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auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la
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Abstract

This paper deals with a class of continuous-time singular linear systems with Marko-
vian jump parameters and time delays. Sufficient conditions on stochastic stability and
stochastic stabilizability are developed. A design algorithm for a state feedback con-
troller which guarantees that the closed-loop dynamics will be regular, impulse free and
stochastically stable is proposed in terms of the solutions to linear matrix inequalities
(LMIs).

Key Words: Singular systems, Jump linear systems, Linear matrix inequality,
Stochastic stability, Stochastic stabilizability, state feedback.

Résumé

Cet article traite de la classe des systèmes singuliers à sauts markoviens et à retard.
Des conditions suffisantes de stabilité et de stabilisabilité sont developpées. Un algo-
rithme de design d’un contrôleur en forme de retour d’état, qui garantie que le système
en boucle fermée est régulier, sans impulsion et stable dans le sens stochastique, est
proposé. Tous les résultats de cet article sont en forme d’inégalités matricielles linéaires
ce qui facilite leur résolution.
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1 Introduction

In the past decades, there have been considerable research efforts on the study of singular

systems. This is due to the extensive applications of singular systems in many practical

systems, such as circuits boundary control systems, chemical processes, and other areas

(Refs. 1, 2, 3, 4). Singular systems are also referred to as descriptor systems, implicit sys-

tems, generalized state-space systems, differential-algebraic systems or semi-state systems

(Refs. 1, 3). A great number of fundamental notions and results in control and systems

theory based on state-space systems have been successfully extended to singular systems;

see, e.g., Refs. 5–14, and the references therein.

Recently, a class of stochastic systems driven by continuous-time Markov chains has

been used to model many practical systems, where random failures and repairs and sudden

environment changes may occur. For more detail, we refer the reader to Refs. 15, 16, and

the references therein. This motivates the study of Markovian jump systems. For example,

sufficient conditions on stochastic stability and stabilization for such systems were reported

in Refs. 17–21 via different approaches. The H∞ control problem was investigated in

Refs. 22 and 23, where sufficient conditions for the solvability of this problem was proposed.

When time delays appear in a Markovian jump system, the results on stability analysis

and H∞ control were reported in Refs. 24, 25, and 26 for different types of time delays.

For more detail on Markovian jumping systems with time delay, we refer the reader to

Ref. 15 and the references therein. However, up to date singular systems with Markovian

jump parameters and time delays has not yet been fully investigated.

This paper is concerned with the problems of stability analysis and stabilization for

singular Markovian jump systems with time delays. In terms of a set of linear matrix

inequalities (LMIs), we present first a sufficient condition, which guarantees regularity,

absence of impulses and stochastic stability of such systems. Based on this, a sufficient

condition for the existence state feedback controller ensuring regularity, absence of impulses

and stochastic stability is proposed. Finally, a numerical example is provide to demonstrate

the effectiveness of the proposed methods.

The rest of this paper is organized as follows. In Section 2, the problem is stated and

the goal of the paper is clarified. In Section 3, the main results are given and these include

results on stochastic stability, stochastic stabilizability. A memoryless controller is used in

this paper and a design algorithm in terms of the solutions to linear matrix inequalities is

proposed to synthesize the controller gains we are using.

Notation. Throughout this paper, R
n and R

n×m denote, respectively, the n dimen-

sional Euclidean space and the set of all n×m real matrices. The superscript “T” denotes

matrix transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are

symmetric matrices, means that X −Y is positive semi-definite (respectively, positive defi-

nite). I is the identity matrices with compatible dimensions. E{·} denotes the expectation
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operator with respective to some probability measure P. L2 is the space of integral vector

over [0,∞). ‖ · ‖ will refer to the Euclidean vector norm whereas ‖ · ‖ denotes the L2-norm

over [0,∞) defined as ‖f‖2 =
∫ ∞

0
fT (t)f(t) dt.

2 Problem statement

Consider a stochastic hybrid system with N modes, i.e., S = {1, 2, . . . , N}. The mode

switching is assumed to be governed by a continuous-time Markov process {rt, t ≥ 0}

taking values in the state space S and having the following infinitesimal generator

Λ = (λij), i, j ∈ S ,

where λij ≥ 0,∀j 6= i, λii = −
∑

j 6=i λij .

The mode transition probabilities are described as follows:

P [rt+∆ = j|rt = i] =

{
λij∆ + o(∆), j 6= i

1 + λii∆ + o(∆), j = i
(1)

where lim∆→0 o(∆)/∆ = 0.

Let x(t) ∈ R
n be the physical state of the system, which satisfies the following dynamics:

{
Eẋ(t) = A(rt)x(t) + A1(rt)x(t − h) + B(rt)u(t),

x(s) = φ(s),−h ≤ s ≤ 0
(2)

where u(t) ∈ R
m is the control input system, A(rt), A1(rt), and B(rt) are known real

matrices with appropriate dimensions for each rt ∈ S , the matrix E may be singular,

and we assume 0 6 rank(E) = nE 6 n, h > 0 represents the system delay, φ(t) is a

smooth vector-valued initial function in [−h, 0]. The initial condition of the system is

specified as (r0, φ(·)) with r0 is the initial mode and φ(.) is the initial functional such that

x(s) = φ(s) ∈ L2[−h, 0]
∆
= {f(·)|

∫ ∞

0
f⊤(t)f(t)dt < ∞}.

Definition 2.1. (Ref. 1)

i. System (2) is said to be regular if the characteristic polynomial, det(sE − A(i)) is

not identically zero for each mode i ∈ S .

ii. System (2) is said to be impulse free, i.e. the deg(det(sE − A(i))) = rank(E) for

each mode i ∈ S .

For more details on other properties and the existence of the solution of system (2), we

refer the reader to Ref. 7, and the references therein. In general, the regularity is often a

sufficient condition for the analysis and the synthesis of singular systems.

For system (2) with u(.)
∆
= 0 for t ≥ 0, we have the following definitions:
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Definition 2.2. System (2) with u(.)
∆
= 0,∀t ≥ 0, is said to be stochastically stable (SS)

if there exists a constant T (r0, φ(·)) such that

E

[∫ ∞

0

‖x(t)‖2dt

∣∣∣∣r0, x(s) = φ(s), s ∈ [−h, 0]

]
≤ T (r0, φ(·)); (3)

In this paper we are interested in the design of a stabilizing controller of the following

form:

u(t) = K(rt)x(t) (4)

where K(i) is a design parameter that has to be determined for every i ∈ S .

Definition 2.3. System (2) is said to be stabilizable in the stochastic sense if there exists

a control law of the form (4) such that the closed-loop system is stochastically stable.

This paper studies the stochastic stability and the stochastic stabilizability of the class

of systems (2). Our goal in this paper is to design a state feedback controller guaranteing

that the closed-loop is regular, impulse free and stochastically stable. In the rest of this

paper, we will assume that all the required assumptions are satisfied, i.e. the complete

access to the system mode and state. Our methodology in this paper will be mainly based

on the Lyapunov theory and some algebraic results. The conditions we will develop here

will be in terms of the solutions to linear matrix inequalities that can be easily obtained

using LMI control toolbox.

3 Main results

In this section, we will develop results that assure that the free system (2) (i.e. u(t) = 0

for all t ≥ 0) is regular, impulse free and stochastically stable. We will also design a state

feedback controller of the form (4) that guarantees the same goal.

Let us now consider the free system and see under which condition the corresponding

dynamics will be regular, impulse free and stochastically stable. The following theorem

gives such results.

Theorem 3.1. The free singular Markovian jump system (2) is regular, impulse-free and

stochastically stable if there exist a set of matrices P = (P (1), · · · , P (N)) and a symmetric

and positive-definite matrix Q > 0 such that the following set of coupled LMIs holds for

each i ∈ S :

E⊤P (i) = P⊤(i)E ≥ 0 (5)

[
P⊤(i)A(i) + A⊤(i)P (i) + Q +

∑N
j=1 λijE

⊤P (j) P⊤(i)A1(i)

A⊤
1 (i)P (i) −Q

]
< 0. (6)
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Proof. Under the condition of the theorem, we will first show the regularity and absence

of impulses of system (2). By (6), it is easy to see that the following holds for each i ∈ S :

P⊤(i)A(i) + A⊤(i)P (i) +
N∑

j=1

λijE
⊤P (j) < 0 (7)

Now, choose two nonsingular matrices M̂ and N̂ such that

M̂EN̂ =

[
I 0
0 0

]

and write

M̂A(i)N̂ =

[
Â1(i) Â2(i)

Â3(i) Â4(i)

]
, M̂−⊤P (i)N̂ =

[
P̂1(i) P̂2(i)

P̂3(i) P̂4(i)

]
.

Then, by (5), it can be shown that P̂2(i) = 0. Pre- and post-multiplying (7) by N̂⊤

and N̂ , respectively, we have

[
∗ ∗

∗ Â⊤
4 (i)P̂4(i) + P̂⊤

4 (i)Â4(i)

]
< 0,

where ∗ will not be used in the following development. Then, by (8), we have

Â⊤
4 (i)P̂4(i) + P̂⊤

4 (i)Â4(i) < 0

which implies that Â4(i) is nonsingular. Therefore, system (2) is regular and impulse-free.

Next, we will show the stochastic stability. Since (2) is regular and impulse-free, for

any i ∈ S , we can choose nonsingular matrices M̃(i) and Ñ(i) such that

M̃(i)EÑ(i) =

[
I 0
0 0

]
, M̃(i)A(i)Ñ(i) =

[
Ã(i) 0

0 I

]
.

Write

P̃ (i) = M̃−⊤(i)P (i)Ñ(i) =

[
P̃1(i) P̃2(i)

P̃3(i) P̃4(i)

]
,

Q̃(i) = Ñ⊤(i)QÑ(i) =

[
Q̃1(i) Q̃2(i)

Q̃⊤
2 (i) Q̃4(i)

]
,

M̃(i)A1(i)Ñ(i) =

[
Ã11(i) Ã12(i)

Ã13(i) Ã14(i)

]
.



Les Cahiers du GERAD G–2004–78 5

Then, for any i ∈ S , system (2) becomes equivalent to the following one:

ξ̇1(t) = A(i)ξ1(t) + Ã11(i)ξ1(t − h) + Ã12(i)ξ2(t − h), (8)

0 = ξ2(t) + Ã13(i)ξ1(t − h) + Ã14(i)ξ2(t − h). (9)

where

ξ(t) =

[
ξ1(t)
ξ2(t)

]
= Ñ−1(i)x(t).

Now, pre- and post-multiplying (6) by diag
(
Ñ⊤(i), Ñ⊤(i)

)
and its transpose, we have




∗ ∗ ∗ ∗

∗ P̃4(i) + P̃⊤
4 (i) + Q̃4(i) ∗ P̃⊤

4 (i)Ã14(i)
∗ ∗ ∗ ∗

∗ Ã14(i)P̃4(i) ∗ −Q̃4(i)


 < 0

where P2(i) = 0 is used. It follows from this that
[

P̃4(i) + P̃⊤
4 (i) + Q̃4(i) P̃⊤

4 (i)Ã14(i)

Ã⊤
14(i)P̃4(i) −Q̃4(i)

]
< 0.

Pre- and post-multiply this by
[
−Ã⊤

14(i) I

]
and

[
−Ã14(i)

I

]
respectively, we get:

Ã⊤
14(i)Q4(i)Ã14(i) − Q4(i) < 0

Therefore

ρ
(
Ã14(i)

)
< 1. (10)

where ρ(Ã14(i) is the spectral radius of the matrix Ã14(i).

Now, let us choose the following Lyapunov functional:

V (x(t), rt) = x⊤(t)E⊤P (rt)x(t) +

∫ t

t−h

x⊤(α)Qx(α)dα,

Let L be the weak infinitesimal generator of the random process {(x(t), rt), t ≥ 0},

with x(t) taking values in C [−h, 0] and defined by x(t) = x(s + t), t − h ≤ s ≤ t. Then,

for each rt = i, i ∈ S , we have

L V (x(t), i) = 2x⊤(t)P⊤(i) [A(i)x(t) + A1(i)x(t − h)] + x⊤(t)




N∑

j=1

λijE
⊤P (j)


 x(t)

+x⊤(t)Qx(t) − x⊤(t − h)Qx(t − h)

= χ⊤(t)Ψ(i)χ(t) (11)
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where

χ(t) =
[

x⊤(t) x⊤(t − h)
]⊤

,

Ψ(i) =

[
P⊤(i)A(i) + A⊤(i)P (i) + Q +

∑N
j=1 λijE

⊤P (j) P⊤(i)A1(i)

A⊤
1 (i)P (i) −Q

]
. (12)

Noting (6), (10), (11), and following a similar line as in the proof of Theorem 1 in

Refs. 7 and 27, we can deduce that system (2) is stochastically stable. This completes the

proof. 2

Let us now concentrate on the design a state feedback controller of the form (4) that

guarantees that the closed-loop will be regular, impulse free and stochastically stable. For

this purpose, plugging controller (4) in the dynamics (2) gives:

{
ẋ(t) = Acl(rt)x(t) + A1(rt, t)x(t − h)

x(s) = φ(s),−h ≤ s ≤ 0
(13)

where Acl(rt) = A(rt) + B(rt)K(rt).

Based on the results of Theorem 3.1, this dynamics will be regular, impulse free and

stochastically stable if there exist a set of matrices P = (P (1), · · · , P (N)) and a symmetric

and positive-definite matrix Q > 0 such the following set of coupled LMIs holds for each

i ∈ S :

E⊤P (i) = P⊤(i)E ≥ 0[
J(i) P⊤(i)A1(i)

A⊤
1 (i)P (i) −Q

]
< 0,

where J(i) = P⊤(i)Acl(i) + A⊤
cl(i)P (i) + Q +

∑N
j=1 λijE

⊤P (j).

Now pre- and post-multiplying the second LMI respectively by diag
(
P−⊤(i), I

)
and

diag
(
P−1(i), I

)
, we get

[
J̃(i) A1(i)

A⊤
1 (i) −Q

]
< 0, (14)

where

J̃(i) = Acl(i)P
−1(i) + P−⊤(i)A⊤

cl(i) + P−⊤(i)QP−1(i)

+
N∑

j=1

j 6=i

λijP
−⊤(i)E⊤P (j)P−1(i) + λiiP

−⊤(i)E⊤



Les Cahiers du GERAD G–2004–78 7

If the following holds for each i ∈ S :

E⊤P (j) ≤ ǫjP
⊤(j)P (j), ǫj > 0 (15)

then, a sufficient condition for (14) is

Acl(i)P
−1(i) + P−⊤(i)A⊤

cl(i) + P−⊤(i)QP−1(i) + A1(i)Q
−1A⊤

1 (i)

+
N∑

j=1

j 6=i

λijǫjP
−⊤(i)P⊤(j)P (j)P−1(i) + λiiP

−⊤(i)E⊤ < 0

If we define:

Gi =
[√

λi1P
−⊤(i), · · · ,

√
λii−1P

−⊤(i),
√

λii+1P
−⊤(i), · · · ,

√
λiNP−⊤(i)

]

Ji = diag
[
ǫ−1
1 P−1(1)P−⊤(1), · · · , ǫ−1

i−1P
−1(i − 1)P−⊤(i − 1), ǫ−1

i+1P
−1(i + 1)P−⊤(i + 1),

· · · , ǫ−1
N P−1(N)P−⊤(N)

]

then we obtain

N∑

j=1

j 6=i

λijǫjP
−⊤(i)P⊤(j)P (j)P−1(i) = GiJ

−1
i G⊤

i

Using this we have




J̃0(i) P−⊤(i) Gi

P−1(i) −Q−1 0
G⊤

i 0 −Ji


 < 0, (16)

where

J̃0(i) = Acl(i)P
−1(i) + P−⊤(i)A⊤

cl(i) + A1(i)Q
−1A⊤

1 (i) + λiiP
−⊤(i)E⊤

Noticing that the following holds for each i ∈ S :

ǫ−1
i P−1(i)P−⊤(i) ≥ P−1(i) + P−⊤(i) − ǫiI

we get the following sufficient condition:




J̃0(i) P−⊤(i) Gi

P−1(i) −Q−1 0
G⊤

i 0 −Wi


 < 0, (17)
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where

Wi = diag
[
P−1(1) + P−⊤(1) − ǫ1I, · · · , P−1(i − 1) + P−⊤(i − 1) − ǫi−1I,

P−1(i + 1) + P−⊤(i + 1) − ǫi+1I, · · · , P−1(N) + P−⊤(N) − ǫN I

]

Using now the expression of Acl(i), letting Z = Q−1, X(i) = P−1(i), and Y (i) =

K(i)X(i) and noting that (15) can be rewritten as:

X⊤(i)E⊤ ≤ ǫiI

we get the following results for the stabilization.

Theorem 3.2. There exists a state feedback controller of the form (4) such that the

closed-loop system (2) is regular, impulse-free and stochastically stable if there exist a set

of matrices X = (X(1), · · · , X(N)), Y = (Y (1), · · · , Y (N)), a symmetric and positive-

definite matrix Z > 0 and a set of positive scalars ǫ = (ǫ1, · · · , ǫN ) such that the following

set of coupled LMIs holds for each i ∈ S :

εiI ≥ X⊤(i)E⊤ = EX(i) ≥ 0 (18)



Ĵ(i) X⊤(i) Si(X)
X(i) −Z 0
S⊤

i (X) 0 −Xi(X)


 < 0, (19)

where

Ĵ(i) = A(i)X(i) + X⊤(i)A⊤(i) + B(i)Y (i) + B⊤(i)Y ⊤(i) + A1(i)ZA⊤
1 (i) + λiiX

⊤E⊤

Xi(X) = diag
[
X(1) + X⊤(1) − ǫ1I, · · · , X(i − 1) + X⊤(i − 1) − ǫi−1I,

X(i + 1) + X⊤(i + 1) − ǫi+1I, · · · , X(N) + X⊤(N) − ǫN I

]

Si(X) =
[√

λi1X
⊤(i), · · · ,

√
λii−1X

⊤(i),
√

λii+1X
⊤(i), · · · ,

√
λiNX⊤(i)

]

The stabilizing controller gain is given by K(i) = Y (i)X−1(i), i ∈ S .

The results we developed in this paper extend those developed for the deterministic

case on stability and stabilizability. In fact, if we fix in our condition the number of modes

to one, i.e. N = 1, we get those of deterministic singular linear systems with time delay.

4 Numerical example

To show the validness of our results, let us consider a numerical example of a two-mode

singular system with state space in R
3. This example is borrowed from Xu et al. (Ref. 7)

and modified to satisfied our case. The data of this system are as follows:
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• mode # 1:

A(1) =




1 0.5 1
−0.2 1 2

0 0 0


 , A1(1) =




−0.5 1 0
0.2 0 0.5
0.3 0.5 −0.6


 , B(1) =




1 0 0
1 −1 0
−1 0 −3




• mode # 2:

A(2) =




1.2 0.3 1
−1.2 1 0

0 0.4 0


 , A1(2) =




0.2 0.1 0
1 0 0.4

0.5 0.2 0


 , B(2) =




0.5 2 0
1 1 0
1 1 −1


 ,

The transition matrix rates, Λ, and the singular matrix, E, are given by the following
expressions:

Λ =

[
−1 1
2 −2

]
, E =




1 0 0
0 1 0
0 0 0


 .

Solving the LMIs (18)-(19), we get:

Z =




7.6458 0.0000 −0.0000
0.0000 7.6458 −0.0000
−0.0000 −0.0000 7.8220


 , ǫ1 = 0.4800, ǫ2 = 0.5382

X(1) =




0.4209 0.0000 0.0
0.0000 0.4209 0.0
−0.0000 −0.0000 0.5306


 , X(2) =




0.3977 −0.0000 0.0
−0.0000 0.3977 0.0
0.0000 0.0000 0.4574


 ,

Y (1) =




−1.6036 0.7925 −0.0000
−0.7931 1.8805 −0.0000
0.8376 0.0000 0.3673


 , Y (2) =




−0.1557 −1.4352 −0.0000
0.0603 −0.0000 −0.0000
0.0344 −0.7351 1.0056




which gives the following gains:

K(1) =




−0.3316 0.1397 −0.0000
−0.1398 0.2827 −0.0000
0.7561 −0.3186 1.4446


 , K(2) =




−0.0000 6.5958 0.0000
−0.2771 −0.7156 −0.0000
−0.2026 −0.7490 0.4548


 .

5 Conclusion

This paper dealt with a class of continuous-time singular linear systems with Markovian

jumps and time-delay in the state vector. Results on stochastic stability and its robustness,

and stochastic stabilizability and its robustness are developed. The LMI framework is

used to establish the different results on stability and stabilizability. The conditions we

developed are delay independent. The results we developed can easily be solved using any

LMI toolbox like the one of Matlab or the one of Scilab.
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