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Montréal (Québec) Canada, H3T 2A7

genevieve.gauthier@hec.ca

Jean-Guy Simonato
Service de l’enseignement de la finance

HEC Montréal
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Abstract

We develop a Markov chain pricing method capable of handling several state vari-
ables. The Markov chain construction of Duan and Simonato (2000) is modified so
that higher-dimensional valuation problems can be dealt with. Their design relies on
a Cartesian product, which grows in a power fashion as the number of assets/factors
increases. We use a multi-dimensional low-discrepancy sequence as the building block
for constructing the Markov chain in order to take advantage of the high degree of
uniformity inherent in such sequences. Our design contains two critical components.
First, we have devised a way of computing analytically the entries of the transition
probability matrix and then shown that such a Markov chain converges weakly to the
target Markov process. Second, we have utilized an elliptical restriction as a way of
removing non-critical components of the Markov chain to enhance the computational
efficiency. Numerical examples are provided.

Résumé

Nous développons une méthode de tarification basée sur les châınes de Markov qui
peut s’accommoder de plusieurs variables d’états. La châıne de Markov proposée par
Duan et Simonato (2002) est modifiée de façon à ce que les problèmes d’évaluation de
plus grande dimension puisse être traités. Leur design est basé sur un produit Cartésien
qui crôıt de façon exponentielle lorsque le nombre de facteurs augmente. Nous utilisons
une suite à discrépence faible multi-dimensionnelle afin de construire notre châıne de
Markov. Notre design contient deux composantes importantes. Premièrement, les
entrées de la matrice de transition sont calculées de façon analytique et nous pouvons
alors démontrer qu’une telle châıne de Markov converge faiblement vers le processus
markovien cible. Deuxièmement, nous avons utilisé une restriction elliptique afin de
retirer les états de la châıne qui ont une très faible probabilité d’être atteint. Ceci
permet d’améliorer l’efficacité de la méthode. Des exemples numériques sont fournis.
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1 Introduction

For the valuation of American-style derivatives on several underlying assets and/or factors,

the only practical approach known is Monte Carlo simulation. However, even when con-

sidering the recent developments in this literature, (Broadie, Glasserman and Jain, 1997;

Boyle, Kolkiewicz and Tan, 2000; Garcia, 2000; Longstaff and Schwartz, 2000), the Monte

Carlo approach appears to be of limited applicability to derivatives on several assets and/or

factors with many early exercise possibilities. Recently, lattice constructions for higher di-

mensional valuation problems have also been attempted in MaCarthy and Webber (1999)

and Chen and Yang (2000) by applying some geometric restrictions to the multidimen-

sional state partition. Due to their highly restrictive nature, these methods appear to have

limited potential for models beyond the constant volatility geometric Brownian motion.

In this paper we develop a Markov chain pricing method capable of handling several

state variables. It can be used in the traditional geometric Brownian motion context as well

as for more complex pricing models such as stochastic volatility and GARCH. We use the

Markov chain pricing idea of Duan and Simonato (2000) but modify the specific Markov

chain construction so that higher-dimensional valuation problems can be dealt with. In a

nutshell, Duan and Simonato’s (2000) design relies on a Cartesian product, which grows

in a power fashion as the number of assets/factors increases. For practical purposes, Duan

and Simonato’s (2000) specific design is workable up to two dimensions due to the memory

constraint of typical computers. Our modification abandons the use of Cartesian product

in handling additional dimensions. Instead, we use a multi-dimensional low-discrepancy

sequence as the building block for constructing the Markov chain. In other words, we want

to take advantage of the high degree of uniformity inherent in low-discrepancy sequences.

There are several challenges related to this redesign. The first and foremost is to figure

out a way of computing analytically the entries of the transition probability matrix and

then to show that such a Markov chain converges weakly to the target Markov process

underlying the pricing model. It is also beneficial to remove non-critical components of

the Markov chain so that the computational speed can be improved. Indeed, we show that

our low-discrepancy Markov chain has the desirable weak convergence property. We also

employ an elliptical restriction and control variables to enhance computational efficiency

of the low-discrepancy Markov chain.

The idea of partitioning the state space using a low-discrepancy sequence is not new.

To our knowledge, Broadie (1999) was the first to introduce such an idea into a lattice

design. Our method differs from Broadie (1999) by relying on the Markov chain idea of

Duan and Simonato (2000) instead of using a lattice as in Broadie (1999). Moreover, the

transition probabilities for the Markov chain are obtained analytically by inferring directly
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from the target process as opposed to relying on an optimization procedure which is likely

to be time-consuming and to confront potentially competing objective functions.

Our numerical findings reveal that the Markov chain algorithm performs well and con-

verge to the target benchmark prices. The convergence to the benchmark prices is faster for

larger time steps or shorter maturities. As the number of assets increases, the dimension

of the chain needs to be increased substantially to achieve convergence. However, sparse

matrix techniques allow for the use of Markov chains with a large dimension because in

most cases, many elements of the transition probability matrix are effectively zero.

2 Markov chain approach

Consider the filtered probability space (Ω,F , {Ft∗ : t∗ ∈ T } , P ) where T is a set of indices

such as [0,∞), [0, T ∗], {0, 1, ..., T}, etc. Denote the time-t∗ value of the American con-

tingent claim by v (St∗ , t
∗) where {St∗ = (S1 (t∗) , ..., Sd (t∗)) : t∗ ∈ T } is a d-dimensional

stochastic process that captures all pricing-relevant informations of the contingent claim:

underlying assets, interest rates, exchange rates, convenience yield, volatility, etc. The typi-

cal derivative pricing theory implies that, under the hypothesis of no-arbitrage opportunity,

there is an equivalent pricing measure Q with which the discounted values of the tradable

assets are martingales. The logical consequence is that replicable contingent claims can be

priced by simply taking an expectation under Q of their associated discounted payoffs.

The early exercise possibility related to Bermudan/American style derivatives creates

complication in practice. In principle, one can invoke the dynamic programming technique

to compute (or approximate) the value of the Bermudan (American) contingent claim

recursively:

v (St∗ , t
∗) = max

{

h (St∗ , t
∗) , e−rt∗EQ

t∗ [v (St∗+τ , t
∗ + τ)]

}

, t∗ ∈ {0, τ, 2τ, ..., (T − 1) τ}

v (ST ∗ , T ∗) = h (ST ∗ , T ∗)
(1)

where rt∗ is the one-period (from time t∗ to t∗ + τ) risk-free interest rate (continuously

compounded); h (St∗ , t
∗) is the time-t∗ payoff of the contingent claim if exercised; T ∗ is

the maturity date of the contingent claim; τ is the length of the time periods in this

discrete-time setting1; T = T ∗/τ is the number of time periods before the expiration of

the contingent claim; and EQ
t∗ [•] is a short-hand notation standing for the conditional

expectation EQ [•|Ft∗ ].

1In the following, the time is marked by a star while the number of time periods is represented without
such superscript. This distinction is needed since we use a discrete-time setting to approximate a time-
continuous model and we need to keep the liberty of choosing the length τ of the time periods to suit the
caracteristic of the contingent claim.
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The major difficulty in implementing (1) is to compute the conditional expectation. The

approach we propose is to replace the stochastic process S by a discrete-state process S(n)

for which the conditional expectation is easy to compute. Since the methodology is based on

a Markov chain, we need to assume that there is a time-homogeneous Markovian process

X hidden behind S. More formally, this approach assumes the existence of a function

g : R
d × T → R

d∗ such that 1) the d∗-dimensional process X = {Xt∗ : t∗ ∈ T } where

Xt∗ = (X1 (t∗) , ..., Xd∗ (t∗)) = g(St∗ ; t
∗) is a time-homogeneous Markovian process under

Q and 2) for any fixed t∗, g(•; t∗) is invertible ensuring that St∗ = g−1(Xt∗ ; t
∗). An

illustration of this transformation is given in Section 5.1.

Then, the stochastic process X is approximated by constructing a n−states Markov

chain
{

X
(n)
t : t ∈ {0, 1, 2, ..., T}

}

so that X
(n)
t converges to Xtτ weakly for any t ∈ {0, 1, 2, ..., T} as the number n of states

increases to infinity. Because the prices of the contingent claims obtained from the Markov

chain have to converge to their respective theoretical price (given by the model X), we also

want that φ
(

X
(n)
t , tτ

)

converges to φ (Xtτ , tτ) in mean (as n→ ∞) for a reasonable class

of payoff functions φ.

Under the Markov chain approximation, the dynamic programming recursion can be

handled with

−→v (n)
t = max

[

h
(

g−1(X(n); tτ), tτ
)

, e−rtτ Π(n) −→v (n)
t+1

]

, t ∈ {0, 1, 2, ..., (T − 1)}

−→v (n)
T = h

(

g−1(X(n);Tτ), T τ
)

(2)

where X(n) is an n × d matrix that contains each of the n possible states of the Markov

chain (each state belongs to R
d); h

(

g−1(X(n); t), tτ
)

is also a n×1 vector filled with payoffs

of the contingent claim, if exercised at time t∗ = tτ , corresponding to n states of the chain;

Π(n) is the time-homogeneous n × n transition probability matrix over a time period of

length τ , and the n×1 vector −→v (n)
t contains, for each of the possible states, the time t∗ = tτ

values of the contingent claim. Note that EQ
t∗ [v (St∗+τ , t

∗ + τ)] is being approximated by

Π(n) −→v (n)
t+1, a simple matrix operation. After the recursion is completed, the element of

−→v (n)
0 corresponding to the initial state of the Markov system is the model value of the

contingent claim.

Although weak convergence of the Markov chain approximation to the target process

is crucial, it is not enough to ensure price convergence. Due to the payoff function of the

derivative contract and the transformation used in obtaining time homogeneity, the weak
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convergence property may not be carried over to h
(

g−1(X(n) (t∗) ; t∗), t∗
)

, and such a quan-

tity may also lack uniform integrability so that the derivative’s price cannot be ensured

to converge to the right value. Since g−1 (•; t) and h are usually continuous functions, the

weak convergence of h
(

g−1(X(n) (t) ; t)
)

to h
(

g−1(X (tτ) ; tτ)
)

is easy to obtain. Conver-

gence in mean, i.e., price convergence, requires more work. The issue of convergence will

be addressed in detail later.

In constructing the weakly converging Markov chain, Duan and Simonato (2000) em-

ployed a Cartesian product construction. In other words, for the one-dimensional prob-

lem, the state space is partitioned into, say, m discrete states, and for the two-dimensional

problem, the state space is partitioned into mk discrete states with k being the number

of states in the second dimension. Relating to the Markov chain notation, n = m for the

one-dimensional problem and n = mk for the two-dimensional problem. The Cartesian

product construction method is appealing because it allows for a rather simple way of com-

puting the entries of Π(n). Although the Cartesian product approach is easier to construct

and comprehend, it is rather impractical once the dimension of the valuation problem is

increased to three or four because the number of states grows in a power fashion. It is

worth noting that this problem is not unique to Duan and Simonato’s (2000) approach.

The traditional lattice and finite difference methods all face a similar problem.

This paper is set out to devise a Markov chain that is capable of dealing with higher-

dimensional valuation problems while retains the convenience and power of the Markov

chain approach. We opt for a construction that relies on points derived from a low-

discrepancy sequence instead of employing a Cartesian product of partitions one dimension

at a time.

3 Low-discrepancy Markov chain

Let f(z|x) be the one-period density function of the random vector X (t+ 1) conditional

on X (t) = x. We assume this density function is independent of time so that a time-

homogenous Markov chain can be constructed.

In the following, we will construct a sequence
{

X(n) =
{

X(n) (t) : t ∈ {0, 1, ..., T}
}

:

n ∈ N
}

of Markov chains. For each n, the state space and the transition matrix need to

be defined. First, consider the d-dimensional hyper-rectangle

Rn =
d
∏

i=1

[

a
(n)
i , b

(n)
i

]

⊂ R
d (3)

over which the n states of X(n) will be uniformly scattered. Because we want to achieve

the weak convergence of X(n) (t) to X (t), we need that Rn → R
d as n → ∞. Therefore
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we assume that for each i, the sequence
{

a
(n)
i : n ∈ N

}

decreases to −∞ and the sequence
{

b
(n)
i : n ∈ N

}

increases to ∞ so that the sequence {Rn : n ∈ N} of hyper-rectangles in R
d

satisfies

R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ · · · and Rn ↑ R
d as n ↑ ∞.

The Lebesgue measure (or volume) of the hyper-rectangle is

λ (Rn) ≡
d
∏

i=1

(

b
(n)
i − a

(n)
i

)

. (4)

If we take any particular subset A of R
d, then we want the number of states contained in A

to increase as n tends to infinity. Therefore, we need the volume of the hyper-rectangle to

go up to ∞ at a rate slower than n raised to an appropriate power to reflect the dimension

of the problem, as n approaches ∞. This condition is formalized as follows.

Partition Condition: (1) Rn ↑ R
d as n ↑ ∞, and (2) λ (Rn) (ln n)d

n → 0 as n→ ∞.

The form of condition (2) comes from the discrepancy of the particular point-set used

to construct the state space of the Markov chain. If the support of the distribution is finite,

denoted by S, then a
(n)
i and b

(n)
i only need to be bounded sequences as long as S ⊂ Rn

for some large n. It is fairly easy to find a specific construction that satisfies the partition

condition. For example, if the one-period standard deviation σi of the ith component of X

is state independent, then we may take a
(n)
i = −2σi lnn and b

(n)
i = 2σi lnn. In that case,

λ (Rn)
(lnn)d

n
=

(

d
∏

i=1

4σi

)

(lnn)2d

n
→ 0 as n→ ∞,

and Rn → R
d as n→ ∞.

We consider n points (d-dimensional) uniformly scattered over the hyper-rectangle Rn.

Denote these points by x
(n)
1 , ...,x

(n)
n . The low-discrepancy Markov chain X(n) has these n

points forming its state space and the transition probability matrix Π(n) has its (i, j) entry

equal to

π
(n)
i,j =

f
(

x
(n)
j

∣

∣

∣x
(n)
i

)

∑n
k=1 f

(

x
(n)
k

∣

∣

∣x
(n)
i

) . (5)

It is clear that Π(n) constitutes a proper transition probability matrix because its entries

are all non-negative and each row sums to 1. The key task later is to show that under the
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partition condition, X(n) (t) converges (weakly) to the target d-dimensional process X (t)

for t ∈ {0, 1, 2, ..., T}.
In order to find n uniformly distributed d-dimensional points in Rn, we rely on low-

discrepancy sequences. To facilitate the discussion, we formally define the notion of dis-

crepancy.

Definition 1 For a sequence u1,u2, · · · in [0, 1]d, discrepancy Dn (u1, ...,un) is defined by

Dn (u1, ...,un) = sup
B∈I

∣

∣

∣

∣

∣

1

n

n
∑

k=1

1{uk∈B} − λ (B)

∣

∣

∣

∣

∣

where 1{uk∈B} = 1 if uk ∈ B and 0 otherwise, I is the family of sets with the form
∏d

i=1 [αi, βi] with 0 ≤ αi ≤ βi ≤ 1, and λ is the Lebesgue measure.

Low-discrepancy sequences are sequences with discrepancy in the order of (ln n)d

n . In other

words, low-discrepancy sequences fill in a unit hyper-cube in a highly uniform manner.

To fill in our target set Rn, some contracting/stretching in scale and shifting in location

are needed. Let U(n) denote the n × d matrix of the first n points of a low-discrepancy

sequence. Define

M(n) ≡

















b
(n)
1 − a

(n)
1 0 0 · · · 0

0 b
(n)
2 − a

(n)
2 0 · · · 0

0 0 b
(n)
3 − a

(n)
3 · · · 0

...
...

...
. . .

...

0 0 0 · · · b
(n)
d − a

(n)
d

















(6)

and

A
(n)
n×d ≡







a
(n)
1 a

(n)
2 ... a

(n)
d

...
...

...

a
(n)
1 a

(n)
2 ... a

(n)
d






. (7)

The suitable vector containing n points to be used to fill in our target set Rn can be created

by the following linear transformation:

X
(n)
n×d ≡ U

(n)
n×dM

(n)
d×d + A

(n)
n×d. (8)

Using all points contained in X(n) turns out to be an inefficient way of constructing the

low-discrepancy Markov chain. The reason is that the commonly used multi-dimensional

normal density function concentrates its density on an elliptical region, i.e., the densities

for points in the corners of the hyper-rectangle Rn are negligible. It is therefore natural to
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discard the points lying outside of the elliptical region. We now discuss how an appropriate

elliptical region is identified.

For this purpose, we first go back to the d-dimensional unit hyper-cube C. Note that C
is centered at the point 1

2
=
(

1
2 , ...,

1
2

)′
. We consider the ellipse E enclosed in C:

E ≡
{

y ∈ C :

(

y−1

2

)′

Σ−1

(

y−1

2

)

≤ 1

4

}

(9)

where Σ is the correlation matrix corresponding to one period conditional distribution of

the stochastic process X. Hidden here is the assumption that the one-period conditional

correlation matrix is state independent. If it is not the case, the particular feature of

a given model may suggest another restriction set. It is worth noting that the ellipsoid

shape of the set is not essential in the convergence proofs. All one needs is the partition

condition. It is therefore possible to choose a different shape of set restriction suitable for

a given model.

We now combine this elliptical restriction with scaling and location shifting to obtain

the final set of points defining the state space for our n-point low-discrepancy Markov

chain:

X∗(n) ≡ M(n)U∗(n)+A(n) (10)

where U∗(n) contains the first n points that are from a low-discrepancy sequence and

contained in E . We choose M(n) and A(n) such that M(n)
(

1
2 , ...,

1
2

)′
+
(

a
(n)
1 , ..., a

(n)
d

)′

, the

state corresponding to the center of the ellipse, is identical to the initial state of the target

Markov system.

The following convergence result justifies the use of Π(n) −→v (n) (t+ 1) for EQ
t

[v (S (t+ 1) , t+ 1)]. Moreover, it also justifies the use of the low-discrepancy Markov

chain to compute the prices for derivative contracts.

Definition 2 Let x0 ∈ R
d be arbitrarily chosen. We define x

(n)
0 as a point in the state

space
{

x
(n)
1 , ...,x

(n)
n

}

which minimizes the distance to x0, that is,

x
(n)
0 ≡

{

x
(n)
i ∈

{

x
(n)
1 , ...,x(n)

n

}

:
∥

∥

∥
x

(n)
i − x0

∥

∥

∥
= min

j∈{1,2,...,n}

∥

∥

∥
x

(n)
j − x0

∥

∥

∥

}

.

This point may not be unique. In that case, we choose one of the points that minimizes

the distance to x0.

Theorem 1 For any t ∈ {1, 2, ..., T}, let ft (x |z) denotes the t-period conditional density

function of X (t) given X (0) = x. Assume that ft (x |z) is bounded and continuous in
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(x, z) ∈ R
d × R

d and has bounded variation V (ft) on R
d × R

d in the sense of Hardy and

Krause. For any bounded function φ : R
d → R such that

Φ(x, z) ≡ φ (x) f (x |z) (11)

Ψt (x, z) ≡
(∫

Rd

φ (y) ft (y |x) dy

)

f (x |z) , t ∈ {1, 2, ..., T} (12)

have bounded variations V (Φt) and V (Ψt (x, z)), we have

lim
n→∞

∣

∣

∣
E [φ (Xt+1) |Xt = x0 ] − E

[

φ
(

X
(n)
t+1

) ∣

∣

∣
X

(n)
t = x

(n)
0

]∣

∣

∣
= 0 (13)

and, for t ∈ {1, 2, ..., T} ,

lim
n→∞

∣

∣

∣E [φ (Xt) |X0 = x0 ] − E
[

φ
(

X
(n)
t

) ∣

∣

∣X
(n)
0 = x

(n)
0

]∣

∣

∣ = 0. (14a)

Proof. See Appendix Appendix A.

Remark 1 (1) f1 (x |z) = f (x |z) . (2) Assumption (11) is needed in the proof of the

one-period case (Equation (13)). Assumption (12) is used in the induction argument that

conduct to the multi-period result. They are sufficient but not necessary conditions. (3) If

the function φ is not bounded but satisfies the integrability condition

E [|φ (Xt)| |X0 = x0 ] <∞,

then for any positive ε, there is a bounded function φε,x0
such that

|E [|φ (Xt)| |X0 = x0 ] − E [|φε,x0
(Xt)| |X0 = x0 ]| < ε.

Therefore, the price obtained using the Markov chain approximation may be as close as

desired to the target price.

Density functions are typically “well behaved” functions that decay quickly to zero.

The large majority of the payoff functions usually do not have periodic spikes. As a

result, the bounded variation assumption for functions Φ and Ψ is not a particularly strong

requirement for applications. Actually, this assumption is only needed for the application

of a type of the Koksma-Hlawka error bound in “low-discrepancy integration”. It can

be replaced by some assumption on the modulus of continuity for these functions (see

Niederreiter, 1992).

As a consequence of Theorem 1, the low-discrepancy Markov chain can be shown to

converge weakly to the discrete-time version of the target process X.
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Corollary 1 The low-discrepancy Markov chain at time t, X(n) (t) , with the initial state

x
(n)
0 and all possible states derived from a low-discrepancy sequence, subject to proper scal-

ing, location shifting and elliptical restriction, converges weakly to X (t) for t ∈ {0, 1, 2,
..., T} as n goes to infinity.

Proof. We obtain the k−periods cumulative conditional distribution functions of X (t)

and X(n) (t) as follows: for any x ∈ R
d, set φx (y) = 1{y≤x}. Then

F (x |x0 ) ≡ E [φx (Xt+k) |Xt = x0 ] and (15)

F (n)
(

x
∣

∣

∣
x

(n)
0

)

≡ E
[

φx

(

X
(n)
t+k

) ∣

∣

∣
X

(n)
t = x

(n)
0

]

. (16)

In this case, Φ (y, z) = φx (y) f (y |z) . Because of the particular form of φx, we have

V (Φ) ≤ V (f) < ∞. Moreover, Ψt (y, z) ≡
(∫

Rd φx (v) ft (v |y ) dv
)

f (y |z) = Ft (x |y )

f (y |z) where Ft (x |y ) = Pr [X (t) ≤ x |X (0) = y ] and Ψ has bounded variation if Ft does.

The weak convergence result is therefore a consequence of Equation (14a). �

4 Numerical Efficiency

The numerical performance of the Markov chain method may be improved by employing

control variables. In many cases, one indeed have the knowledge about the first moment of

some functions of the components of S. The choice of the control variables depends on the

contingent claim we want to price. Examples will be given later in this paper. In general,

we consider k random control variables, C1 (X (t) , t), ..., Ck (X (t) , t), for which 1) their

respective one-period conditional expectations µ1 (t− 1) , ..., µk (t− 1) are known,

µi (t− 1) ≡ EQ
t−1 [Ci (X (t) , t)] , (17)

and 2) they are correlated with the payoff of the target contingent claim. A more efficient

way of implementing the low-discrepancy Markov chain method is to use the following

control-variate dynamic system:

−→v (n)
cv (t) = −→v (n) (t) −∑k

i=1 βi,t

(

Π(n)−→Ci (t+ 1) −−→µi (t)
)

, t ∈ {0, 1, ..., T − 1}
−→v (n) (t) = max

[

h
(

g−1(X(n); t)
)

, e−r(t)Π(n) −→v (n) (t+ 1)
]

−→v (n) (T ) = h
(

g−1(X(n) (T ) ;T )
)

.

(18)

where
−→
Ci (t+ 1) is an n × 1 vector containing the value of the ith control variable for

each state of the Markov chain, −→µi (t) is an n×1 vector filled with EQ
t

[

Ci (X (t+ 1) , t+ 1)
∣

∣

∣
X (t) = x

(n)
j

]

for j ∈ {1, ..., n}, and βi,t is the regression coefficient from linearly regressing

−→v (n) (t) on Π(n)−→Ci (t+ 1).
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5 Examples

5.1 The multivariate Black-Scholes model

In this section, we demonstrate how an n-point Markov chain can be constructed and used

for pricing derivatives on several assets governed by a multivariate geometric Brownian

motion. The geometric Brownian motion for stock i is written as

lnSi (t) = lnSi (0) +

(

r − 1

2
σ2

i

)

t+ σiWi (t) for i ∈ {1, ..., d} (19)

where r and σ
i

are, respectively, the risk-free rate and diffusion coefficient under the risk

neutral probability measure Q. The d-dimensional Brownian motion W = {(W1 (t) , ...,

Wd (t)) : t ≥ 0} is such that

Corr [Wi (t) ,Wj (t)] = ρij for any t ≥ 0. (20)

Let

X (t) =















lnS1 (t) − lnS1 (0) − (r − σ2

1

2 )t

lnS2 (t) − lnS2 (0) − (r − σ2

2

2 )t

...

lnSd (t) − lnSd (0) − (r − σ2

d

2 )t















. (21)

Since

Xi (t+ 1) = lnSi (t+ 1) − lnSi (0) −
(

r − σ2
1

2

)

(t+ 1)

= lnSi (t) − lnSi (0) −
(

r − 1

2
σ2

i

)

t+ σi (Wi (t+ 1) −Wi (t))

= Xi (t) + σi (Wi (t+ 1) −Wi (t)) , (22)

then the stochastic process X is a time-homogeneous Markov process and its one period

conditional joint density function is

f (xj |xi ) =

(

1

2π

)d/2

|Λ|−1/2 exp

(

−1

2
(xj − xi)

′

Λ−1 (xj − xi)

)

(23)

where Λ is the covariance matrix (σiσjρij)ij . Note that if σi’s are annualized figures, they

should be multiplied by
√
h where h is the length of one period measured in years.

We construct an n-point Markov chain to approximate X (t) for t ∈ {0, 1, 2, ..., T}
in three steps. For illustration purposes and without loss of generality, we consider a
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two-dimensional problem. Specifically, we consider a system with the two-dimensional

correlation matrix:

Σ =

[

1.0 0.5
0.5 1.0

]

. (24)

• Step 1: generate a sequence of low-discrepancy 2-dimensional Sobol numbers and

denote them by {u1,u2, · · · }. This task can be accomplished using a standard com-

puter code.

• Step 2: remove low-likelihood points using a suitable ellipse to obtain n points.

This ellipse is based upon the covariance matrix of the components of the stochastic

process X. The less correlated are the components of X, the closer is the ellipse to

the unit circle. Specifically, pick the first n points of {u1,u2, · · · } such that

(

ui −
(

1/2

1/2

))′

Σ−1

(

ui −
(

1/2

1/2

))

≤ 1

4
(25)

and denote these points by {u∗
1,u

∗
2, · · · ,u∗

n} ⊂ E . With our chosen Σ, the first n

points must satisfy

(

u1 −
1

2

)2

−
(

u1 −
1

2

)(

u2 −
1

2

)

+

(

u2 −
1

2

)2

≤ 3

16
. (26)

• Step 3: perform scaling and location shifting to create an elliptical region enclosed

in Rn and centered at X0. The Markov chain’s discrete state values can be generated

as follows:

xi =

[

lnS1 (0)
lnS2 (0)

]

+ b(n)

[

σ1

√
T 0

0 σ2

√
T

]

u∗
i . (27)

and {x1,x2, · · · ,xn} ⊂ En. Note that the two respective standard deviations are

used to reflect the range of values for each of two variables T periods into the future.

Since the construction of the Sobol sequence implies that u∗
1 = 0, we have

x1 =

[

lnS1 (0)
lnS2 (0)

]

. (28)

In other words, the first element of the Markov chain state values is the initial state

value of the target Markov process. We need to choose b(n) so that the partition

conditions are met, and a good candidate is

b(n) ≃ 2 ln (ln (n)) . (29)

For the Markov chain method to perform reasonably well, some care must be given

to ensure that a reasonable coverage is obtained. One can, for example, set a target
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probability of the elliptical region at α%. Our Monte Carlo calculations suggest that b(n)

are roughly between 2 and 4 for α being 95 or 99. for various numbers of the underlying

assets. Note that these results are independent of n due to the geometric Brownian motion

assumption.

6 Numerical results

Numerical results are presented in Tables 1 to 4 for European put options on the minimum

of several assets in the context of the Black Scholes model. In each table, we consider

three maturities (1, 3 and 9 months) and three strike-to-asset price ratios (1.1, 1.0 and

0.9). The current asset prices are set at 50 for all assets. The annualized risk-free rate

(continuously compounded) is 5% and the assets’ standard deviations are 20% for all assets.

The correlation is set to 0.5 between all pairs of assets. The first row of this table presents

the benchmark prices obtained using Monte Carlo simulations except for the one-asset case

where the Black-Scholes formula is applicable. In all tables, the first panel presents prices

computed with a weekly time step, whereas the second panel presents the prices obtained

with a monthly time step. We use the individual Black-Scholes prices as control variables.

In other words, we assume several individual put options using the same strike price. Of

course, for the one-asset case the control variate adjustment is not made.

There are several observations about the results in these tables:

• The method produces prices that suitably converge to the correct benchmark prices,

consistent with the theoretical predication.

• The convergence to the benchmark prices is faster for shorter maturities.

• The convergence to the benchmark prices is faster when the time steps are larger

relative to the maturity. Indeed, the prices obtained with a weekly time step require

a Markov chain with a larger dimension to achieve the penny accuracy as compared

to the cases using a monthly time step.

• As the number of assets increases, the dimension of the chain needs to be increased

substantially to achieve reasonable accuracy. However, sparse matrix techniques

allow for the use of high-dimensional Markov chains because in most cases, many

entries of the transition probability matrix are effectively zero. For example, for three

assets with a maturity of 12 weeks, 97% of the entries in the transition probability

matrix are zero.

• As the number of assets increases, more points are removed due to the elliptical

restriction. In these tables, ni denotes the would-be dimension of the Markov chain

if no elliptical restriction were applied. The effective dimension with the elliptical

restriction is denoted by ne.
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Table 1: European put options on one asset

Maturity = 4 weeks Maturity = 12 weeks Maturity = 36 weeks

K 55.00 50.00 45.00 55.00 50.00 45.00 55.00 50.00 45.00

Benchmark prices

4.8470 1.0290 0.0271 4.9049 1.6583 0.2601 5.2221 2.5116 0.8945

Markov Chain prices

ni = 16, ne = 16 4.9056 0.8565 0.0000 4.9915 1.3622 0.1307 5.1989 1.9490 0.5768
ni = 32, ne = 32 4.9403 1.0901 0.0121 5.0319 1.7627 0.2347 5.3957 2.6568 0.9479
ni = 64, ne = 64 4.9514 1.0677 0.0209 5.0982 1.7437 0.2493 5.4688 2.6264 0.8612
ni = 128, ne = 128 4.8877 1.0573 0.0250 4.9662 1.7072 0.2584 5.3127 2.5870 0.9236
ni = 256, ne = 256 4.8474 1.0107 0.0256 4.8975 1.6202 0.2511 5.1831 2.4430 0.8634
ni = 512, ne = 512 4.8498 1.0317 0.0268 4.9091 1.6624 0.2629 5.2281 2.5175 0.9000
ni = 1024, ne = 1024 4.8545 1.0340 0.0270 4.9167 1.6671 0.2601 5.2402 2.5259 0.8989
ni = 2048, ne = 2048 4.8485 1.0304 0.0271 4.9073 1.6605 0.2611 5.2255 2.5149 0.8972

Parameters: 1 week = 1/50, ∆t =0.0200, r = 0.05 (annualized), s1= 50.00, σ1= 0.20 (annualized). ni and
ne are, respectively, the initial and effective size of the Markov chain. Average sparcity for each maturity:
0.63, 0.43, 0.26. Stock price partition computed with sobol numbers and 2× log(log(ne)). Markov chain on
adjusted stock price. Benchmarks prices computed with Black-Scholes formula.

Maturity = 1 month Maturity = 4 months Maturity = 9 months

K 55.00 50.00 45.00 55.00 50.00 45.00 55.00 50.00 45.00

Benchmark prices

4.8470 1.0290 0.0271 4.9658 1.8631 0.3851 5.2221 2.5116 0.8945

Markov Chain prices

ni = 16, ne = 16 4.7533 0.7711 0.0000 4.9113 1.5335 0.2051 5.1142 2.0228 0.5861
ni = 32, ne = 32 4.9032 1.0330 0.0062 5.1283 1.9809 0.3753 5.4318 2.6794 0.9537
ni = 64, ne = 64 4.8813 1.0239 0.0177 5.1402 1.9320 0.3698 5.4884 2.6398 0.8824
ni = 128, ne = 128 4.8748 1.0418 0.0233 5.0404 1.9165 0.3867 5.3198 2.5892 0.9233
ni = 256, ne = 256 4.8458 1.0156 0.0254 4.9544 1.8297 0.3747 5.1875 2.4558 0.8686
ni = 512, ne = 512 4.8516 1.0320 0.0265 4.9711 1.8682 0.3882 5.2288 2.5181 0.9002
ni = 1024, ne = 1024 4.8517 1.0314 0.0268 4.9794 1.8724 0.3853 5.2404 2.5253 0.8986
ni = 2048, ne = 2048 4.8489 1.0303 0.0270 4.9687 1.8658 0.3863 5.2259 2.5151 0.8971

Parameters: 1 month = 1/12.5, ∆t =0.0800, r = 0.05 (annualized), s1= 50.00, σ1= 0.20 (annualized). ni

and ne are, respectively, the initial and effective size of the Markov chain. Average sparcity for each maturity:
0.75, 0.63, 0.48. Stock price partition computed with Sobol numbers and 2× log(log(ne)). Markov chain on
adjusted stock price.Benchmarks prices computed with Black-Scholes formula.
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Table 2: European put options on the minimum of 2 assets

Maturity = 4 weeks Maturity = 12 weeks Maturity = 36 weeks

K 55.00 50.00 45.00 55.00 50.00 45.00 55.00 50.00 45.00

Benchmark prices

5.9164 1.5458 0.0501 6.4639 2.4979 0.4496 7.2916 3.8015 1.4735

Markov Chain prices

ni = 128, ne = 90 5.8044 1.5218 0.0508 5.7547 2.2926 0.4133 5.8375 3.2302 1.2584
ni = 256, ne = 178 5.8752 1.5068 0.0510 6.1943 2.3573 0.4356 6.1600 3.2805 1.3191
ni = 512, ne = 352 5.9130 1.5418 0.0503 6.3631 2.4500 0.4485 6.4669 3.3807 1.3462
ni = 1024, ne = 701 5.9228 1.5496 0.0502 6.4535 2.5031 0.4498 7.0478 3.7146 1.4188
ni = 2048, ne = 1392 5.9036 1.5431 0.0501 6.4281 2.4887 0.4476 7.1908 3.7613 1.4587
ni = 4096, ne = 2785 5.9153 1.5507 0.0503 6.4586 2.5072 0.4504 7.2660 3.8040 1.4710

Parameters: 1 week = 1/50, ∆t =0.0200, r = 0.05 (annualized), s1= 50.00, σ1= 0.20 (annualized). s2=
50.00, σ2= 0.20 (annualized).Correlation for all pair of assets =0.50. ni and ne are, respectively, the initial
and effective size of the Markov chain. Average sparcity for each maturity: 0.34, 0.14, 0.05. Stock price
partition computed with Sobol numbers and 2× log(log(ne)). Benchmarks are Monte Carlo price computed
with 500000 sample paths. Markov chain on adjusted stock price. Markov chain dimension reduced according
to an elliptical pattern.

Maturity = 1 month Maturity = 3 months Maturity = 9 months

K 55.00 50.00 45.00 55.00 50.00 45.00 55.00 50.00 45.00

Benchmark prices

5.9164 1.5458 0.0501 6.4639 2.4979 0.4496 7.2916 3.8015 1.4735

Markov Chain prices

ni = 128, ne = 90 5.8813 1.5347 0.0509 6.3193 2.4740 0.4448 6.6424 3.6011 1.3610
ni = 256, ne = 178 5.9106 1.5288 0.0512 6.4110 2.4472 0.4503 7.0155 3.6372 1.4174
ni = 512, ne = 352 5.9166 1.5444 0.0501 6.4585 2.4947 0.4534 7.1969 3.7614 1.4726
ni = 1024, ne = 701 5.9209 1.5484 0.0501 6.4701 2.5038 0.4497 7.2862 3.8145 1.4746
ni = 2048, ne = 1392 5.9144 1.5468 0.0502 6.4487 2.4950 0.4482 7.2497 3.7897 1.4707
ni = 4096, ne = 2785 5.9182 1.5497 0.0503 6.4644 2.5053 0.4503 7.2929 3.8156 1.4775

Parameters: 1 month = 1/12.5, ∆t =0.0800, r = 0.05 (annualized), s1= 50.00, σ1= 0.20 (annualized). s2=
50.00, σ2= 0.20 (annualized).Correlation for all pair of assets =0.50. ni and ne are, respectively, the initial
and effective size of the Markov chain. Average sparsity for each maturity: 0.71, 0.42, 0.18. Stock price
partition computed with Sobol numbers and 2× log(log(ne)). Benchmarks are Monte Carlo price computed
with 500000 sample paths. Markov chain on adjusted stock price. Markov chain dimension reduced according
to an elliptical pattern.
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Table 3: European put options on the minimum of 3 assets

Maturity = 4 weeks Maturity = 12 weeks Maturity = 36 weeks

K 55.00 50.00 45.00 55.00 50.00 45.00 55.00 50.00 45.00

Benchmark prices

6.4673 1.8879 0.0707 7.3271 3.0552 0.6027 8.5221 4.6628 1.9091

Markov Chain prices

ni = 128, ne = 48 5.7944 1.7223 0.0722 5.0069 2.3393 0.5021 5.5226 3.4961 1.4865
ni = 256, ne = 96 5.7561 1.7158 0.0733 5.2845 2.5755 0.4951 5.5569 3.5065 1.4592
ni = 512, ne = 187 5.8946 1.6425 0.0689 5.3358 2.2166 0.4849 5.5428 3.4276 1.4118
ni = 1024, ne = 378 6.1934 1.8016 0.0679 5.8235 2.5022 0.4760 6.3478 3.9241 1.3847
ni = 2048, ne = 760 6.3368 1.8490 0.0698 6.3229 2.7054 0.4992 6.5395 4.1585 1.3928
ni = 4096, ne = 1515 6.3834 1.8669 0.0693 6.7133 2.8706 0.5193 6.4534 3.8450 1.3907
ni = 8192, ne = 3049 6.4266 1.8780 0.0702 6.9555 2.9261 0.5474 7.5997 4.1282 1.4477
ni = 16384, ne = 6080 6.4631 1.8860 0.0707 7.2416 3.0198 0.5932 7.6590 4.1925 1.6025
ni = 32768, ne = 12152 6.4685 1.8883 0.0708 7.3067 3.0434 0.5971 8.1753 4.4452 1.7681
ni = 65536, ne = 24294 6.4688 1.8882 0.0707 7.3241 3.0536 0.6013 8.3566 4.5512 1.8368
ni = 131072, ne = 48595 – – – 7.3231 3.0532 0.6024 8.4290 4.6016 1.8729
ni = 262144, ne = 97187 – – – 7.3227 3.0525 0.6019 8.4682 4.6248 1.8843
ni = 524288, ne = 194226 – – – – – – 8.5161 4.6576 1.9057

Parameters: 1 week = 1/50, ∆t =0.0200, r = 0.05 (annualized), s1= 50.00, σ1= 0.20 (annualized). s2= 50.00,
σ2= 0.20 (annualized).s3= 50.00, σ3= 0.20 (annualized). Correlation for all pair of assets =0.50. ni and ne are,
respectively, the initial and effective size of the Markov chain. Average sparsity for each maturity: 0.14, 0.03, 0.01.
Stock price partition computed with Sobol numbers and 2 × log(log(ne)). Benchmarks are Monte Carlo price
computed with 500000 sample paths. Markov chain on adjusted stock price. Markov chain dimension reduced
according to an elliptical patern. Black-Scholes control variates with a put option on each individual asset.

Maturity = 1 month Maturity = 3 months Maturity = 9 months

K 55.00 50.00 45.00 55.00 50.00 45.00 55.00 50.00 45.00

Benchmark prices

6.4673 1.8879 0.0707 7.3271 3.0552 0.6027 8.5221 4.6628 1.9091

Markov Chain prices

ni = 128, ne = 48 6.3210 1.8429 0.0740 6.6532 2.8859 0.5732 5.8656 3.6653 1.5611
ni = 256, ne = 96 6.4404 1.8846 0.0731 6.7083 2.8783 0.5746 6.1549 3.9264 1.5222
ni = 512, ne = 187 6.3512 1.8251 0.0703 6.7282 2.7795 0.5819 6.0608 3.4531 1.5338
ni = 1024, ne = 378 6.4046 1.8802 0.0702 7.0656 2.9784 0.5885 7.0422 3.9247 1.5845
ni = 2048, ne = 760 6.4789 1.9109 0.0712 7.2057 3.0380 0.6055 7.5965 4.2442 1.6870
ni = 4096, ne = 1515 6.4508 1.8882 0.0709 7.2504 3.0366 0.5943 8.0486 4.4550 1.7531
ni = 8192, ne = 3049 6.4707 1.8943 0.0711 7.2924 3.0519 0.6022 8.2396 4.5272 1.8299
ni = 16384, ne = 6080 6.4658 1.8879 0.0711 7.3228 3.0533 0.6030 8.4773 4.6415 1.9024
ni = 32768, ne = 12152 6.4667 1.8875 0.0711 7.3288 3.0559 0.6026 8.5136 4.6567 1.9039
ni = 65536, ne = 24294 – – – 7.3292 3.0553 0.6028 8.5250 4.6633 1.9088
ni = 131072, ne = 48595 – – – – – – 8.5205 4.6612 1.9084

Parameters: 1 month = 1/12.5, ∆t =0.0800, r = 0.05 (annualized), s1= 50.00, σ1= 0.20 (annualized). s2= 50.00,
σ2= 0.20 (annualized). s3= 50.00, σ3= 0.20 (annualized). Correlation for all pair of assets =0.50. ni and ne are,
respectively, the initial and effective size of the Markov chain. Average sparsity for each maturity: 0.46, 0.14, 0.04.
Stock price partition computed with Sobol numbers and 2 × log(log(ne)). Benchmarks are Monte Carlo price
computed with 500000 sample paths. Markov chain on adjusted stock price. Markov chain dimension reduced
according to an elliptical pattern. Black-Scholes control variates with a put option on each individual asset.
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Table 4: European put options on the minimum of 4 assets

Maturity = 4 weeks Maturity = 12 weeks Maturity = 36 weeks

K 55.00 50.00 45.00 55.00 50.00 45.00 55.00 50.00 45.00

Benchmark prices

6.8196 2.1350 0.0894 7.8936 3.4580 0.7300 9.3557 5.2867 2.2529

Markov Chain prices

ni = 8192, ne = 1416 6.3112 2.0160 0.0751 6.4034 2.9785 0.5106 6.5789 4.0457 1.4738
ni = 16384, ne = 2802 6.5260 2.0319 0.0812 6.4759 2.9802 0.5417 5.5873 3.5669 1.4806
ni = 32768, ne = 5640 6.6802 2.0863 0.0849 6.9281 3.0592 0.5589 6.4765 3.8854 1.4760
ni = 65536, ne = 11275 6.7576 2.1124 0.0867 7.2665 3.1769 0.5905 6.8278 3.8775 1.4687
ni = 131072, ne = 22549 6.7697 2.1155 0.0869 7.4834 3.2605 0.6256 7.3054 4.1398 1.4936
ni = 262144, ne = 45132 6.7772 2.1211 0.0873 7.6300 3.3455 0.6577 8.0059 4.4465 1.5986
ni = 524288, ne = 90285 6.8165 2.1378 0.0889 7.8214 3.4348 0.7195 8.2798 4.6479 1.8066
ni = 1048576, ne = 180766 – – – 7.8743 3.4495 0.7233 8.7852 4.8885 1.9550
ni = 2097152, ne = 361506 – – – – – – 9.0762 5.0819 2.1036
ni = 4194304, ne = 722992 – – – – – – 9.2151 5.1787 2.1729

Parameters: 1 week = 1/50, ∆t =0.0200, r = 0.05 (annualized), s1= 50.00, σ1= 0.20 (annualized). s2=
50.00, σ2= 0.20 (annualized).s3= 50.00, σ3= 0.20 (annualized). s4= 50.00, σ4= 0.20 (annualized). Correlation
for all pair of assets =0.50. ni and ne are, respectively, the initial and effective size of the Markov chain.
Average sparsity for each maturity: 0.08, 0.01, 0.00. Stock price partition computed with Sobol numbers and
2 × log(log(ne)). Benchmarks are Monte Carlo price computed with 500000 sample paths. Markov chain on
adjusted stock price. Markov chain dimension reduced according to an elliptical pattern. Black-Scholes control
variates with a put option on each individual asset.

Maturity = 1 months Maturity = 3 months Maturity = 9 months

K 55.00 50.00 45.00 55.00 50.00 45.00 55.00 50.00 45.00

Benchmark prices

6.8196 2.1350 0.0894 7.8936 3.4580 0.7300 9.3557 5.2867 2.2529

Markov Chain prices

ni = 8192, ne = 1416 6.7091 2.1183 0.0895 7.3965 3.3157 0.6657 7.9952 4.6454 1.7441
ni = 16384, ne = 2802 6.7646 2.1107 0.0889 7.6318 3.3404 0.6877 8.1021 4.6772 1.8726
ni = 32768, ne = 5640 6.7984 2.1288 0.0896 7.7843 3.4097 0.7095 8.6226 4.8463 1.9685
ni = 65536, ne = 11275 6.8238 2.1398 0.0902 7.8627 3.4443 0.7232 8.8881 4.9897 2.0564
ni = 131072, ne = 22549 6.8233 2.1393 0.0903 7.8685 3.4444 0.7238 9.0640 5.0755 2.1071
ni = 262144, ne = 45132 – – – 7.8746 3.4507 0.7252 9.1784 5.1597 2.1555
ni = 524288, ne = 90285 – – – – – – 9.3382 5.2833 2.2500

Parameters: 1 month = 1/12.5, ∆t =0.0800, r = 0.05 (annualized), s1= 50.00, σ1= 0.20 (annualized). s2=
50.00, σ2= 0.20 (annualized).s3= 50.00, σ3= 0.20 (annualized). s4= 50.00, σ4= 0.20 (annualized). Correlation
for all pair of assets =0.50. ni and ne are, respectively, the initial and effective size of the Markov chain.
Average sparsity for each maturity: 0.40, 0.13, 0.02. Stock price partition computed with Sobol numbers and
2 × log(log(ne)). Benchmarks are Monte Carlo price computed with 500000 sample paths. Markov chain on
adjusted stock price. Markov chain dimension reduced according to an elliptical pattern. Black-Scholes control
variates with a put option on each individual asset.
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Appendix A Proof of Theorem 1

Let u∗
1, ...,u

∗
n denotes the first n points of a low-discrepancy sequence on the d−dimensional

ellipse E enclosed in the unit hypercube C. To obtain a sample on the d−dimensional ellipse
En contained in the hyper-rectangle Rn, we rescale these points :

x
(n)
i ≡ M(n)u∗

i + A(n).

Note that the ith state x
(n)
i of the n−states low-discrepancy Markov chain will go away

from the origin as n increases. Let x0 ∈ R
d be the initial state of the Markov process X.

For any n ∈ N, we choose the state x
(n)
0 of the Markov chain approximation which is the

closest to x0, that is,

x
(n)
0 ≡

{

x
(n)
i ∈

{

x
(n)
1 , ...,x(n)

n

}

:
∥

∥

∥
x

(n)
i − x0

∥

∥

∥
= min

j∈{1,2,...,n}

∥

∥

∥
x

(n)
j − x0

∥

∥

∥

}

. (30)

This point may not be unique. In that case, we choose one of the points that minimizes
the distance to x0. Because we are working with a low-discrepancy sequence and since the
volume λ (Rn) increases slower that the number n of points, then

∥

∥

∥
x

(n)
0 − x0

∥

∥

∥
→ 0 as n→ ∞. (31)

Appendix A.1 The one-period case

We will first consider the one-period case. Recall that φ : R
d → R is a bounded function,

that is
‖φ‖∞ ≡ sup

x∈Rd

|φ (x)| <∞.

Consider the one-period conditional expectation of φ (Xt+1) for the original process and
Markov chain respectively:

E [φ (Xt+1) |Xt = x ] =

∫

Rd

φ (y) f (y |x) dy;

E
[

φ
(

X
(n)
t+1

) ∣

∣

∣
X

(n)
t = x

(n)
i

]

=
n
∑

j=1

φ
(

x
(n)
j

)

π
(n)
ij

=

λ(Rn)
n

∑n
j=1 φ

(

x
(n)
j

)

f
(

x
(n)
j

∣

∣

∣
x

(n)
i

)

λ(Rn)
n

∑n
j=1 f

(

x
(n)
j

∣

∣

∣
x

(n)
i

) . (32)

We want to prove that

lim
n→∞

∣

∣

∣E [φ (Xt+1) |Xt = x0 ] − E
[

φ
(

X
(n)
t+1

) ∣

∣

∣X
(n)
t = x

(n)
0

]∣

∣

∣ = 0. (33)
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The goal of the next few steps is to reduce this problem to a simpler one. As proved in
Appendix Appendix B.1, Equation (33) is a consequence of

lim
n→∞

∣

∣

∣

∣

∣

∣

E [φ (Xt+1) |Xt = x0 ] − λ (Rn)

n

n
∑

j=1

φ
(

x
(n)
j

)

f
(

x
(n)
j

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

= 0. (34)

Because En ↑ R
d as n ↑ ∞ and since

∫

Rd |φ (y)| f (y |x0 ) dy <∞, then

lim
n→∞

∣

∣

∣

∣

E [φ (Xt+1) |Xt = x0 ] −
∫

En

φ (y) f (y |x0 ) dy

∣

∣

∣

∣

= 0. (35)

Therefore, using the triangle inequality, Equation (34) reduces to

lim
n→∞

∣

∣

∣

∣

∣

∣

∫

En

φ (y) f (y |x0 ) dy − λ (Rn)

n

n
∑

j=1

φ
(

x
(n)
j

)

f
(

x
(n)
j

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

= 0. (36)

In the last expression, the two terms has not the same initial point. However, as proved
in Appendix Appendix B.2, the continuity of the one-period conditional density function
f (x |x0 ) in R

d × R
d is used to claim that

lim
n→∞

∣

∣

∣

∣

∫

En

φ (y) f (y |x0 ) dy −
∫

En

φ (y) f
(

y
∣

∣

∣x
(n)
0

)

dy

∣

∣

∣

∣

= 0. (37)

Consequently, Equation (36) is valid if

lim
n→∞

∣

∣

∣

∣

∣

∣

∫

En

φ (y) f
(

y
∣

∣

∣
x

(n)
0

)

dy − λ (Rn)

n

n
∑

j=1

φ
(

x
(n)
j

)

f
(

x
(n)
j

∣

∣

∣
x

(n)
0

)

∣

∣

∣

∣

∣

∣

= 0. (38)

We now rescale the integral
∫

En
φ (y) f

(

y
∣

∣

∣x
(n)
0

)

dy on the d−dimensional ellipse E :

∫

En

φ (y) f
(

y
∣

∣

∣x
(n)
0

)

dy = λ (Rn)

∫

E
φ
(

M(n)u + A(n)
)

f
(

M(n)u + a(n)
∣

∣

∣x
(n)
0

)

du.

where a(n) =
(

a
(n)
1 , ..., a

(n)
d

)′

. Equation (38) is therefore equivalent to

lim
n→∞

∣

∣

∣

∣

∣

∣

λ (Rn)
∫

E φ
(

M(n)u + a(n)
)

f
(

M(n)u + a(n)
∣

∣

∣
x

(n)
0

)

du

−λ(Rn)
n

∑n
j=1 φ

(

M(n)u∗
j+a(n)

)

f
(

M(n)u∗
j+a(n)

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

= 0. (39)
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Finally, we can prove that Equation (39) is satisfied using some classical error bound
theorem (often called the Koksma-Hlawka inequality). Indeed,

λ (Rn)

∣

∣

∣

∣

∣

∣

∫

E φ
(

M(n)u + a(n)
)

f
(

M(n)u + a(n)
∣

∣

∣x
(n)
0

)

du

− 1
n

∑n
j=1 φ

(

M(n)u∗
j+a(n)

)

f
(

M(n)u∗
j+a(n)

∣

∣

∣
x

(n)
0

)

∣

∣

∣

∣

∣

∣

= λ (Rn)

∣

∣

∣

∣

∣

∣

∫

C φ
(

M(n)u + a(n)
)

f
(

M(n)u + a(n)
∣

∣

∣
x

(n)
0

)

1u∈E du

− 1
n

∑n
j=1 φ

(

M(n)u∗
j+a(n)

)

f
(

M(n)u∗
j+a(n)

∣

∣

∣
x

(n)
0

)

1u∗
j∈E

∣

∣

∣

∣

∣

∣

≤ λ (Rn)V
(

φ (•) f
(

•
∣

∣

∣x
(n)
0

)

1•∈En

)

D∗
n (u∗

1, ..., .u
∗
n)

≤ κλ (Rn)D∗
n (u∗

1, ..., .u
∗
n)

where κ is some positive constant, V (g (•)) is the variation of the fuction g in the sense of
Hardy and Krause and D∗

n (u∗
1, ..., .u

∗
n) is the star discrepancy2 of the point-set u∗

1, ..., .u
∗
n.

It suffices to use a sequence of d−dimensional rectangles with volume λ (Rn) that increases
at a smaller rate than the star-discrepancy D∗

n (u∗
1, ..., .u

∗
n) of our low-discrepancy sequence.

�

Appendix A.2 The multi-periods proof

We want to prove that

lim
n→∞

∣

∣

∣E [φ (Xt) |X0 = x0 ] − E
[

φ
(

X
(n)
t

) ∣

∣

∣X
(n)
0 = x

(n)
0

]∣

∣

∣ = 0. (40)

The proof is based on an induction argument on t. The one-period case has been proved
in Section Appendix A.1. Assume that Equation (40) is satisfied for (t− 1) periods and
for any bounded function φ that satisfies the conditions of the theorem. We will prove that
the result holds for t periods.

Using embeded conditional expectation, we can write

E [φ (Xt) |X0 = x0 ] =

∫

Rd

E [φ (Xt) |X1 = x1 ] f (x1 |x0 ) dx1

E
[

φ
(

X
(n)
t

) ∣

∣

∣X
(n)
0 = x

(n)
0

]

=

n
∑

j=1

E
[

φ
(

X
(n)
t

) ∣

∣

∣X
(n)
1 = x

(n)
j

] f
(

x
(n)
j

∣

∣

∣
x

(n)
0

)

∑n
k=1 f

(

x
(n)
k

∣

∣

∣
x

(n)
0

) .

2

Definition 3 For a sequence u1,u2, · · · in [0, 1]d, the star-discrepancy D∗
n (u1, ...,un) is defined by

D
∗
n (u1, ...,un) = sup

B∈J

∣

∣

∣

∣

∣

1

n

n
∑

k=1

1{uk∈B} − λ (B)

∣

∣

∣

∣

∣

where 1{uk∈B} = 1 if uk ∈ B and 0 otherwise, J is the family of sets with the form
∏d

i=1
[0, βi] with

0 ≤ βi ≤ 1, and λ is the Lebesgue measure.
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For each x ∈ R
d, we define

ψ (x) ≡ E [φ (Xt−1) |X0 = x ]

and
ζn (x) ≡ E [φ (Xt−1) |X0 = x ] − E

[

φ
(

X
(n)
t−1

) ∣

∣

∣
X

(n)
0 = x(n)

]

where x(n) denotes one of the closiest state of x (just as is Equation (30)).

Starting with the left hand side of Equation (40),
∣

∣

∣
E [φ (Xt) |X0 = x0 ] − E

[

φ
(

X
(n)
t

) ∣

∣

∣
X

(n)
0 = x

(n)
0

]∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∫

Rd

E [φ (Xt) |X1 = x1 ] f (x1 |x0 ) dx1 −
n
∑

j=1

E
[

φ (Xt)
∣

∣

∣X1 = x
(n)
j

] f
(

x
(n)
j

∣

∣

∣x
(n)
0

)

∑n

k=1 f
(

x
(n)
k

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

n
∑

j=1

(

E
[

φ (Xt)
∣

∣

∣X1 = x
(n)
j

]

− E
[

φ
(

X
(n)
t

) ∣

∣

∣X
(n)
1 = x

(n)
j

]) f
(

x
(n)
j

∣

∣

∣
x

(n)
0

)

∑n

k=1 f
(

x
(n)
k

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

=
∣

∣

∣
E [ψ (X1) |X0 = x0 ] − E

[

ψ
(

X
(n)
1

) ∣

∣

∣
X

(n)
0 = x

(n)
0

]∣

∣

∣
+

∣

∣

∣

∣

∣

∣

n
∑

j=1

ζn

(

x
(n)
j

) f
(

x
(n)
j

∣

∣

∣x
(n)
0

)

∑n

k=1 f
(

x
(n)
k

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

=
∣

∣

∣E [ψ (X1) |X0 = x0 ] − E
[

ψ
(

X
(n)
1

) ∣

∣

∣X
(n)
0 = x

(n)
0

]∣

∣

∣+
∣

∣

∣E
[

ζn

(

X
(n)
1

) ∣

∣

∣X
(n)
0 = x

(n)
0

]∣

∣

∣

Note that because φ is bounded, so is ψ. Moreover, the function Ψ : R
d × R

d → R

defined as

Ψ (x, z) = ψ (x) f (x |z) =

(∫

Rd

φ (y) ft−1 (y |x) dy

)

f (x |z)

has bounded variation V (Ψ) on R
d × R

d (it is one of the assumptions of the theorem).
Therefore, the first term tends to zero as n→ ∞ from the one-period result.

What about the second term? Applying the induction hypothesis, we have for any
x ∈R

d.
lim

n→∞
ζn (x) = 0.

Hence, ζn (X1) → 0 Q−almost-surely. Moreover, the boundedness of φ implies that we can
apply the dominated convergence theorem:

lim
n→∞

E [ζn (X1) |X0 = x0 ] = E
[

lim
n→∞

ζn (X1) |X0 = x0

]

= 0. (41)

Since,
∣

∣

∣
E
[

ζn

(

X
(n)
1

) ∣

∣

∣
X

(n)
0 = x

(n)
0

]∣

∣

∣
≤

∣

∣

∣
E
[

ζn

(

X
(n)
1

) ∣

∣

∣
X

(n)
0 = x

(n)
0

]

− E [ζn (X1) |X0 = x0 ]
∣

∣

∣
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+ |E [ζn (X1) |X0 = x0 ]| ,

then, to conclude the proof, it suffices to show that

lim
n→∞

∣

∣

∣E
[

ζn

(

X
(n)
1

) ∣

∣

∣X
(n)
0 = x

(n)
0

]

− E [ζn (X1) |X0 = x0 ]
∣

∣

∣ = 0. (42)

This result may be easily established by mimicing the one-period proof. �

Appendix B Proofs of intermediate results

Appendix B.1 Proof of Equation (34)

In this section, we prove that Equation (34) implies Equation (33). Indeed, assume that
Equation (34) is satisfied which gives

lim
n→∞

∣

∣

∣

∣

∣

∣

E [φ (Xt+1) |Xt = x0 ] − λ (Rn)

n

n
∑

j=1

φ
(

x
(n)
j

)

f
(

x
(n)
j

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

= 0

and, as a particular case, if we set φ (x) ≡ 1,

lim
n→∞

∣

∣

∣

∣

∣

∣

1 − λ (Rn)

n

n
∑

j=1

f
(

x
(n)
j

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

= 0.

We deduce that

lim
n→∞

∣

∣

∣

∣

∣

∣

λ (Rn)

n

n
∑

j=1

φ
(

x
(n)
j

)

f
(

x
(n)
j

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

= |E [φ (Xt+1) |Xt = x0 ]| ≤ ‖φ‖∞ <∞

and

lim
n→∞

∣

∣

∣

∣

∣

∣

1 − 1
λ(Rn)

n

∑n
j=1 f

(

x
(n)
j

∣

∣

∣
x

(n)
0

)

∣

∣

∣

∣

∣

∣

= 0.

Therefore,
∣

∣

∣
E [φ (Xt+1) |Xt = x0 ] − E

[

φ
(

X
(n)
t+1

) ∣

∣

∣
X

(n)
t = x

(n)
0

]∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E [φ (Xt+1) |Xt = x0 ] −
λ(Rn)

n

∑n
j=1 φ

(

x
(n)
j

)

f
(

x
(n)
j

∣

∣

∣x
(n)
0

)

λ(Rn)
n

∑n
j=1 f

(

x
(n)
j

∣

∣

∣x
(n)
0

)

∣

∣

∣

∣

∣

∣

(from Equation (32))

≤

∣

∣

∣

∣

∣

∣

E [φ (Xt+1) |Xt = x0 ] − λ (Rn)

n

n
∑

j=1

φ
(

x
(n)
j

)

f
(

x
(n)
j

∣

∣

∣
x

(n)
0

)

∣

∣

∣

∣

∣

∣
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+

∣

∣

∣

∣

∣

∣

λ (Rn)

n

n
∑

j=1

φ
(

x
(n)
j

)

f
(

x
(n)
j

∣

∣

∣
x

(n)
0

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 − 1
λ(Rn)

n

∑n
j=1 f

(

x
(n)
j

∣

∣

∣
x

(n)
0

)

∣

∣

∣

∣

∣

∣

→ 0 as n→ ∞. �

Appendix B.2 Proof of Equation (37)

Recall that limn→∞

∥

∥

∥
x0−x

(n)
0

∥

∥

∥
= 0. The assumption that the one-period conditional

density function f (x |x0 ) is continuous in R
d × R

d implies that for any x ∈ R
d, limn→∞ f

(

x
∣

∣

∣x
(n)
0

)

= f (x |x0 ). We will need this last result in the application of Scheffé’s Theorem

to conclude that
∫

Rd

∣

∣

∣
f (y |x0 ) − f

(

y
∣

∣

∣
x

(n)
0

)∣

∣

∣
dy → 0 as n → ∞. To complete the proof,

consider
∣

∣

∣

∣

∫

En

φ (y) f (y |x0 ) dy −
∫

En

φ (y) f
(

y
∣

∣

∣x
(n)
0

)

dy

∣

∣

∣

∣

≤
∫

Rd

∣

∣

∣
φ (y) f (y |x0 ) − φ (y) f

(

y
∣

∣

∣
x

(n)
0

)∣

∣

∣
dy

≤ ‖φ‖∞
∫

Rd

∣

∣

∣f (y |x0 ) − f
(

y
∣

∣

∣x
(n)
0

)∣

∣

∣ dy → 0 as n→ ∞. �
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