
Les Cahiers du GERAD ISSN: 0711–2440

Stabilization in
Column Generation

H. Ben Amor, J. Desrosiers
A. Frangioni

G–2004–62

August 2004

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.

Stabilization in Column Generation

Hatem Ben Amor
GERAD and Département de mathématiques et de génie industriel

École Polytechnique de Montréal
C.P. 6079, Succ. Centre-ville

Montréal (Québec) Canada, H3C 3A7
hatem.ben.amor@gerad.ca

Jacques Desrosiers
GERAD and Méthodes quantitatives de gestion

HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada, H3T 2A7
jacques.desrosiers@gerad.ca

Antonio Frangioni
Dipartimento di Informatica

Università di Pisa
largo Bruno Pontecorvo 1

56127 Pisa, Italy
frangio@di.unipi.it

August, 2004

Les Cahiers du GERAD

G–2004–62

Copyright c© 2004 GERAD

Abstract

Column Generation (CG) algorithms are instrumental in many areas of applied
optimization, where Linear Programs with an enormous number of columns need to
be solved. Although successfully used in many applications, the standard CG algo-
rithm suffers from well-known “instability” issues that somewhat limit its efficiency and
usability. Building on the theory developed for NonDifferentiable Optimization algo-
rithm, we propose a large class of Stabilized Column Generation (SCG) algorithms
which avoid the instability problems of the standard approach by using an explicit
stabilizing term in the dual; this amounts at considering a (generalized) Augmented
Lagrangian of the primal Master Problem. Since the theory allows a great degree
of flexibility in the choice and in the management of the stabilizing term, we can use
piecewise-linear functions that can be efficiently dealt with off-the-shelf LP technology,
as well as being related in interesting ways with some previous attempt at stabilizing
the CG algorithm. The effectiveness in practice of this approach is demonstrated by
extensive computational experiments on large-scale Multi-Depot Vehicle Scheduling
problems and simultaneous Vehicle and Crew Scheduling problems.

Key Words: Column Generation, NonDifferentiable Optimization, Proximal Point
methods, Bundle methods, Multi-Depot Vehicle Scheduling problem, Vehicle and Crew
Scheduling problem

Résumé

Les algorithmes de génération de colonnes sont de plus en plus utilisés pour la
résolution de grands programmes d’optimisation linéaire comportant un nombre élevé
de variables. Malgré son succès, la méthode standard de génération de colonnes est
pourtant souvent instable, ce qui limite son efficacité et son usage. En se basant sur
la théorie développée pour l’optimisation non différentiable, nous proposons une classe
d’algorithmes de stabilisation de la méthode de génération de colonnes en ajoutant
explicitement un terme de stabilisation à la formulation duale. Le problème primal
correspondant fait alors appel à une généralisation du Lagrangien augmenté. Puisque
la théorie permet beaucoup de flexibilité au niveau du choix et de la gestion de ce
terme de stabilisation, nous proposons l’utilisation d’une fonction linéaire par morceaux
qui tire avantage des avancées récentes des systèmes commerciaux d’optimisation de
programmes linéaires. L’efficacité pratique de cette approche est illustrée par une
expérimentation numérique sur des instances de grandes tailles de problèmes de tour-
nées de véhicules multi-dépôts ainsi que de problèmes de confection simultanée d’itiné-
raires d’autobus et d’horaires de chauffeurs.

Les Cahiers du GERAD G–2004–62 1

1 Introduction

Column Generation (GC) has proven to be very successful in solving very large scale opti-

mization problems. It has been introduced independently by Gilmore and Gomory in 1960

[16] and Dantzig and Wolfe in 1960 [8]. The formers proposed to solve the linear relaxation

of the Cutting Stock Problem by considering only a subset of columns representing feasible

cutting patterns. Other columns (feasible cutting patterns) are generated, if needed, by

solving a knapsack problem whose costs are the dual optimal multipliers of the restricted

problem. The latters introduced the Dantzig-Wolfe (D-W) decomposition principle, that

consists in reformulating a structured linear problem using the extreme points and rays of

the polyhedron defined by a subset of constraints. These extreme points and rays form

the columns of the constraint matrix of a very large scale problem. A restricted problem

using a subset of extreme points and rays is solved, obtaining optimal dual multipliers

that are used to generate negative reduced cost columns, if any. In both cases, optimality

is reached when no such column exists. Hence, column generation consists in solving a

restricted version of the primal problem defined with a small subset of columns and adding

columns, if needed, until optimality is reached.

From a dual viewpoint, adding columns to the master problem is equivalent to adding

rows (cuts) to the dual. The classical Cutting Plane (CP) algorithm is due to Kelley

1960 [25]. It solves convex problems by generating supporting hyperplanes of the objective

function (optimality cuts) or the feasible set (feasibility cuts). At each iteration the dual

of the restricted problem in D-W, is solved and cuts are added until dual feasibility (and

optimality) are reached. Optimality cuts give the value of the objective function at the

obtained (feasible) dual point; the corresponding column, which is an extreme point in the

D-W context, has contribution 1 to a convexity constraint present in the primal problem.

Feasibility cuts correspond to extreme rays; they are generated when the dual point ob-

tained by the restricted problem is infeasible, i.e., the corresponding value of the objective

function is +∞.

Difficulties of the column generation/cutting planes algorithm appear when solving very

large scale degenerate problems. It is well accepted that primal degeneracy is responsible

of the long tail effect of column generation. Moreover, dual degeneracy and instability in

the behaviour of dual variables are more frequent and harmful when problems get larger.

“Oscillations” are observed, that is, it is possible to move from a good dual point to a much

worse one; indeed, while the upper bound given by the primal solution in nonincreasing, the

lower bound computed for each dual point is not nondecreasing. This affects the quality of

columns to be generated in the following iteration. Other instability aspects are discussed

in [21].

Stabilization approaches use two main ideas. A “good” dual point among those visited

so far is taken to define the stability center; then, a stabilizing term that penalizes moves far

from the center is added to the dual objective function. This aims at reducing the number

Les Cahiers du GERAD G–2004–62 2

and the magnitude of oscillations of dual variables during CG/CP solution process. The

stability center is changed if a “sufficiently better” dual point is found. These ideas have

been around since the early seventies in the NonDifferentiable Optimization community

(e.g. [26]), and have lead to the development of a variety of stabilized algorithms [24,

27, 29, 33], as well as to a deeper theoretical understanding of the underlying principles

[10, 12, 21, 22, 23, 34]; we especially refer the interested reader to [28]. Also, related but

different approaches for addressing the instability issues of the cutting plane algorithm have

been proposed [17]. However, not much of this development seems to have been adopted

by the practitioners in need of solving very large linear problems. In this article, building

on [12] we propose a unifying framework for column generation stabilization approaches

which include as special cases approaches based on the proximal point algorithm and

bundle methods schemes, demonstrating its practical interest by means of computational

experiments on some large problems.

The paper is organized as follows: in Section 2 the problem is stated, the standard

Column Generation approach is reviewed, its relationships with the Cutting Plane algo-

rithms are underlined and the “instability” problems of the approach are described and

exemplified. In Section 3 we present a class of Stabilized Column Generation (SCG) ap-

proaches that avoid the instability problems of the standard approach by using an explicit

stabilizing term in the dual, we discuss its primal counterparts and review its theoretical

convergence properties for a class of stabilizing terms of particular interest in this setting.

Then, in Section 4 we describe one particular stabilization term that meets the require-

ment, its relationships with previous attempts in the same direction from the literature

and the implementation details of using this particular term within an actual CG code.

Finally, in Sections 5 and 6 we present a set of computational experiments on, respectively,

large-scale Multi-Depot Vehicle Scheduling (MDVS) problems and simultaneous Vehicle

and Crew Scheduling (VCS) problems, aimed at proving the effectiveness of the proposed

approach in practice, and in Section 7 we draw some conclusions and directions for future

work.

Throughout the paper the following notation is used. The scalar product between two

vectors v and w is denoted by vw. ‖v‖p stands for the Lp norm of the vector v, and

the ball around 0 of radius δ in the Lp norm will be denoted by Bp(δ). Given a set X,

IX(x) = 0 if x ∈ X (and +∞ otherwise) is its indicator function. Given a function f ,

Sδ(f) = {x : f(x) ≤ δ} is its level set corresponding to the f -value δ. Given a problem

(P) inf[sup
x

]{f(x) : x ∈ X} ,

v(P) denotes the optimal value of f over X; as usual, X = ∅ ⇒ v(P) = +∞[−∞].

Les Cahiers du GERAD G–2004–62 3

2 Column Generation and Cutting Planes

We consider a linear program (P) and its dual (D)

(P)
max

∑

a∈A caxa
∑

a∈A axa = b
xa ≥ 0 a ∈ A

(D)
min πb

πa ≥ ca a ∈ A

where A is the set of columns, each a ∈ A being a vector of R
m, and b ∈ R

m.

If the number of columns is so large that they are impossible or impractical to handle at

once, or if the columns just cannot be determined a priori in practice, then (P) is typically

solved by Column Generation (CG). At any iteration of the CG algorithm, only a subset

B ⊆ A of the columns is handled; this defines the primal master – or restricted – problem

(PB) and its dual (DB), as follows:

(PB)
max

∑

a∈B caxa
∑

a∈B axa = b
xa ≥ 0 a ∈ B

(DB)
min πb

πa ≥ ca a ∈ B

By solving the master problem we obtain a primal feasible solution x∗ along with an

infeasible vector of dual multipliers π∗. With these multipliers, we compute the maximum

reduced cost over all columns in order to generate positive reduced cost columns that will

be added to (PB). This actually amounts at solving the following optimization problem

(Pπ∗) max{ca − π∗a : a ∈ A}

that is usually called subproblem or separation problem. If no column with positive reduced

cost exists, i.e., v(Pπ∗) ≤ 0, then π∗ is actually feasible for (D), and therefore (x∗, π∗) is

a pair of primal and dual optimal solutions to (P) and (D). Since the number of columns

is very large, solving (Pπ∗), i.e., determining whether or not there are dual constraints

violated by π∗, must be performed without evaluating the reduced cost of each column

explicitly. Thus, the CG approach is feasible when “efficient” algorithms for optimizing

over A are available, that is, when a mechanized pricing procedure can be implemented to

effectively determine the next (set of) column(s) to be brought in the “active set” B. This

is true for many known problems. For the Cutting Stock Problem (CSP), for instance,

the feasible cutting patterns can be defined as the feasible solutions of either an integer

Knapsack problem (KP), a Constrained Shortest Path problem (SPC) or a longest path

problem over a disaggregated network. In Vehicle Routing problems or Multicommodity

flow problems the separation problems are usually (constrained) flow or shortest path

problems.

The solution of the subproblem provides either a certificate of optimality of the current

pair (x∗, π∗) or a new column a that will be added to the master problem. It is worth

Les Cahiers du GERAD G–2004–62 4

pointing out that solving the subproblem to optimality is only needed to prove optimality

of the current primal and dual solutions; one can stop solving the subproblem whenever a

positive reduced cost column is found, as inserting in B even this single column ensures that

the new dual solution π∗ will be different, and therefore the termination of the algorithm.

However, in many applications the practical success of the method is tied to the ability

of providing, at each iteration, a fair number of columns with positive reduced cost, as

this typically decreases the number of iterations of the CG algorithm, i.e., the number of

subproblems (which can be costly) to be solved. This is why often the subproblem is solved

to optimality: many exact solution techniques (e.g., dynamic programming) naturally

generate many columns at once. In the case where the subproblem solution produces only

one column, it is often useful to generate any positive reduced cost column, especially when

this is significantly less costly.

Adding a column to (PB) results in adding a “cut” to (DB), i.e., a supporting hyperplane

of the dual feasible domain that is violated by the current dual point π∗. Hence, solving (P)

by column generation is equivalent to solving (D) by Kelley’s cutting plane algorithm [25].

In many relevant cases, the primal constraint matrix contains a convexity constraint

ex = 1, where e is the vector of all ones of proper dimension. When this happens, it is

convenient to single out the dual variable η corresponding to the convexity constraint, i.e.,

to consider (D) written as

(D) min η + πb
η ≥ ca − πa a ∈ A

This allows us to rewrite the (D) as the following NonDifferentiable Optimization problem

minπb + Θ(π)

where

Θ(π) = v(Pπ) = max{ca − πa : a ∈ A}

is a convex piecewise affine function with a finite number of pieces. Thus, at each cutting

plane iteration the value of Θ(π∗) is computed, and the generated columns are in fact

supporting hyperplanes of the epigraph of Θ; they are called “optimality cuts”. A more

general case, very common in applications, is when the column set A is partitioned into k

disjoint subsets A1, . . . ,Ak, each of which has a separate convexity constraint, and therefore

a separate corresponding dual variable ηh. Thus, in this case (D) can be written as the

problem of minimizing the “decomposable” function

minπb + Θ(π) = πb +
k

∑

h=1

Θh(π) =
k

∑

h=1

max{ca − πa : a ∈ Ah} ,

where the computation of each Θh requires solving a different separation problem for each of

the subsets Ah. Each column ah computed by the h-th separation problem is a supporting

Les Cahiers du GERAD G–2004–62 5

hyperplane of the epigraph of Θh, and their sum is a supporting hyperplane of the epigraph

of the aggregate function Θ.

If the convexity constraint concerns only a subset of the columns, the value of Θ(π∗)

is obtained whenever π∗ is dual feasible, which means that generated columns contribute

to the convexity constraints (they are optimality cuts). Otherwise, π∗ is infeasible for the

dual (Θ(π∗) = +∞), and feasibility cuts are obtained. The usefulness of rewriting (D)

as a convex optimization problem lies in the possibility of computing at each iteration

(where optimality cuts are obtained) the function value π∗b + Θ(π∗), that has to be min-

imized. Thus, improvements (decreases) of this value can be taken as an indication that

the obtained dual point π∗ is nearer to an optimal solution. Furthermore, in this case each

iteration (where optimality cuts are obtained) provides an upper bound on the optimal

value of (P), that can be used in various ways to early terminate the optimization process.

When no convexity constraint is present in (P), it is not possible to define a function

to be minimized, and therefore no upper bound on the optimal value of (P) is available;

formally speaking, Θ(π∗) is +∞ at each iteration except the last one. The quality of π∗

cannot be stated precisely, something that is needed in the general algorithm we propose.

This suggests the introduction of “artificial” convexity constraints, as discussed in details

later on.

The CG/CP approach in the above form is simple to describe and, given the availability

of efficient and well-engineered linear optimization software, straightforward to implement.

However, constructing an efficient implementation for large-scale problems is far from triv-

ial, as many complex issues have to be addressed (cf. e.g. [15]). Among the thorniest of

these issues one must surely mention the instability of the approach, i.e., the fact that the

sequence of dual solutions {π∗} has no locality properties. Instability is the main cause of

its slow convergence rate on many practical problems (the well-known “tailing-off” effect);

in turn, this may cause the master problem to become exceedingly large and costly.

One of the most striking proofs of the lack of locality of dual iterates, and of their adverse

effects on performances, can be obtained by using as starting point for the algorithm – the

dual solution π∗ where the first subproblem is solved – a good approximation to the optimal

solution of (D), or even the optimal solution itself. It is well-known that this has little to no

effect on the convergence of the algorithm, i.e., that the CG approach is almost completely

incapable of exploiting the fact that it has already reached a good solution in order to speed

up the subsequent calculations. By contrast, modifying the CG approach in such a way

that it is forced to take into account this information can accelerate the column generation

procedure in an impressive way. This is shown in Table 1, taken from [3], for a large scale

instance of Multi-Depot Vehicle Scheduling problem (see Section 5 for more details). The

first row corresponds to the standard CG approach, while the following ones correspond to

the modified approach, described in the next section, where a (5-piecewise linear) penalty

term is added to the dual objective function. No penalty is incurred in a full-dimensional

Les Cahiers du GERAD G–2004–62 6

hyperbox that contains the known dual optimal solution, while dual solutions outside the

box are penalized; each of the other rows correspond to a different width of the box.

For each method, the total cpu time (cpu), the number of column generation iterations

(CG iter.), the total number of columns generated by the subproblem (SP cols.), and

the total number of simplex iterations performed to solve the master problem (MP itrs.)

are reported; for the stabilized ones, the percentage w.r.t. those of the standard column

generation is also shown. Even with a large box width (200.0) there is a great improvement

in solution efficiency; the tighter the box, the more efficient is the stabilized algorithm. For

the smallest box width (0.2), the total cpu time, the number of CG iterations, the number

of columns generated, and the number of simplex pivots are reduced by more than 96%.

cpu(s) CG iter. SP cols. MP itrs.

Method % % % %

CG 4178.4 509 37579 926161

200.0 835.5 20.0 119 23.4 9368 24.9 279155 30.1
20.0 117.9 2.8 35 6.9 2789 7.4 40599 4.4
2.0 52.0 1.2 20 3.9 1430 3.8 8744 0.9
0.2 47.5 1.1 19 3.7 1333 3.5 8630 0.9

Table 1: Solving a large scale MDVS instance when a dual optimal solution is known

The above example clearly shows why the standard CG/CP algorithm tends to be

inefficient: unlike, say, Newton’s method, its convergence speed does not improve moving

towards the optimal solution. However, properly “controlling” the dual variables may lead

to substantial improvements in the performances. In the next paragraph we will discuss

how a general Stabilized Column Generation approach can be constructed.

3 A Stabilized Column Generation Approach

As shown in the previous section, (D) can be recast as the minimization of a polyhedral

function over a polyhedral domain, i.e.,

(D) min{φ(π) : π ∈ Π} .

If one or more convexity constraints are available that “cover” all the variables, then Π =

R
m, i.e., φ is finite everywhere (possibly decomposable). Otherwise, Π is the polyhedron

Π = {π : πa ≥ ca, a ∈ A0}

where A0 is the set of columns that are not covered by any convexity constraint; if A0 = A,

φ(π) is just the linear function πb.

Les Cahiers du GERAD G–2004–62 7

The cutting plane algorithm applied to the minimization of φ, as described in the

previous section, generates either feasibility cuts for Π or optimality cuts for φ; in other

words, the set B of currently available cuts is partitioned into the (possibly empty) subsets

B0 and B1 which describes two “outer approximations” of φ and Π, respectively,

φB(π) = πb + max{ca − πa : a ∈ B1} ≤ φ(π) ∀π ,

ΠB = {π : πa ≥ ca, a ∈ B0} ⊇ Π .

In case of multiple convexity constraints, actually, φ is decomposable and separate sets of

columns Bh = B ∩Ah are defined for each component h = 1, . . . , k; in order not to clutter

the notation, however, we will mainly describe the simple case with k = 1.

With the above notation, the Dual Master Problem can be written as

(DB) min{φB(π) : π ∈ ΠB} . (1)

Since only a finite number of cuts is required for obtaining an “exact” representation of

φ and Π, it is clear that the algorithm finitely terminates if all the generated information

is kept in B. However, this means that (PB) can become prohibitively large, especially

if many columns are generated at each iteration. Furthermore, the CP algorithm suffers

from the instability issue, as described in the previous section.

Since solving (P) by column generation amounts at solving one NonDifferentiable Op-

timization problem via a cutting plane approach, we can use in the CG context some ideas

for the “stabilization” of the CP approach originally developed in the field of NonDif-

ferentiable Optimization. In particular, here we will use the theory developed in [12] to

introduce a large class of Stabilized Column Generation (SCG) algorithms. The develop-

ment of [12] is by no means the only attempt at constructing a large class of Stabilized

Cutting Plane (SCP) approaches (e.g. [4, 10, 22, 23, 34]), although it does have some tech-

nical advantages that allow to accommodate, among the others, the particular stabilizing

function employed in Section 4.

The main idea of SCP approaches, as the name suggests, is to introduce some “stabi-

lization device” in the dual problem to avoid the large fluctuations of the dual multipliers.

In this particular incarnation this is done by choosing a current center π̄ and a proper

convex stabilizing function D : R
m → R ∪ {+∞}, and by solving the stabilized master

problem

(DB,π̄,D) min{φB(π) + D(π − π̄) : π ∈ ΠB} (2)

instead of (1) at each iteration. The optimal solution π∗ of (2) is used in the separation

subproblem, i.e., to add either optimality cuts to φB or feasibility cuts to ΠB. The stabi-

lizing function D is meant to avoid large fluctuations of π∗ by penalizing points “too far”

from the current point π̄; at a first reading a norm-like function can be imagined there,

with more details due soon. It should be noted that other, more or less closely related,

Les Cahiers du GERAD G–2004–62 8

ways for stabilizing CP algorithms have been proposed [27, 17]; a through discussion of

the relationships among them can be found in [21, 28].

Solving (2) is equivalent to solving its Fenchel’s dual

(PB,π̄,D)

max
∑

a∈B

caxa + π̄

(

b −
∑

a∈B

axa

)

−D∗

(

∑

a∈B

axa − b

)

∑

a∈B1

xa = 1

xa ≥ 0 , a ∈ B

(3)

(cf. [21]); indeed, we can assume that an optimal solution of (3), x∗, is computed together

with π∗. D∗ is the Fenchel’s conjugate of D:

D∗(w) = sup
π
{πw −D(π)}

(cf. [21]), which characterizes the set of all vectors w that are support hyperplanes to the

epigraph of D at some point. D∗ is a closed convex function and enjoys several properties,

for which the reader is referred e.g. to [21, 12]. It is easy to check from the definition the

following relevant (for our application) examples of conjugate functions:

• the conjugate of D = 1
2t‖ · ‖

2
2 is D∗ = 1

2 t‖ · ‖2
2;

• the conjugate of D = IB∞(t) is D∗
t = t‖ · ‖1;

• the conjugate of D = 1
t ‖ · ‖1 is D∗ = IB∞(1/t).

So, stabilizing the dual master problem is equivalent to solving a generalized augmented

Lagrangian of the primal master problem (PB), with a “first-order” Lagrangian term corre-

sponding to the current point π̄ and a “second-order” term corresponding to the stabilizing

function D. Thus, stabilized cutting plane algorithms applied to the solution of (D) can

be seen as generalized augmented Lagrangian approaches applied to the solution of (P),

where the augmented Lagrangian problem is approximately solved by inner linearization,

as shown in more details in the following. If the current point π̄ and the stabilizing function

D are properly updated, the process can be shown to finitely solve (D) and (P).

More specifically, let us consider the general Stabilized Column Generation algorithm

of Figure 1.

The algorithm generates at each iteration a tentative point π∗ for the dual and a (pos-

sibly unfeasible) primal solution x∗ by solving (DB,π̄,D)/(PB,π̄,D). If x∗ is feasible and has

a cost equal to the lower bound φ(π̄), then it is clearly an optimal solution for (P), and π̄

is an optimal solution for (D). Otherwise, new columns are generated using the tentative

point π∗, i.e., φ(π∗) is computed. If φ(π∗) is “substantially lower” than φ(π̄), then it is

worth to update the current point: this is called a Serious Step (SS) (note that a SS can

be performed only if optimality cuts have been obtained). Otherwise the current point is

Les Cahiers du GERAD G–2004–62 9

〈 Initialize π̄ and D 〉
〈 solve Pπ̄, initialize B with the resulting columns 〉
repeat

〈 solve (DB,π̄,D)/(PB,π̄,D) for π∗ and x∗ 〉
if(

∑

a∈B cax
∗
a = φ(π̄) and

∑

a∈B ax∗
a = b)

then stop
else

〈 solve Pπ∗ , i.e., compute φ(π∗) 〉
〈 possibly add some of the resulting columns to B 〉
〈 possibly remove columns from B 〉
if(φ(π∗) is “substantially lower” than φ(π̄))
then π̄ = π∗ /*Serious Step*/
〈 possibly update D 〉

while(not stop)

Figure 1: The general SCG/SCP algorithm

not changed, and we rely on the columns added to B for producing, at the next iteration,

a better tentative point π∗: this is called a Null Step (NS). In either case the stabilizing

term can be changed, usually in different ways according to the outcome of the iteration.

If a SS is performed, i.e., the current approximation φB of φ was able to identify a point

π∗ with better function value than π̄, then it may be worth to “trust” the model more and

lessen the penalty for moving far from π̄, e.g., by employing a stabilizing term D′ < D;

this corresponds to using a “steeper” penalty term D′∗ > D∗ in the primal. If a NS is

done instead, this “bad” outcome might be due to an excessive trust in the model, i.e.,

an insufficient stabilization, thereby suggesting to adopt a stabilizing term D′ > D; this

corresponds to using a “flatter” penalty term D′∗ < D∗ in the primal.

When no convexity constraint is present in the primal formulation, which is the case

of general column generation context, only “feasibility cuts” are generated and the dual

objective value is −∞ unless π̄ is optimal to (DB,π̄,D). Hence, the center can only be

updated when the stabilized primal and dual problems

(Pπ̄,D)

max
∑

a∈A

caxa + π̄

(

b −
∑

a∈A

axa

)

−D∗

(

∑

a∈A

axa − b

)

∑

a∈A1

xa = 1

xa ≥ 0 , a ∈ A

(4)

(Dπ̄,D) min{φ(π) + D(π − π̄) : π ∈ Π} (5)

Les Cahiers du GERAD G–2004–62 10

are solved to optimality. Thus, in this case a stabilized algorithm is a essentially a proximal

point approach [32], even if a generalized one [10, 22, 34]. These approaches suffer from

the inherent difficulty that, in order to solve (P)/(D), a sequence of their stabilized coun-

terparts (Pπ̄,D) / (Dπ̄,D) has to be solved, where each stabilized problem in the sequence

is in principle as difficult to solve as the original one. Hence, most often these approaches

are computationally viable only if coupled with rules that allow the early termination of

the solution process to (Pπ̄,D)/(Dπ̄,D); if the latter is solved by a cutting plane approach,

as is clearly the case here, the result is a (generalized) bundle method [21, 12, 23, 26, 33].

In order to allow changes in the current point before the actual solution of the stabilized

problem, it may be convenient to introduce “artificial” convexity constraints when possible.

In other words, if an estimate b̄ can be given such that the constraint

∑

a∈A

xa ≤ b̄

can be guaranteed to hold at some (even if not all) optimal solutions of (P), then it is

worth to add this constraint to (P) and use the corresponding dual variable – that will

then be constrained to be nonnegative – to define Θ. That is, (D) is equivalent to

min
{

πb + b̄ max{ca − πa : a ∈ A}
}

(6)

in all iterations, since the value of the maximum is nonnegative. This gives an upper bound

on v(P) at each iteration, known as “the Lagrangian bound”. Of course, the same can

be done to define “disaggregated” functions Θh if artificial convexity constraints can be

defined on subsets of the variables (columns). We will see examples of application of this

technique in Sections 5 and 6.

Obviously, the smaller the value of the r.h.s. b̄ of the artificial constraint, the better the

obtained upper bound on v(P). In general, it is possible that different optimal solutions

of (P) have different values of
∑

a∈A xa; then, taking the minimum (or any specific) value

for b̄ may target some particular optimal solution of (P). It is also possible to dynamically

adjust the value of b̄, within the solution algorithms, whenever e.g. the feasibility of a

smaller value is proved.

The algorithm in Figure 1 can be shown [12] to finitely converge to a pair (π̄, x∗) of

optimal solutions to (D) and (P), respectively, under a number of different hypotheses.

Within the CG environment, the following conditions can be imposed:

i) D is a convex nonnegative function such that D(0) = 0, its level sets Sδ(D) are

compact and full-dimensional for all δ > 0; it is interesting to remark that these

requirements are symmetric in the primal, i.e., they hold for D∗ if and only if they

hold for D [12].

ii) D is differentiable in 0, or, equivalently, D∗ is strictly convex in 0.

Les Cahiers du GERAD G–2004–62 11

iii) D is “steep enough” to guarantee that (DB,π̄,D) always attains a finite optimal solu-

tion (and therefore so does (PB,π̄,D)).

iv) Chosen some m ∈ (0, 1], φ(π∗) is declared to be “substantially lower” than φ(π̄) if

φ(π∗) − φ(π̄) ≤ m(v(DB,π̄,D) − φ(π̄)) ; (7)

alternatively, the stronger condition

φ(π∗) − φ(π̄) ≤ m(φB(π∗) − φ(π̄)) (8)

can be used (as φB(π∗) ≤ v(DB,π̄,D) ≤ φ(π̄) since D is non-negative, π̄ is a feasible

solution for DB,π̄,D and φB(π̄) = φ(π̄)). Note that one of the conditions above must

be satisfied when a SS is performed, but the converse is not required, i.e., there is

the possibility not to perform a SS if the conditions are satisfied, only provided that

this does not happen infinitely many times. This allows for alternative actions, e.g.,

decreasing D, to be taken in response to a “good” step, which considerably adds to

the flexibility of the algorithm.

v) During a sequence of consecutive NS, D can change only finitely many times.

vi) There exists a fixed function D̄ that satisfies the conditions of point i) such that

D ≤ D̄ at all iterations.

vii) If any column is removed from B at some iteration, no other removal is permitted

until v(DB,π̄,D) increases by a fixed amount ε > 0.

These conditions are not the most general ones, but they are sufficient in the framework

of CG. For instance, if D is always chosen in a family of functions Dt indiced over one

continuous parameter t > 0 (think of the examples above), then conditions over t that are

substantially weaker than those implied by v) and vi) can be imposed. Furthermore, if D
is strictly convex, or, equivalently D∗ is differentiable, condition vii) can be substantially

relaxed allowing to drop any column a such that x∗
a = 0, and even to drop any number

of “active” columns as long as the “aggregated column” ā =
∑

a∈B ax∗
a is added to B as

their “representative”; this is interesting since it allows to keep |B| bounded to any fixed

number (down to 2), although it only guarantees asymptotic convergence, as opposed to

finite convergence, of the process.

The above scheme can also be made slightly more general by allowing to call the sep-

aration subproblem at a different point than π̄, and/or not to add the resulting columns

to B, at some iterations; it is only required that, during a sequence of consecutive NS,

this is done only a finite number of times. This is useful for instance to accommodate a

further search on the π space “around” π̄, such as a linear or curved search [33]. In the CG

context, this is especially interesting because the rule of thumb is that generating “many”

columns, provided they are reasonably good ones, is crucial for the performances of the

approach; thus, generating columns in some points “near” π̄ – without having to solve a

Les Cahiers du GERAD G–2004–62 12

costly master problem for each one – offers a way to increase the number of generated

columns. The effectiveness of this idea has been demonstrated in [3], where 5 different

directions di, i = 1, . . . , 5, are defined and used as extra displacement for updating the sta-

bility center: d1 is the gradient of the dual problem objective b, d2 is the ascent direction

computed at the previous SS, d3 is a subgradient of the Lagrangian function at the newly

computed dual point, and d4 and d5 are the projections of d2 and d3 on the nonnegative

orthant. Table 2, taken from [3], shows that a beneficial effect of using these extra displace-

ments can observed for larger size instances for some Multiple Depot Vehicle Scheduling

problem instances (see Section 5.2 for more details). In the table, SCG stands for using the

“classical” solution d of the stabilized column generation while the other columns stand for

using the corresponding modifier; lr, mp, and sp give the cpu times in seconds needed to

solve linear relaxations, master problems, and subproblems, respectively, while itr give the

number of column generation iterations needed to solve linear relaxations to optimality.

Pb p1 p3

d SCG d1 d2 d3 d4 d5 SCG d1 d2 d3 d4 d5

lr(s) 42.2 36.0 35.7 37.1 37.4 40.0 44.9 45.4 45.5 46.0 48.5 48.2
mp(s) 13.7 11.9 12.6 12.5 12.1 14.2 20.0 17.6 19.4 18.0 17.7 18.1
sp(s) 28.5 24.1 23.1 24.6 25.3 25.8 24.9 27.8 26.1 28.0 30.8 30.1
itr 52 47 47 50 49 49 53 56 53 56 50 57

Pb p6 p5

d SCG d1 d2 d3 d4 d5 SCG d1 d2 d3 d4 d5

lr(s) 595.5 465.3 458.7 452.5 480.2 477.5 306.4 268.4 260.4 253.2 251.4 252.9
mp(s) 216.2 148.9 157.2 167.4 153.9 157.1 141.9 111.2 114.7 111.0 114.9 114.5
sp(s) 379.3 316.4 301.5 285.1 326.3 320.4 164.5 157.2 145.7 142.2 136.5 138.4
itr 196 158 157 147 156 152 80 73 71 69 69 70

Pb p7 p8

d SCG d1 d2 d3 d4 d5 SCG d1 d2 d3 d4 d5

lr(s) 1223.5 1110.3 1164.1 1058.9 1139.2 1111.5 837.1 726.2 740.5 730.7 679.3 740.5
mp(s) 610.9 619.5 634.0 616.7 598.4 633.0 479.6 254.8 282.6 272.0 331.6 270.8
sp(s) 612.6 490.8 530.1 442.2 540.8 478.5 357.5 471.4 457.9 458.7 347.7 469.7
itr 178 195 171 143 165 146 145 191 192 190 133 189

Table 2: Modifying the “classical” direction d of SCG.

This is why as much flexibility as possible has to be left to the actual handling of the

penalty term when developing the underlying convergence theory of the approach, as done

in [3, 2, 12]. By contrast, most theoretical developments of SCP methods require the

penalty function to depend on only one or few parameters. For more details about the

analysis and the general conditions, the interested reader is referred to [12].

Les Cahiers du GERAD G–2004–62 13

It may be worthwhile to remark that, by choosing m = 1 and the stronger variant (8)

for the descent test, the above general scheme becomes the (generalized) proximal point

approach. Of course, choosing m < 1 can be thought to be a better choice in general

because it allows to move to a better current point possibly far before than (Pπ̄,D) has

been solved to optimality, thereby avoiding a number NS. However, this may also result in

an overall increase in the number of SS required to reach an optimal solution; the balance

between these two effects has to be carefully taken into account.

Finally, we also mention that a closely related approach has been often used in the

literature, where the current point π̄ is set to 0 at the beginning and never changed during

all the course of the algorithm; looking at (4), this is a penalty approach to (P) where the

penalized problem is solved, either exactly or approximately, by Column Generation. In

order for this approach to converge to an optimal solution, it is in general required that

D → 0 (pointwise) as the algorithm proceeds, unless D is an exact penalty function, i.e.,

there exists a D > 0 such that (P0,D) is equivalent to (P). Of course the two approaches can

be mixed, and in fact having D → 0 is necessary to guarantee convergence for some classes

of stabilizing functions, most notably those that do not satisfy condition ii) above. An

algorithmic framework that generalizes that of Figure 1 and allows for such an integration

is proposed and analyzed in [12].

A number of stabilized cutting plane approaches have been proposed in the literature

and used to solve structured linear programs. Penalty bundle methods, using D = 1
2t‖ · ‖

2
2,

have been reported to be successful [7, 13], even in the context of column generation [6].

Other closely related approaches have been proposed based over exponential [18] or linear-

quadratic [30] stabilizing terms. In all these approaches, however, the Stabilized Master

Problem is a nonlinear program. Although efficient specialized codes for some nonlinear

SMP have been developed [11], it is reasonable to assume that the widely available and

extremely efficient standard LP solvers will be a competitive long-term alternative to

custom-made nonlinear solvers, at least in some cases; the CG setting is likely to be

one of them, since the typical number of columns in the SMP is quite large. Attempts at

developing SCP/SCG approaches that can exploit the available LP technology had already

been done, either from the theoretical [4, 24] or from the practical [9] viewpoint. However,

a number of important details were not taken into account, and the proposed methods

were not flexible enough to accommodate a number of small but important variations

of the basic algorithmic scheme, some of which will be illustrated in the next section. A

substantial step towards practical application of these ideas to the CG framework was done

in [3, 2]; however, only “pure” proximal point approaches had been used there. The main

motivation for the development of [12] was exactly to build a solid theoretical foundation

over which a number of different SCP/SCG approaches, comprised some LP -based ones,

could be easily constructed. In the next sections we will show in details one of these

possible approaches that attains promising results in the CG framework.

Les Cahiers du GERAD G–2004–62 14

4 Piecewise Linear Penalty Functions

Selecting an appropriate penalty function D∗ is a fundamental step in the development of
an efficient SCG approach. The use of piecewise linear penalty functions leads to solving
linear programs at each iteration. It also allows for exact solution of the stabilized primal
and dual problems if desired, and thereby the implementation of “pure” (generalized)
proximal point approaches.

In the context of the general algorithm presented in this paper, primal convergence is
guaranteed whenever the penalty terms are differentiable at 0 (condition ii); for a piecewise
linear penalty function D, this requires that the associated trust region (the set where D
is zero) must be full dimensional and contain 0 in its interior. This is the case of the
boxstep method [29] and of [9, 3, 2]. For the linear norm penalty approach [24], because
the corresponding penalty functions D are not differentiable at 0, convergence towards a
primal optimal solution is not guaranteed. However, one can recover a primal optimal
solution in an efficient way by using the method presented in Section 1 (see also [3]).

There are, of course, many possible ways for defining a piecewise linear penalty function.
We found a 5-pieces function similar to the one used in [3, 2] to offer a good compromise
between simplicity of implementation and flexibility. Given nonnegative vectors of interval
widths Γ−, ∆−, ∆+, and Γ+, and penalty costs ζ−, ε−, ε+, and ζ+, D is defined by

D(u) =

m
∑

i=1

Di(ui) (9)

where

Di(ui) =

−(ζ−i + ε−i) (ui + Γ−

i) − ζ−i ∆−

i if −∞ ≤ ui ≤ −Γ−

i − ∆−

i

−ε−i (ui − ∆−

i) if − Γ−

i − ∆−

i ≤ ui ≤ −∆−

i

0 if − ∆−
i ≤ ui ≤ ∆+

i

+ε+
i (ui − ∆+

i) if ∆+
i ≤ ui ≤ ∆+

i + Γ+
i

+(ε+
i + ζ+

i) (ui − Γ+
i) − ζ+

i ∆+
i if ∆+

i + Γ+
i ≤ ui ≤ +∞

. (10)

The corresponding Fenchel’s conjugate D∗ is

D∗(y) =
m

∑

i=1

D∗
i (yi) (11)

where

D∗
i (yi) =

+∞ if yi < −(ζ−i + ε−i)
−(Γ−

i + ∆−
i) yi − Γ−

i ε−i if − ζ−i − ε−i ≤ yi ≤ −ε−i
−∆−

i yi if − ε−i ≤ yi ≤ 0
+∆+

i yi if 0 ≤ yi ≤ ε−i
+(Γ+

i + ∆+
i) yi − Γ+

i ε+
i if ε+

i ≤ yi ≤ (ζ+
i + ε+

i)
+∞ if yi > (ζ+

i + ε+
i)

. (12)

Les Cahiers du GERAD G–2004–62 15

This kind of function offers a better approximation of ‖.‖2 (or any ‖.‖p with 2 < p < ∞)
than a similar function with only 3 pieces, especially far from the trust region. This is
needed because the main penalty incurred should not play the role similar to that of any
piece of the function to be minimized. For example, in the case where B1 = ∅, the dual
objective function has only one linear piece. Using only one penalizing piece in each side
of D may lead to either the penalty being less than the right-hand side, and therefore not
being effective, or it being higher than the right-hand side, and therefore being effective
but, probably, too high to allow interesting displacements outside the trust region. In the
latter situation, dual points that are generated will be in most cases on the boundary of
the trust region and little is done more than the boxstep method.

It is interesting to write down in details the primal and dual stabilized master problems
with this choice of the stabilizing term. In order to simplify the formulation, we use the
following notations:

γ1 = π̄ − ∆− − Γ− ,
δ1 = π̄ − ∆− ,
δ2 = π̄ + ∆+ ,

γ2 = π̄ + ∆+ + Γ+ .

The stabilized master dual problem is then

(DB,π̄,D)

min η + πb + ζ−v− + ε−u− + ε+u+ + ζ+v+

−u− + δ1 ≤ π ≤ δ2 + u+

−v− + γ1 ≤ π ≤ γ2 + v+

πa ≤ ca , a ∈ B
πa + η ≤ ca , a ∈ B1

v−, u−, u+, v+ ≥ 0

. (13)

Its dual, the stabilized primal master problem, is

(PB,π̄,D)

max
∑

a∈B

caxa + γ1z1 + δ1y1 − δ2y2 − γ2z2

∑

a∈B

axa + z1 + y1 − y2 − z2 = b

∑

a∈B1

xa = 1

z1 ≤ ζ− , y1 ≤ ε1 , y2 ≤ ε2 , z2 ≤ ζ+

xa ≥ 0 , a ∈ B
z1, y1, y2, z2 ≥ 0

. (14)

The number of constraints in the primal problem does not change whereas 4 variables
are added for each stabilized constraint. Variables corresponding to the outmost penalty
segments can act as artificial variables and hence no Phase I is needed to start the CG
algorithm. Even if these variables are unit vectors and are easy to handle, the size of the

Les Cahiers du GERAD G–2004–62 16

master problem may become too large to handle enough generated columns, especially
when many columns are generated at each iteration. This might happen while using 7-
piecewise penalty function, which would in principle offer even more flexibility but appears
to leave little room for dynamically generated columns. 5-piecewise penalty function seems
to give a good tradeoff between flexibility and practical efficiency of the approach.

The 5-pieces stabilizing term allows for a small penalty close to the trust region and
much larger penalty far from it. In doing so, very large moves are allowed only when a high
improvement in the stabilized dual objective is anticipated. More reasonable moves are
accepted even if the objective improvement is not very high. This feature is useful, e.g., in
the beginning of the stabilization process. 3-pieces function may suffer very small moves
if the penalty is too high and may fall in the same instable behaviour as CG/CP if very
small penalties are used. 5-pieces function can cope with this inconvenience by allowing
small penalties in the outer box and imposing large enough penalties outside this box. This
is shown in Table 3 for some Multiple Depot Vehicle Scheduling problem instances (see
Section 5.2 for more details), where CG stands for standard column generation while PP-3
and PP-5 stand for stabilized approaches using, respectively, 3-piecewise stabilizing terms
and 5-piecewise ones. In the table, cpu gives total computing time, lr, mp, and sp give the
cpu times in seconds needed to solve linear relaxations, master problems, and subproblems,
respectively, while itr give the number of column generation iterations needed to solve linear
relaxations to optimality. Both stabilized algorithms improve standard CG substantially;
however, PP-5 clearly outperforms PP-3 on all aspects, especially total computing time
and CG iterations number.

Pb p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

method
cpu(s) CG 139.0 176.6 235.4 158.9 3138.1 3966.2 3704.3 1741.5 3685.2 3065..2

PP-3 79.9 83.9 102.5 70.3 1172.5 818.7 1440.2 1143.3 1786.5 2282.8
PP-5 31.3 36.4 37.8 27.8 481.9 334.6 945.7 572.3 1065.2 2037.4

itr CG 117 149 200 165 408 524 296 186 246 247
PP-3 82 92 104 75 181 129 134 145 144 189
PP-5 47 47 49 45 93 64 98 83 86 150

mp(s) CG 88.4 124.5 164.8 104.8 1679.4 2003.7 1954.6 924.8 1984.2 1742.6
PP-3 44.0 46.6 59.6 42.0 571.5 399.4 740.4 542.5 858.3 1350.5
PP-5 12.9 16.3 16.6 9.8 188.8 128.2 428.2 256.5 541.9 1326.0

sp(s) CG 50.6 51.1 70.6 54.1 1458.7 1962.5 1749.7 816.7 1701.0 1322.6
PP-3 33.9 37.3 42.9 28.3 601.0 419.3 700.8 590.8 928.2 932.3
PP-5 18.4 20.1 21.2 18.0 293.1 206.4 517.5 315.8 523.3 711.4

Table 3: Comparing 5-piecewise and 3-piecewise penalty functions.

Les Cahiers du GERAD G–2004–62 17

The proposed stabilizing term also provides more flexibility in updating strategies when
compared to 3-piecewise linear functions or l − p norms; this is represented by the many
parameters Γ±, ∆±, ζ±, and ε±. These can be independently updated for each variable
with several different strategies. This is important because all dual vector components do
not behave the same way to converge towards optimality. A nearly stabilized component
should not have the same stabilizing parameters as one that is far from being stabilized.
The parameters allows for several different ways to lessen (or sharpen) the stabilizing term.
One can either change the inner intervals, the outer intervals, the inner penalty parameters,
the outer penalty parameters, or any combination of them. For example, lessening ε± and
enlarging ζ± leads to smaller penalty within the outer box and larger penalty outside this
box, which cannot be done e.g. with ‖.‖∞ and 3-piecewise linear functions.

However, a 5-piecewise stabilizing term is clearly more costly than a 3-piecewise one.
A possible remedy, when the number of rows in the primal is too large, is to stabilize
only a subset of the rows. Hence, the dual vector π is partially penalized; identifying the
“most important” components can help in choosing an adequate subset of components
to be penalized. Alternatively, one may choose the number of pieces dynamically, and
independently, for each variable. In fact, at advanced stages of the process many dual
components are near to their optimal value; in such a situation, the outer segments of
the penalty term are not needed and the corresponding stabilization variables may be
eliminated from the primal master problem. By doing so, in the last stages of the solu-
tion process, one should have a 3-piece function that allows small number of stabilization
variables and ensures primal feasibility at the end of the algorithm. In [3], changing some
components of the 5-piecewise penalty functions into 3-piecewise terms in the last stages of
the process, whenever the corresponding dual variables values are found to be ”stabilized
enough”, allowed a substantial improvement of the performances. Table 4 shows the results
obtained on MDVS (again, see Section 5.2 for more details). In the table, CG stands for
standard column generation, PP-5 stands for the Stabilized Column Generation approach
using a fixed 5-pieces stabilizing term, and 5then3 designates the dynamic strategy; lr, mp,
and sp give the cpu times in seconds needed to solve linear relaxations, master problems,
and subproblems, respectively, while itr give the number of column generation iterations
needed to solve linear relaxations to optimality. The table clearly shows that the dynamic
strategy helps in improving performances, especially as the size of the instances increase.

Several different parameters updating strategies have been tested in different contexts [3,
2, 1]. For instance, in [3, 2] a strategy that enlarges the outer box if the corresponding
component of the tentative point is out of the current box and lessens the inner penalty
parameters at each serious step was shown to outperform a strategy that updates the
penalty function parameters depending on the position of the corresponding component.
In [1] a strategy where the shape of the function changes asymmetrically during the solution
process was proposed that was able to outperform all other strategies for most of the
problems. However, the approach leaves full scope for a large number of strategies, possibly
problem-specific, to be tested.

Les Cahiers du GERAD G–2004–62 18

Pb p1 p3

method CG PP-5 5then3 STD SCG 5then3

lr(s) 203.5 42.5 37.0 285.2 44.9 48.8
mp(s) 125.9 13.7 12.1 180.5 20.0 18.1
sp(s) 77.6 28.5 24.9 104.7 24.9 30.7
itr 149 52 48 196 53 58

Pb p6 p5

method CG PP-5 5then3 STD SCG 5then3

lr(s) 4178.4 595.5 501.2 3561.9 306.4 256.0
mp(s) 3149.2 216.2 166.2 2676.2 141.9 113.9
sp(s) 1029.2 379.3 335.0 885.7 164.5 142.1
itr 509 196 160 422 80 72

Pb p7 p8

method CG PP-5 5then3 STD SCG 5then3

lr(s) 2883.4 1223.5 1068.3 1428.9 837.1 757.2
mp(s) 1641.3 610.9 593.4 779.4 479.6 272.0
sp(s) 1242.1 612.6 474.9 649.2 357.5 485.2
itr 380 178 145 259 145 134

Table 4: Results for 5-then-3-pieces approach.

Parameters updating strategies also depend on the specific form of SCG algorithm
used. Pure proximal approaches, that solve the stabilized master problems exactly, may
have different (simpler) parameters updating rules; in particular, typically the parameters
are never changed in the sequence of iterations required to solve one stabilized problem.
However, pure proximal approaches may suffer from tailing-off effects; if early stopping is
possible, better performances are to be expected, as observed e.g. in [3]. Thus, bundle-type
approaches, where the stability center is changed more frequently, may be more promising
in general. However, it is customary in bundle approaches to modify the stabilizing term
even during sequences of Null Steps, corresponding to the (approximate) solution process
of the current stabilized primal and dual master problem. This may require different, more
sophisticated parameter updating rules than in the pure proximal case.

5 Numerical Experiments: MDVS

5.1 The MDVS problem

Let {T1, . . . , Tm} be a set of tasks to be covered by vehicles available at depots Dk (k ∈ K)
with capacity nk. Define Ω the set of routes that can be used to cover the given tasks. A
route is a path between the source and the sink of a compatibility network. It has to start
and end at the same depot. The nodes of the network correspond to tasks and depots.

Les Cahiers du GERAD G–2004–62 19

Arcs are defined from depots to tasks, from tasks to depots and between tasks allowed to
be visited one after another by a same vehicle. Define cp (p ∈ Ω) as the cost of route p,
binary constants aip (p ∈ Ω, i ∈ {1, . . . , m}) that take value 1 iff task Ti is covered by
tour p and binary constants bk

p (p ∈ Ω, k ∈ K) that take value 1 iff route p starts and
ends at depot Dk. Using binary variables Θp (p ∈ Ω) which indicate if tour p is used by a
vehicle to cover a set of tasks, the problem is formulated as:

Min
∑

p∈Ω

cpΘp

∑

p∈Ω

aipΘp = 1 i = 1, . . . , m

∑

p∈Ω

bk
pΘp ≤ nk k ∈ K

Θp ∈ {0, 1} p ∈ Ω.

(15)

Due to the very larger number of routes (columns), the problem is usually solved by
branch-and-price where linear relaxations are solved by column generation [31, 20]. Given
the set of multipliers produced by the master problem, columns are generated by solving
a shortest path problem on the compatibility network to compute a negative reduced cost
column, if any. We are interested in stabilizing the column generation process at the root
node; the same process may then be used for any other branch-and-price node.

5.2 The test problems

Test problem sets are generated uniformly following the scheme of [5]. The cost of a
route has two components: a fixed cost due to the use of a vehicle and a variable cost
incurred on arcs. There are two types of problems A and B depending on the location of
depots. Each problem is characterized by its number of tasks m ∈ {400, 800, 1000, 1200},
its type T ∈ {A, B}, and the number of depots d ∈ {4, 5}. The master problem has
m + d constraints and d subproblems are solved to generate columns. Table 5 gives the
characteristics of the 10 instances.

5.3 The algorithms

Initialization All stabilization approaches that are tested use the same initialization
procedure. The single depot vehicle scheduling problem, SDVS, is s special case of MDVS
for which there is only one depot. But this is a minimum cost flow problem over the
corresponding compatibility network and can be solved in polynomial time. Now, consider
the following depot aggregation procedure in MDVS. All the depots are replaced with a
single depot D0. The cost of arc (D0, Ti) is the minimum of the costs of arcs (Dk, Ti), k ∈ K.
The cost of arc (Ti, D0) is the minimum of the costs of arcs (Ti, Dk), k ∈ K. This lead to
a SDVS with slightly fewer nodes and arcs. Its primal optimal solution may be used to

Les Cahiers du GERAD G–2004–62 20

Problem T m d arcs number

p1 A 400 4 206696
p2 A 400 4 208144
p3 B 400 4 210328
p4 B 400 4 199560
p5 A 800 4 785880
p6 B 800 4 816780
p7 A 1000 5 1273435
p8 B 1000 5 973260
p9 A 1200 4 1472295
p10 B 1200 4 1147788

Table 5: MDVSP: instance characteristics.

compute an initial integer feasible solution for MDVS as well as an upper bound on the
integer optimal value. The corresponding dual solution is feasible to (D) and provides
a lower bound on the linear relaxation optimal value. This dual point is used as initial
stability center in the algorithm (see [3] for more details).

Pure proximal approach We use an improved version of the pure proximal strategy
found to be the best in [3, 2]. The penalty functions are kept symmetric and the parameters
∆± are kept fixed to a relatively small value (5). The outer penalty parameters ζ± have
their initial values equal to 1 (the right-hand side of stabilized constraints). The corre-
sponding columns in the primal act as artificial variables which cost depends on the initial
stability center, before the first SS is executed. Since the problem contains no explicit
convexity constraint, Serious Steps are performed only when no positive reduced column
is generated, i.e., optimality of stabilized problem is reached. In this case, the penalty
parameters ǫ± and ζ± are reduced using different multiplying factors α1, α2 ∈]0, 1[. If the
newly computed dual point is outside the outer hyperbox, the outer intervals are enlarged,
i.e., Γ±

i is multiplied by a factor β ≥ 1. Several triplets (α1, α2, β) produced performant
algorithms. Primal and dual convergence is ensured by using full dimensional trust regions
that contain 0 in their interior and never shrink to a single point, i.e. ∆± ≥ ∆ > 0 at any
CG iteration.

Bundle approaches When fixed costs are sufficiently large, the optimal solution of
MDVS linear relaxation ensures the minimum number of vehicles. This minimum number
is the same as the number of vehicles obtained by solving the SDVS problem obtained
via the aggregation procedure described above. The instances considered here use a large
enough fixed cost to ensure this property. The “objective function” used to verify for
minimum improvement is then defined by

Les Cahiers du GERAD G–2004–62 21

minπb + b̄ max{ca − πa : a ∈ A},

where b̄ is the number of routes in the solution of the SDVSP problem solved in the
initialization procedure.

Using this objective function, bundle approaches offer the opportunity of updating the
stability center, and hence improving the quality of the “best” known dual point, without
going to the optimality of column generation applied to the stabilized problem. As a
consequence, the queuing effect is reduced, at least far from optimality.

The same parameters strategy used in the pure proximal case is adapted here: during
Null Steps, the stabilizing term is kept unchanged. As previously noted, different strategies
may help in improving the performances, but we found this simple one to be already quite
effective.

5.4 Results

Results are given in Table 6 for standard column generation (CG), the pure proximal
approach (PP), and the bundle approach (BP). The stabilized approaches are implemented
using 5-piecewise linear penalty functions. In the table, cpu, mp, and sp are respectively
the total, master problem, and subproblem computing times in seconds,while itr is the
number of column generation iterations (null steps) needed to reach optimality.

Pb p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

method
cpu(s) CG 139.0 176.6 235.4 158.9 3138.1 3966.2 3704.3 1741.5 3685.2 3065..2

PP 31.3 36.4 37.8 27.8 481.9 334.6 945.7 572.3 1065.2 2037.4
BP 25.5 27.9 34.5 21.4 294.5 257.2 639.4 351.7 545.2 1504.5

itr CG 117 149 200 165 408 524 296 186 246 247
PP 47 47 49 45 93 64 98 83 86 150
BP 37 43 44 36 57 53 59 49 51 101

mp(s) CG 88.4 124.5 164.8 104.8 1679.4 2003.7 1954.6 924.8 1984.2 1742.6
PP 12.9 16.3 16.6 9.8 188.8 128.2 428.2 256.5 541.9 1326.0
BP 9.9 13.7 14.9 10.1 100.2 70.0 329.3 206.3 334.2 982.5

sp(s) CG 50.6 51.1 70.6 54.1 1458.7 1962.5 1749.7 816.7 1701.0 1322.6
PP 18.4 20.1 21.2 18.0 293.1 206.4 517.5 315.8 523.3 711.4
BP 15.6 14.2 15.6 11.3 194.3 187.2 310.1 145.4 211.2 522.0

Table 6: Computational results for MDVS.

Les Cahiers du GERAD G–2004–62 22

Both stabilization approaches are able to substantially improve the standard column
generation approach according to computation time, on all problems. The stabilization
effect is illustrated by the reduction of master problem computation times and column
generation iterations numbers, for all instances.

The improvement is more uniform among the two approaches for small size problems
(m = 400), while for medium size problems (m = 800) and especially large size ones
(m ∈ {1000, 1200}) the bundle approach is substantially better. This is probably due to
the fact that for larger problem the initial dual solution is of less good quality, and the
good performances pure proximal approach are more dependent on the availability of a
very good initial dual estimate to diminish the total number of (costly) updates of the
stability center. This is clearly less critical for the bundle approach, that is capable of
updating the stability canter at a substantial inferior cost, and therefore is less harmed by
an initial estimate of lesser quality.

A particularity in the behaviour of the bundle approach is that master problem compu-
tation times are little bit higher in average. This may be explained by high master problem
reoptimization costs due to larger number of serious steps.

6 Numerical Experiments: Vehicle and Crew Scheduling
(VCS)

6.1 The VCS problem

We consider the simultaneous Vehicle and Crew Scheduling problem (VCS) described
in [19]. The problem requires to simultaneously optimally design trips for vehicles (buses,
airplanes, . . .) which cover a given set of “work segments” and the duties of the personnel
required to operate the vehicles (drivers, pilots, cabin crews, . . .).

The problem can be formulated as follows. Let K be the set of types of duties (working
days), Ωk the set of duties of type k, S the set of segments to be covered by duties, V
the set of trips, and H the set of possible departure times from parkings (h∗ designates
the latest possible departure time). Binary constants cps, ipv, opv, dph, and aph (p ∈ Ωk,
s ∈ S, v ∈ V , h ∈ H) are needed for the problem formulation. cps takes value 1 if and
only if duty p covers segment s. ipv and opv take value 1 if and only if duty p contains a
deadhead or a walking that starts at the end of trip v or ends at the beginning of trip v,
respectively. dph, respectively aph, takes value 1 if and only if duty p contains a deadhead
starting, respectively ending, at the parking.

The formulation (16) uses binary variables θp (p ∈ Ωk, k ∈ K) that takes value 1 if and
only if duty p is used in the solution. The objective function that is minimized counts the
number of duties that are selected.

Les Cahiers du GERAD G–2004–62 23

Min
∑

k∈K

∑

p∈Ωk

Θp

∑

k∈K

∑

p∈Ωk

cpsΘp = 1 ∀ s ∈ S

∑

k∈K

∑

p∈Ωk

ipvΘp = 1 ∀ v ∈ V

∑

k∈K

∑

p∈Ωk

opvΘp = 1 ∀ v ∈ V

∑

k∈K

∑

p∈Ωk

dphΘp −
∑

k∈K

∑

p∈Ωk

aphΘp ≤ 0, ∀h ∈ H − {h∗}

∑

k∈K

∑

p∈Ωk

dph∗Θp −
∑

k∈K

∑

p∈Ωk

aph∗Θp = 0

Θp ∈ {0, 1} ∀p ∈ Ωk, k ∈ K.

(16)

Because the set of duties is extremely large, the linear relaxation of (16) can only
be solved by column generation. In [19], the subproblem is formulated as a constrained
shortest path problem using up to 7 resources. The subproblem solution is very expensive,
especially for the last CG iterations, because some resources are negatively correlated. The
solution time for the subproblem can be reduced by solving it heuristically, using an idea
of [14]. Instead of building an unique network in which constrained shortest paths with
many resources need to be solved, many (hundreds) different subnetworks, one for each
possible departure time, are built. This allows to take into account several constraints
that would ordinarily be modeled by resources while building the subnetworks. Of course,
solving a (albeit simpler) constrained shortest path problem for each subnetwork would
still be very expensive; therefore, only a small subset (between 10 and 20) of subnetworks
are solved at each CG iteration. The subproblem cost thus becomes much cheaper, except
for the very last iteration, and possibly one or two more, where optimality has to be proved,
and therefore all the subnetworks have to be solved.

6.2 The test problems

We use a set of 7 test-problems taken from [19]. They are named pm, where m is the total
number of covering constraints in the master problem. Their characteristics are presented
in Table 7. In the table, Cov, Flow, Net, Nodes, Arcs give respectively the number of
covering constraints, the number of flow conservation constraints in the master problem,
the number of subnetworks, the number of nodes, and the number of arcs per subnetwork.

Les Cahiers du GERAD G–2004–62 24

Problem Cov Flow Net Nodes Arcs

p199 199 897 822 1528 3653
p204 204 919 829 1577 3839
p206 206 928 835 1569 3861
p262 262 1180 973 1908 4980
p315 315 1419 1039 2180 6492
p344 344 1549 1090 2335 7210
p463 463 2084 1238 2887 9965

Table 7: VCS: instance characteristics.

6.3 The algorithms

We tested different stabilized CG approaches for the VCS problem. Differently from the
MDVS case, for VCS using a “pure proximal” stabilized CG approach for solving the linear
relaxation turned out to worsen the performances of the CG approach. This is due to the
fact that a pure proximal stabilized CG algorithm needs to optimally solve the subproblem
many times, each time that optimality of the stabilized problem has to be proven. Thus,
even if the CG iterations number is reduced by the stabilization, the subproblem computing
time – and hence the total computing time – increases. Even providing very close estimates
of dual optimal variables is not enough to make the pure proximal approach competitive.

Instead, a bundle-type approach, that do not need to optimally solve the stabilized prob-
lem except at the very end, was found to be competitive. For implementing the approach,
an artificial convexity constraint was added to the formulation, using a straightforward
upper bound on the optimal number of duties. As for the MDVS case, after a Serious
Step – when the stability center is updated – the stabilizing term is decreased using proper
simple rules, while after a Null Step the stabilizing term is kept unchanged. Note that
since the dual variables must be in [−1, 1], this property is preserved while updating the
stability centers.

6.4 Results

Results of the experiments on VCS are given in Table 8. In the table, cpu, mp, and sp are
respectively the total, master problem, and subproblem computing times in minutes, while
itr is the number of column generation iterations (null steps) needed to reach optimality.

The results show that the number of CG iterations and the total computing time is
reduced when using a bundle-type stabilized CG approach as opposed to an ordinary
CG one. This happens even if the subproblem computing time is increased, as it is the
case for the largest problem p463. Thus, the bundle-type approach allows to reduce the
number of CG iterations, thanks to the stabilization, without the cost of optimally solving
the subproblem too often; this directly translates in better overall performances of the
algorithm.

Les Cahiers du GERAD G–2004–62 25

Pb p199 p204 p206 p262 p315 p344 p463

method

cpu(min) CG 26 26 30 68 142 238 662
BP 12 13 14 40 73 163 511

mp(min) CG 13 9 14 35 43 90 273
BP 3 3 4 7 19 20 93

sp(min) CG 13 17 16 33 99 148 389
BP 9 10 10 33 54 143 418

itr CG 167 129 245 263 239 303 382
BP 116 119 173 160 213 201 333

Table 8: Computational results for VCS.

7 Conclusions

Using a general theoretical framework developed in the context of NonDifferentiable Op-
timization, we have proposed a generic column generation stabilization algorithm. The
definition of the algorithm leaves full scope for a number of crucial details in the im-
plementation, such as parameters updating strategies for the stabilization terms. The
framework has then been specialized to a specific 5-piecewise linear stabilization term that
allows the stabilized primal and dual master problems to be solved by linear programming.
The 5-pieces function is found to provide a good compromise between flexibility and mas-
ter problem solution cost, especially when dynamic rules are used that discard “useless”
pieces near termination of the algorithm. The meaning of the parameters in the 5-pieces
function in terms of the original problem is discussed; the relationships allow for more
easily defining reasonable initial values for the parameters and proper updating strategies.

The resulting algorithm has been tested in the context of two different practical applica-
tions: Multiple Depot Vehicle Scheduling and simultaneous Vehicle and Crew Scheduling.
For both applications, the best stabilized column generation approaches are found to sig-
nificantly improve the performances of classical (non-stabilized) column generation. In
particular, “bundle” variants, where the stability center is updated whenever possible, are
shown to be promising with respect to “pure proximal” variants, where the stability center
is only updated when the stabilized problem is solved to optimality. This is particularly
true for VCS, where the pure proximal approach requires to optimally solve the subprob-
lem often, while the bundle approach allows to heuristically solve it at all but the very last
iterations; since the subproblem cost is very significant in this case, this is crucial for the
overall efficiency of the CG approach. For both applications, using bundle-type variants
requires introducing an artificial convexity constraint to define an “objective function”
whose decrease can be monitored in order to early perform the update of the stability
center. In general, this requires computing some estimate of some quantity related to the
optimal solution, which, especially if the estimate has to be tight, may in itself be a de-

Les Cahiers du GERAD G–2004–62 26

manding task. However, at least for MDVS and VCS using easily found rough estimates
to construct the right-hand-side of the artificial constraint seems to work quite well.

All in all, we believe that the present results show that stabilized column generation
approaches have plenty of as yet untapped potential for substantially improving the per-
formances of solution approaches to linear programs of extremely large size.

References

[1] H. Ben Amor, J. Desrosiers, and A. Oukil, A Numerical Study of a Pure Proximal
Stabilized Column Generation Algorithm for Long-Horizon MDVSP, Les Cahiers du
GERAD G-2004-57 (2004).

[2] H. Ben Amor, J. Desrosiers, A Proximal Trust Region Algorithm for Column Gener-
ation Stabilization, Les Cahiers du GERAD G-2003-43 (2003).

[3] H. Ben Amor, Stabilisation de l’algorithme de génération de colonnes, Ph.D. The-
sis, Département de Mathématiques et de Génie Industriel, École Polytechnique de
Montréal, Montréal, Canada (2002).

[4] C. Berger, Contribution à l’optimisation non-différentiable et à la décomposition en
programmation mathématique, Ph.D. Thesis, Département de mathématiques et de
génie industriel, École Polytechnique de Montréal, Montreal, Canada (1996).

[5] D. Carpaneto, M. Dall’Amico, M. Fischetti, and P. Toth, A Branch and Bound Al-
gorithm for the Multiple Depot Vehicle Scheduling Problem, Networks 19, 531–548
(1989).

[6] P. Carraresi, L. Girardi, and M. Nonato, Network Models, Lagrangian Relaxations
and Subgradient Bundle Approach in Crew Scheduling Problems, in Computer Aided
Scheduling of Public Transport, Lecture Notes in Economical and Mathematical Sys-
tems, J. Paixao, ed., Springer-Verlag (1995).

[7] T.G. Crainic, A. Frangioni, and B. Gendron, Bundle-based relaxation methods for
multicommodity capacitated fixed charge network design problems, Discrete Applied
Mathematics 112, 73–99 (2001).

[8] G.B. Dantzig, P. Wolfe, The decomposition Principle for Linear Programs, Operations
Research 8(1), 101–111 (1960).

[9] O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, Stabilized Column Gener-
ation, Discrete Mathematics 194, 229–237 (1999).

[10] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions with ap-
plications to convex programming, Mathematics of Operations Research 18, 292–326
(1993).

[11] A. Frangioni, Solving semidefinite quadratic problems within nonsmooth optimization
algorithms, Computers & Operations Research 23, 1099–1118 (1996).

Les Cahiers du GERAD G–2004–62 27

[12] A. Frangioni, Generalized Bundle Methods, SIAM Journal on Optimization 13(1),
117–156 (2002).

[13] A. Frangioni, G. Gallo, A Bundle Type Dual-Ascent Approach to Linear Multicom-
modity Min Cost Flow Problems, INFORMS Journal on Computing 11(4), 370–393
(1999).

[14] R. Freiling, A.P.M. Wagelmans, and A. Paixao, An overview of models and techniques
for integrating vehicle and crew scheduling, in Computer-Aided Transit Scheduling.
Lecture Notes in Economics and Mathematical Systems 471, N.H.M. Wilson, ed.,
Springer, Berlin, Germany, 441–460 (1999).

[15] M. Gamache, F. Soumis, G. Marquis, and J. Desrosiers, A Column Generation Ap-
proach for Large Scale Aircrew Rostering Problems, Operations Research 47(2), 247–
262 (1999).

[16] P.C. Gilmore, R.E. Gomory, A Linear Programming Approach to the Cutting Stock
Problem, Operations Research 11, 849–859 (1961)

[17] J.-L. Goffin, J.-P. Vial, Convex nondifferentiable optimization: a survey focussed on
the analytic center cutting plane method, Optimization Methods and Software 17(5),
805–867 (2002).

[18] M.D. Grigoriadis, L.G. Kahchiyan, An exponential-function reduction method for
block-angular convex programs, Networks 26, 59–68 (1995).

[19] K. Haase, G. Desaulniers, and J. Desrosiers. Simultaneous Vehicle and Crew Schedul-
ing in Urban Mass Transit Systems, Transportation Science 35(3), 286–303 (2001).

[20] A. Hadjar, O. Marcotte, and F. Soumis, A Branch-and-Cut Algorithm for the Mutiple
Depot Vehicle Scheduling Problem, Les Cahiers du GERAD G-2001-25 (2001).

[21] J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms,
Grundlehren Math. Wiss. 306, Springer-Verlag, New York (1993).

[22] A.N. Iusem, B.F. Svaiter, and M. Teboulle, Entropy-like proximal methods in convex
programming, Mathematics of Operations Research 19, 790–814 (1994).

[23] K. Kiwiel, A bundle Bregman proximal method for convex nondifferentiable optimiza-
tion, Mathematical Programming 85, 241–258 (1999).

[24] S. Kim, K.N. Chang, and J.Y. Lee, A descent method with linear programming sub-
problems for nondifferentiable convex optimization, Mathematical Programming 71,
17–28 (1995).

[25] J.E. Kelley, The Cutting-Plane Method for Solving Convex Programs, Journal of the
SIAM 8, 703–712 (1960).

[26] C. Lemaréchal, Bundle Methods in Nonsmooth Optimization, in Nonsmooth Opti-
mization, vol. 3 of IIASA Proceedings Series, C. Lemaréchal and R. Mifflin, eds.,
Pergamon Press (1978).

Les Cahiers du GERAD G–2004–62 28

[27] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, New variants of bundle methods,
Mathematical Programming 69, 111–147 (1995).

[28] C. Lemaréchal, Lagrangian Relaxation, in Computational Combinatorial Optimiza-
tion, M. Jünger and D. Naddef, eds., Springer-Verlag, Heidelberg, 115–160 (2001).

[29] R.E. Marsten, W.W. Hogan, and J.W. Blankenship, The BOXSTEP Method for
Large-scale Optimization, Operations Research 23(3), 389–405 (1975).

[30] M.C. Pinar, S.A. Zenios, On smoothing exact penalty functions for convex constrained
optimization, SIAM Journal on Optimization 4, 486–511, (1994).

[31] C.C. Ribeiro, and F. Soumis, A Column Generation Approach to the Multi-Depot
Vehicle Scheduling Problem, Operations Research 42(1), 41–52 (1994).

[32] R.T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM
Journal on Control and Optimization 14(5) (1976).

[33] H. Schramm, J. Zowe, A version of the bundle idea for minimizing a nonsmooth
function: Conceptual idea, convergence analysis, numerical results, SIAM Journal on
Optimization 2, 121–152 (1992).

[34] M. Teboulle, Convergence of proximal-like algorithms, SIAM Journal on Optimization
7, 1069–1083 (1997).

