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Abstract

We find all connected graphs in which any two distinct vertices have exactly two
common neighbors, thus solving a problem by B. Zelinka.

Key Words: Graphs; Adjacency matrix; Eigenvalues of a graph; Common neigh-
bours.

Résumé

Nous déterminons tous les graphes convexes pour lesquels deux sommets distincts
quelconques ont toujours exactement deux voisins communs. Ceci résoud un problème
de B. Zelinka.

Mots Clefs : graphes, matrice d’adjacence, valeurs propres d’un graphe, voisins
communs.
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We consider finite undirected graphs without loops and multiple edges. The symbol
V (G) denotes the vertex set of a graph G, while the symbol A(G) denotes the adjacency
matrix of G. If u ∈ V (G), then by N(u) we denote the set of vertices of G adjacent to u

and N(u) = V (G) \
(

N(u) ∪ {u}
)

. If M ⊆ V (G), then by 〈M〉 we denote the subgraph of
G induced by the set M . For other undefined notions, see, for example, [2].

According to [3], at the Czechoslovak conference on graph theory at Zempĺınska Š́ırava
in June 1991, P. Hliněný proposed the problem to describe all connected graphs G with
the property that for any two distinct vertices of G there exist exactly two vertices which
are adjacent to both of them in G. He conjectured that there are only two such graphs,
which adjacency lists are shown in Fig. 1a and Fig. 1b. In [3], B. Zelinka disproved this
conjecture by giving another graph with this property, which adjacency lists are shown in
Fig. 1c. Here we shall show that these three graphs are the only connected graphs with
this property.

Fig. 1a Fig. 1b Fig. 1c

u: a b c

a: u b c

b: u a c

c: u a b

u: a b c d e f

a: u b c g h i

b: u a c j k l

c: u a b m n o

d: u e f g j m

e: u d f h k n

f: u d e i l o

g: a d h i j m

h: a e g i k n

i: a f g i l o

j: b d k l g m

k: b e j l h n

l: b f j k i o

m: c d n o g j

n: c e m o h k

o: c f m n i l

u: a b c d e f

a: u b f g h i

b: u a c g j k

c: u b d j l m

d: u c e h l n

e: u d f k n o

f: u a e i m o

g: a b h k l o

h: a d g i l n

i: a f h m j n

j: b c k m i n

k: b e g j n o

l: c d m h g o

m: c f j l i o

n: d e h k i j

o: e f k m g l

Figure 1: All connected graphs in which each pair of vertices has exactly two common
neighbors.

The following results are proved in [3].

Proposition 1 Let G be a graph in which any two distinct vertices have exactly two com-

mon neighbours. Then for each u ∈ V (G) the graph 〈N(u)〉 is regular of degree 2.

Proposition 2 Let G be a graph in which any two distinct vertices have exactly two com-

mon neighbours. Then no graph 〈N(u)〉 for u ∈ V (G) contains a circuit C4.
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Theorem 1 Let G be a connected graph in which any two distinct vertices have exactly

two common neighbours. Let G contain a vertex u of degree r ≥ 5. Then G is regular of

degree r and its number of vertices is n = 1

2
(r2 − r + 2).

Let G be a connected graph in which any two distinct vertices have exactly two com-
mon neighbors. First, suppose that the largest vertex degree of G is less than 5. From
Proposition 1 it follows that every vertex of G has degree at least 3, while from Proposition
2 it follows that no vertex of G has degree 4. Therefore, G is a cubic graph. If u is an
arbitrary vertex of G, the graph 〈N(u)〉 ∼= C3, and each vertex of N(u) is adjacent to u

and other two vertices of N(u). Thus, the component of G containing u is isomorphic to
K4, and since G is connected, we conclude that G is isomorphic to K4, which adjacency
lists are shown in Fig. 1a.

Next, suppose that G is a connected regular graph of degree r ≥ 5 with n = 1

2
(r2−r+2)

vertices, by Theorem 1. It is well-known that the (i, j)-element of the matrix A(G)2

represents the number of walks of length 2 between vertices i and j of G. Then

(A(G)2)i,j =

{

r, i = j

2, i 6= j

If I denotes the identity matrix and J denotes the all-one matrix of corresponding dimen-
sions, we can write

A(G)2 = (r − 2)I + 2J.

The matrix (r−2)I +2J has a simple eigenvalue r−2+2n = r2 and a multiple eigenvalue
r − 2 of multiplicity n − 1. Thus, the adjacency matrix A(G) has a simple eigenvalue
r, an eigenvalue

√
r − 2 of multiplicity k and an eigenvalue −

√
r − 2 of multiplicity l,

k + l = n − 1. The sum of eigenvalues of A(G) is equal to zero (see, e.g., [1]), and from
r + (k − l)

√
r − 2 = 0 we get that

l − k =
r√

r − 2
∈ N.

It follows that
√

r − 2 must be a rational number, and thus an integer, so that r = a2 + 2
for some a ∈ N. Now

r√
r − 2

= a +
2

a
∈ N

and thus a ∈ {1, 2}, or equivalently, r ∈ {3, 6}. Since we supposed that r ≥ 5, it follows
that G is a regular graph of degree r = 6 with n = 16 vertices.

Thus, if u is an arbitrary vertex of G, the graph 〈N(u)〉 is either isomorphic to 2C3 or
to C6. Suppose that for some vertex u of G it holds that 〈N(u)〉 ∼= 2C3. Let {a, b, c} be one
of two circuits in N(u). Then {u, b, c} ⊆ N(a) and since u, b and c form C3, we conclude
that it must hold that 〈N(a)〉 ∼= 2C3. Continuing in this manner, from the connectivity
of G it follows that 〈N(v)〉 ∼= 2C3 for every vertex v of G. Let {d, e, f} form the other
circuit in N(u). In the set {u, a, b, c, d, e, f} vertices from the same circuit of 〈N(u)〉 have
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two common neighbours—vertex u and the third vertex of the circuit, while vertices from
different circuits of 〈N(u)〉 have just one common neighbour—vertex u. Therefore, for
each pair {s, t} of vertices from different circuits there exists exactly one vertex in N(u)
adjacent to both s and t. Denoting by cn(s, t) the common neighbour of s and t in N(u),
we may suppose that

g = cn(a, d), h = cn(a, e), i = cn(a, f),

j = cn(b, d), k = cn(b, e), l = cn(b, f),

m = cn(c, d), n = cn(c, e), o = cn(c, f).

Thus, N(a) = {u, b, c, g, h, i} and since u, b and c form C3, it follows that g, h and i must
form another C3. Similarly, considering N(b), N(c), N(d), N(e) and N(f) we get that
circuits of length 3 are formed by the following sets of vertices:

{j, k, l}, {m, n, o}, {g, j, m}, {h, k, n}, {i, l, o}.

It is easy to check that in the graph constructed this way, which adjacency lists are shown
in Fig. 1b, each pair of vertices has exactly two common neighbours. Since it is regular of
degree 6, it must be isomorphic to G.

Next, suppose that 〈N(u)〉 ∼= C6 for every vertex u of G. As before, let
N(u) = {a, b, c, d, e, f} and let a, b, c, d, e, f in that order form C6. In the set
{u, a, b, c, d, e, f} vertices from C6 at distance two have two common neighbours—vertex u

and a vertex from C6 between them, while other pairs of vertices from C6 have one common
neighbour—vertex u. Therefore, for each pair {s, t} of vertices from C6, that are not at
distance two, there exists a vertex in N(u) adjacent to both s and t. We may suppose that

g = cn(a, b), j = cn(b, c), l = cn(c, d),

n = cn(d, e), o = cn(e, f), i = cn(f, a),

h = cn(a, d), k = cn(b, e), m = cn(c, f).

Thus, N(a) = {u, b, f, g, h, i} and 〈N(a)〉 contains edges {g, b}, {b, u}, {u, f} and {f, i}.
In order that 〈N(a)〉 ∼= C6, 〈N(a)〉 must also contain edges {g, h} and {h, i}. Similarly,
considering N(b), N(c), N(d), N(e) and N(f) we get that the following pairs of vertices
must be adjacent:

{g, k}, {k, j}, {j, m}, {m, l}, {l, h}, {h, n}, {n, k}, {k, o}, {i, m}, {m, o}.

In a graph constructed this far, vertices h, k and m have degree 6, while the remaining
vertices of N(u) have degree 4. Now, we have that {a, b, k, h} ⊂ N(g) and 〈N(g)〉 contains
edges {h, a}, {a, b} and {b, k}. Vertex i cannot belong to N(g), as there is an edge {a, i}
and then 〈N(g)〉 will not be regular of degree 2. From the same reason, the existence of
edge {b, j} implies that vertex j cannot belong to N(g). Also, vertex n cannot belong
to N(g), as there are edges {h, n} and {k, n} and then 〈N(g)〉 will contain C5, which is
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impossible. Therefore, N(g) contains vertices l and o, which are adjacent. Similarly, we
can get that N(i) contains vertices j and n, which are adjacent. It is easy to check that
in the graph constructed this way, which adjacency lists are shown in Fig. 1c, each pair
of vertices has exactly two common neighbours. Since it is regular of degree 6, it must be
isomorphic to G.

Thus, we have proved the following.

Theorem 2 There exist exactly three connected graphs, which adjacency lists are shown

in Fig. 1, in which each pair of distinct vertices has exactly two common neighbours.
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