of L3 and (i, r, e) be the tth core node of L1. The
inactive core node (i, r, e) can be seen as an active core node with no assigned pair :
(i, r, e) = ((i2, r2, e2), ∅) ∈ L3.

The matching cost for the block 4 is then :

cn1+n2+s,t = min {vI , vII , vIII},

where vI , vII and vIII are given by the equations (16), (17) and (26).

Block 5

Matching a kit of L3 with an unassigned pair of L2.

Let ((i1, r1, e1),D1) be the sth kit of L3 and q be the tth pair of L2 with origin/destination
(j,k).

Two cases must be considered :

Case I : The unassigned edge node pair can be assigned to the core node (i1, r1, e1).
Then D1 becomes D1 ∪ q.
This case is possible if :

• the capacity of the core node (i1, r1, e1) is respected.

• the link capacity between the origin edge node j and the core node (i1, r1, e1) on the
one hand, and the link capacity between the core node (i1, r1, e1) and the destination
edge node k on the other hand, are respected.
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The matching cost for this case is (D1 now contains the pair q) :

cn1+n2+s,n1+t =











































2 M W sr1
γ(sr1

−1) P + fr1

+2W F sr1

∑

j∈M δij + β
∑

p∈D1
dipQp

if
∑

p∈D1
Qq ≤ Ccanal M W sr1

and
∑

p∈D∈Origj
Qp ≤ Ccanal W sr1

,

∀ origin j ∈ D,
and

∑

p∈D∈Destk
Qp ≤ Ccanal W sr1

,

∀ destination k ∈ D.

Case II : The unassigned edge node pair can not be assigned to the core node (i1, r1, e1).
If one capacity constraint is not respected, one pair or more have to be removed from the
kit. A problem of pair exchange is then solved as for the block 6.

The edge node pair q is inserted in the set D1. D2 is built as an empty set.
D1 = D1 ∪ q
D2 = ∅.

We solve the problem (18)-(25) without considering the equations (20), (22) and (24)
where :

wp =















1 if the pair p ∈ D1 removes from the
core node (i1, r1, e1)
and becomes an unassigned pair of L2,

0 else

zp = 0,
gp = M− β di1p Qp,∀p ∈ D1\{paire q},
g|D1|+1 = M− β di1qQq,
and hp = 0.
Note that the surplus capacity δw, ǫwj and ηwk can be negative.

The set D1 ⊂ D1 corresponds to the edge node pairs assigned to the core node (i1, r1, e1)
in the exchange problem solution. Let n1 be the number of elements in D1.

The matching cost for this case is then :

cn1+n2+s,n1+t = 2M W sr1
γ(sr1

−1) P + fr1

+ 2W F sr1

∑

j∈M

δi1j

+ β
∑

p∈D1

di1pQp + (n1 − n1)M
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At last, the matching cost for the block 5 is :
(the reader is reminded that D1 contains the pair of L2)

cn1+n2+s,n1+t =



































































2 M W sr1
γ(sr1

−1) P + fr1

+2W F sr1

∑

j∈M δi1j + β
∑

p∈D1
di1pQp

if
∑

p∈D1
Qq ≤ Ccanal M W sr1

and
∑

p∈D1∈Origj
Qp ≤ Ccanal W sr1

,

∀origin j ∈ D1,
and

∑

p∈D∈Destk
Qp ≤ Ccanal W sr1

,

∀destination k ∈ D1,

2 M W sr1
γ(sr1

−1) P + fr1

+2W F sr1

∑

j∈M δi1j + β
∑

p∈D1
di1pQp

+(n1 − n1)M otherwise
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