# Efficient Algorithms for Finding Critical Subgraphs 

C. Desrosiers, P. Galinier
A. Hertz

G-2004-31
April 2004

Les textes publiés dans la série des rapports de recherche HEC n'engagent que la responsabilité de leurs auteurs. La publication de ces rapports de recherche bénéficie d'une subvention du Fonds québécois de la recherche sur la nature et les technologies.

# Efficient Algorithms for Finding Critical Subgraphs 

C. Desrosiers<br>P. Galinier<br>Département de Génie Informatique<br>École Polytechnique, Montréal, Canada

A. Hertz<br>GERAD and Département de Mathématiques et de Génie Industriel École Polytechnique, Montréal, Canada

April, 2004

Les Cahiers du GERAD
G-2004-31
Copyright (c) 2004 GERAD


#### Abstract

This paper presents algorithms to find vertex-critical and edge-critical subgraphs in a given graph $G$, and demonstrates how these critical subgraphs can be used to determine the chromatic number of $G$. Computational experiments are reported on random and DIMACS benchmark graphs to compare the proposed algorithms, as well as to find lower bounds on the chromatic number of these graphs. We improve the best known lower bound for some of these graphs, and we are even able to determine the chromatic number of some graphs for which only bounds were known.


Keywords: Graph coloring, chromatic number, critical subgraphs.

## Résumé

Nous décrivons des algorithmes pour la détermination de sous-graphes sommetcritiques et arêtes-critiques d'un graphe $G$, et nous montrons comment ces sous-graphes critiques peuvent être utilisés pour la détermination du nombre chromatique de $G$. Nous présentons des résultats numériques d'expériences effectuées sur des graphes aléatoires ainsi que sur les problèmes tests du challenge DIMACS. Ces expériences nous ont permis de comparer les divers algorithmes que nous avons développés, ainsi que de calculer des bornes inférieures sur le nombre chromatique des graphes testés. Nous avons ainsi amélioré la borne inférieure sur le nombre chromatique pour plusieurs de ces graphes, et nous avons même pu déterminer le nombre chromatique de graphes pour lesquels seules des bornes étaient connues.

## 1 Introduction

Let $G=(V, E)$ be an undirected graph with vertex set $V$ and edge set $E$. A $k$-coloring of $G$ is a function $c: V \rightarrow\{1, \ldots, k\}$. It is said legal if $c(i) \neq c(j)$ for all edges $(i, j)$ in $E$. The smallest integer $k$ such that a legal $k$-coloring exists for $G$ is the chromatic number $\chi(G)$ of $G$. Finding the chromatic number of a given graph is known as the graph-coloring problem, and is NP-hard [8]. Although many exact algorithms have been devised for this particular problem $[2,18,14,16,11]$, such algorithms can only be used to solve small instances. Heuristics coloring algorithms [5, 6, 12, 20], on the other hand, can be used on much larger instances, but only to get an upper bound on $\chi(G)$.

### 1.1 Preliminary definitions

A graph $G$ is vertex-critical if $\chi(H)<\chi(G)$ for every subgraph $H \subset G$ obtained by removing any vertex from $G$. Similarly, $G$ is edge-critical if removing any edge causes a decrease of $\chi(G)$. Given an integer $k$, a $k$-vertex-critical subgraph ( $k$-VCS) of $G$ is a vertex-critical subgraph $G^{\prime} \subseteq G$, such that $\chi\left(G^{\prime}\right)=k$. Similarly, a $k$-edge-critical subgraph ( $k$-ECS) of $G$ is an edge-critical subgraph $G^{\prime} \subseteq G$, such that $\chi\left(G^{\prime}\right)=k$. Note that each graph $G$ contains at least one $k$-VCS and one $k$-ECS for $1 \leq k \leq \chi(G)$. Finally, a $k$-VCS (resp. $k$-ECS) is minimum if $G$ has no other such critical subgraph containing less vertices (resp. edges).

While any $k$-ECS is also a $k$-VCS, the opposite is not necessarily true. For example, consider the graph in Figure 1. This graph of chromatic number 4 is vertex-critical, since removing any vertex decreases its chromatic number to 3 , but is not edge-critical since one can remove the edge ( $v_{1}, v_{2}$ ) without changing its chromatic number.


Figure 1: A vertex-4-critical subgraph that is not edge-4-critical

### 1.2 Applications of critical subgraphs

There are many reasons to search for critical subgraphs of a given graph $G$. One of them is to obtain $\chi(G)$ [11]. A lower bound on $\chi(G)$ can be obtained by finding a $k$-VCS or a $k$-ECS $H$ of $G$ for any $1 \leq k \leq \chi(G)$ and then computing $\chi(H)$ using an exact coloring algorithm. Furthermore, if an upper bound $k^{\prime}$ on $\chi(G)$ is known, for example from a heuristic algorithm, one can find a $k^{\prime}$-VCS or a $k^{\prime}$-ECS $G^{\prime}$ and show that $\chi\left(G^{\prime}\right)=k^{\prime}$ using the exact coloring algorithm. The reason for applying the exact coloring algorithm to $G^{\prime}$ instead of $G$ is that, unless $G$ is itself critical, critical subgraphs have fewer edges and
possibly fewer vertices. Thus, the exact coloring algorithms, of exponential complexity, have better chances of solving these reduced subgraphs than the whole graph.

This paper proposes algorithms for finding $k$-VCSs and $k$-ECSs, and is organized as follows. Section 2 contains the description of these algorithms. Section 3 presents a heuristic strategy to find small critical subgraphs. Section 4 discusses the implementation of heuristic coloring algorithms for critical subgraph detection. Section 5 introduces a technique to speed up the detection. Section 6 contains an algorithm to compute a lower bound on the size of a critical subgraph. Section 7 presents some computational experiments and their results. Finally, section 8 contains some final remarks on this paper.

## 2 Critical subgraph detection algorithms

The graph $k$-coloring problem, where one has to find a legal $k$-coloring or show that none exists, is a classic instance of the constraint satisfaction problem (CSP) [15, 19], where the vertices are the variables, the set $\{1, \ldots, k\}$ of possible colors is the domain of each variable, and each edge induces an inequality constraint on two variables. Hence, a legal $k$-coloring exists if one can assign a value to all variables such that all constraints are satisfied. Given an infeasible CSP, an irreducible inconsistent set (IIS) of variables (resp. constraints) is an infeasible set that becomes feasible when any variable (resp. constraint) is removed [19, 7]. A $k$-VCS (resp. $k$-ECS) of a graph $G$ is thus an IIS of variables (resp. constraints) for the CSP that corresponds to finding a $(k-1)$-coloring of $G$. In [7], Galinier and Hertz present some algorithms that find IISs of variables and constraints in infeasible CSPs. We now present these algorithms and their most interesting properties, in the context of graph coloring and critical subgraphs. For the proofs of these properties, we refer to [7].

Definition Let $G=(V, E)$ be a graph, $c$ a $k$-coloring of $G$, and $U_{E}(c) \subseteq E$ the set of edges having both vertices with the same color in $c$. Given a function $w_{E}: E \rightarrow \mathbb{R}$ that associates a weight $w_{E}(e)$ to each edge $e \in E$, the minimum weighted $k$-coloring problem is to determine a $k$-coloring $c$ for $G$ that minimizes the following cost function:

$$
f_{E}(c)=\sum_{e \in U_{E}(c)} w_{E}(e)
$$

(i.e., $f_{E}(c)$ is the sum of the weights of the edges in $U_{E}(c)$.)

Definition Let $G=(V, E)$ be a graph, $c$ a partial legal $k$-coloring of this graph, and $U_{V}(c) \subseteq V$ the subset of vertices that are not colored in $c$. Given a function $w_{V}: V \rightarrow \mathbb{R}$ that associates a weight $w_{V}(v)$ to each vertex $v \in V$, the minimum partial legal weighted $k$-coloring problem is to determine a partial legal $k$-coloring $c$ for $G$, that minimizes the following cost function:

$$
f_{V}(c)=\sum_{v \in U_{V}(c)} w_{V}(v)
$$

(i.e., where $f_{V}(c)$ is the sum of the weights of the vertices that are not colored in $c$.)

To be more succinct, we will present only one version of each algorithm, which can be used to find $k$-VCSs or $k$-ECSs. If one wants to find a $k$-VCS, $S$ corresponds to the set of vertices $V, w$ is the weight function $w_{V}, f$ is the cost function $f_{V}, U(c)$ is the set of non-colored vertices in a partial legal $(k-1)$-coloring $c$ of $G$, and Min is an exact or heuristic algorithm that finds such a coloring that minimizes $f_{V}$. On the other hand, if the goal is to find a $k$-ECS, then $S$ is the set of edges $E, w$ is the weight function $w_{E}, f$ is the cost function $f_{E}, U(c)$ is the set of edges having both vertices with the same color in a ( $k-1$ )-coloring $c$, and Min is an exact or heuristic algorithm that finds such a coloring that minimizes $f_{E}$. One can also consider Min as an algorithm that finds a set of vertices or edges which intersects with every vertex-critical or edge-critical subgraph, such that the total weight of this set is minimum. The algorithms we are going to present do not return a critical subgraph, but rather a subset $H$ of vertices or edges which translates into a subgraph by reducing $G$ so that its set of vertices $V$ or its set of edges $E$ is equal to $H$.

### 2.1 The removal algorithm

The removal algorithm is perhaps the simplest of all critical subgraphs detection algorithms. Similar approaches have already been proposed, for example, in $[3,4]$ for linear programming and in [11] for the graph coloring problem. Given a graph $G$ and an integer $k$, the removal algorithm finds $k$-VCSs (resp. $k$-ECSs) by removing vertices (resp. edges) from $G$ and setting their weight to 0 . If the chromatic number of the remaining graph becomes smaller than $k$, then Min should find a coloring $c$ with $f(c)=0$. In such a case, the vertex or edge that was removed last is re-inserted in $G$ and its weight is set equal to $|S|$. The algorithm repeats this process until Min produces a coloring $c$ with $f(c) \geq|S|$, which occurs the vertices or edges of weight $|S|$ induce a graph of chromatic number $k$.

Property 2.1 Given a graph $G$ and an integer $k$, if Min is an exact algorithm, then the removal algorithm produces, in a finite number of iterations, a set $H$ which forms a $k$-VCS or a $k$-ECS. Otherwise, if Min is a heuristic algorithm, then $H$ forms a subgraph that is either a $k$-VCS or $k$-ECS, or has a chromatic number smaller than $k$.

To illustrate the removal algorithm, consider the graph shown in Figure 2. This graph has a chromatic number of 3 , and contains two 3 -VCSs, $\left\{v_{1}, v_{2}, v_{6}\right\}$ (minimum) and $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$, as well as three 3-ECSs, $\left\{e_{1}, e_{2}, e_{4}\right\}$ (minimum), $\left\{e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$ and $\left\{e_{1}, e_{2}, e_{3}, e_{5}, e_{6}, e_{7}\right\}$. Suppose we want to find a 3 -VCS. We first remove any vertex, for example $v_{2}$. The graph then becomes 2 -colorable (i.e. $f(c)=0$ ), so $v_{2}$ gets re-inserted with a weight of $|S|=6$. Another vertex is then removed, say $v_{1}$, and since $\chi(G)$ remains equal to 3 , this vertex is not re-inserted in the graph. Notice that the 3 -VCS that contained $v_{1}$ has been destroyed in the process, and the only one 3 -VCS, containing the vertices $v_{2}, v_{3}$, $v_{4}, v_{5}$ and $v_{6}$, remains. Hence, these vertices all decrease $\chi(G)$ when removed, and will all get weight $|S|=6$. When so, $f(c)=|S|$ and the 3 -VCS is therefore detected.

Observe that the order in which the vertices or edges are removed affect which critical subgraph is obtained. Accordingly, if we had removed $v_{3}$ instead of $v_{1}$ during the second removal, the resulting 3 -VCS would instead contain $v_{1}, v_{2}$ and $v_{6}$, and would be minimum.

```
Algorithm 1 Removal
Input: A graph \(G\) and an integer \(k\);
Output: A set \(H\) of vertices or edges.
    Initialization
    for all \(s \in S\) do
        \(w(s) \leftarrow 1 ;\)
    end for
    Construction
    repeat
        Choose an element \(s \in S\) such that \(w(s)=1\);
        \(w(s) \leftarrow 0 ;\)
        \(c \leftarrow \operatorname{Min}(G, k-1, w) ;\)
        if \(f(c)=0\) then
            \(w(s) \leftarrow|S| ;\)
        end if
    until \(f(c) \geq|S|\)
```

    Extraction
    \(H \leftarrow\{s|w(s)=|S|\} ;\)
    

Figure 2: A graph of chromatic number 4

### 2.2 The insertion algorithm

While the removal algorithm proceeds by removing vertices or edges from the graph, the insertion algorithm builds a critical subgraph by adding them. Every iteration $i$, Min returns a ( $k-1$ )-coloring $c_{i}$ that minimizes $f$. This coloring has a set $U\left(c_{i}\right)$ of uncolored vertices or conflicted edges. From this set, one vertex or edge gets a weight of $|S|$ and the others are removed by setting their weight to 0 . One vertex or edge is kept to ensure that at least one $k$-VCS or $k$-ECS remains in $G$. Once again, this process is repeated until the vertices or edges of weight $|S|$ induce a graph with chromatic number $k$.

Property 2.2 Given a graph $G$ and an integer $k$, if Min is an exact algorithm, then the insertion algorithm produces, in a finite number of iterations, a set $H$ which forms a $k$-VCS or a $k$-ECS. Otherwise, if Min is a heuristic algorithm, then $H$ forms a subgraph that is either a $k$-VCS or $k$-ECS, or has a chromatic number smaller than $k$.

Let us illustrate the insertion algorithm on the detection of a 3-ECS in the graph of Figure 2. The first 2-coloring $c_{1}$ returned by Min gives $U\left(c_{1}\right)=\left\{e_{4}\right\}$. Since $e_{4}$ is the only conflicted edge, its weight is changed to $|S|=7$. The next 2 -coloring should then satisfy this edge and have one conflicted edge for each 3 -ECS. The second 2 -coloring $c_{2}$ can therefore be such that $U\left(c_{2}\right)=\left\{e_{1}, e_{3}\right\}$. Suppose we choose to set the weight of $e_{1}$ to 0 and $e_{3}$ to $|S|=7$, only one 3 -ECS remains: $\left\{e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$. The three next 2-colorings $c_{3}$, $c_{4}$ and $c_{5}$ will fix the weight of $e_{5}, e_{6}$ and $e_{7}$ to $|S|=7$. Then Min produces a 2 -coloring $c_{6}$ with $f\left(c_{6}\right)=|S|=7$, and the 3 -ECS is therefore detected. Once more, the choice of which edge from each $U\left(c_{i}\right)$ gets a weight of $|S|=7$ determines which critical subgraph is found by the insertion algorithm. If, during the second iteration, we had decided to set the weight of $e_{3}$ to 0 instead of $e_{1}$, one can verify that the 3 -ECS found would have been the minimum one formed by $\left\{e_{1}, e_{2}, e_{4}\right\}$.

```
Algorithm 2 Insertion
Input: A graph \(G\) and an integer \(k\);
Output: A set \(H\) of vertices or edges.
    Initialization
    for all \(s \in S\) do
        \(w(s) \leftarrow 1 ;\)
    end for
    Construction
    repeat
        \(c \leftarrow \operatorname{Min}(G, k-1, w) ;\)
        if \(f(c)=0\) then
            STOP: an error occurred;
        else if \(f(c)<|S|\) then
            Choose an element \(s \in U(c)\) such that \(w(s)=1\);
            \(w(s) \leftarrow|S| ;\)
            for all \(s^{\prime} \in U(c), s^{\prime} \neq s\) do
                    \(w\left(s^{\prime}\right) \leftarrow 0 ;\)
            end for
        end if
    until \(f(c) \geq|S|\)
    Extraction
    \(H \leftarrow\{s|w(s)=|S|\} ;\)
```



Figure 3: A graph containing one minimum edge-3-critical subgraph

Notice that the insertion algorithm cannot find all the critical subgraphs of a given graph. Consider, for example, the graph of chromatic number 3, shown in Figure 3. Suppose we wish to find the minimum 3-ECS corresponding to the three edges in the center of the graph (bold lines in the figure). The first coloring $c_{1}$ yields a $U\left(c_{1}\right)$ that contains these three edges. However, since we have to set the weight of one of these edges to $|S|$ and the rest to 0 , this 3 -ECS will thus be destroyed, and the output of the insertion algorithm will therefore be one of the pentagons.

### 2.3 The hitting set algorithm

The hitting set algorithm differs from the two previous algorithms in that it produces minimum critical subgraphs. This algorithm relies on the fact that, given a graph $G$ and a ( $k-1$ )-coloring $c$ produced by Min, the set $U(c)$ necessarily intersects with all $k$-VCSs or $k$-ECSs of $G$. A $k$-VCS or a $k$-ECS is thus a hitting set (see definition below) of the collection $\mathcal{U}=\left\{U\left(c_{1}\right), \ldots, U\left(c_{|\mathcal{U}|}\right)\right\}$.
Definition Let $\mathcal{J}=\left\{J_{1}, \ldots, J_{|\mathcal{J}|}\right\}$ be a collection of sets $J_{i} \subseteq S, 1 \leq i \leq|\mathcal{J}|$, and $H \subseteq S$ be another set. $H$ is a hitting set of $\mathcal{J}$ if it intersects each of its subsets $J_{1}, \ldots, J_{|\mathcal{J}|}$. The minimum hitting set problem for a collection $\mathcal{J}$ consists in finding a hitting set $H^{*}$ of $\mathcal{J}$ such that $\left|H^{*}\right|$ is minimum.

At each iteration $i$, the hitting set algorithm obtains a coloring $c_{i}$ and adds the set $U\left(c_{i}\right)$ to the initially empty collection $\mathcal{U}$. The algorithm then calls an exact procedure, called MinHS, which returns a minimum hitting set $H$ for $\mathcal{U}$. The weight of all vertices or edges in $H$ is then set equal to $|S|$, while the other vertices or edges get a weight of 1 . This procedure is repeated until MinHS produces a coloring $c$ with $f(c) \geq|S|$.

Property 2.3 Given a graph $G$ and an integer $k$, if Min is an exact algorithm, then the hitting set algorithm produces, in a finite number of iterations, a set $H$ which forms a minimum $k$-VCS or $k$-ECS. Otherwise, if Min is a heuristic algorithm, then $H$ forms a subgraph that is either a minimum $k$-VCS or $k$-ECS, or has a chromatic number smaller than $k$.

If MinHS is replaced by a heuristic algorithm, then the property still holds, except that there is no guarantee that a detected $k$-VCS or $k$-ECS is minimum.

Lets illustrate the hitting set algorithm on the graph of Figure 2. Suppose that our goal is to find a 3 -VCS. Since $\mathcal{U}$ is initially empty, all edges first get a weight of 1 . Accordingly,
the first partial 2 -coloring $c_{1}$ is such that $U\left(c_{1}\right)$ contains either $v_{2}$ or $v_{6}$, say $v_{2}$. We then set $\mathcal{U}=\left\{\left\{v_{2}\right\}\right\}$, such that the next hitting set returned by MinHS is $H=\left\{v_{2}\right\}$. Then, $c_{2}$ should give $U\left(c_{2}\right)=\left\{v_{6}\right\}$ and therefore $\mathcal{U}=\left\{\left\{v_{2}\right\},\left\{v_{6}\right\}\right\}$. In turn, the following hitting set should be $H=\left\{v_{2}, v_{6}\right\}$, and $U\left(c_{3}\right)$ should contain $v_{1}$ and another vertex from the set $\left\{v_{3}, v_{4}, v_{5}\right\}$, for example, $v_{3}$. We then have $\mathcal{U}=\left\{\left\{v_{2}\right\},\left\{v_{6}\right\},\left\{v_{1}, v_{3}\right\}\right\}$, and the corresponding hitting set can be either $\left\{v_{1}, v_{2}, v_{6}\right\}$ or $\left\{v_{2}, v_{3}, v_{6}\right\}$. In the first case, the minimum 3-VCS is found. However, if the latter set is returned by MinHS, then $U\left(c_{4}\right)$ necessarily contains $v_{1}$ and either $v_{4}$ or $v_{5}$, say $v_{4}$. We finally have $\mathcal{U}=\left\{\left\{v_{2}\right\},\left\{v_{6}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}$, and the next hitting set will be $H=\left\{v_{1}, v_{2}, v_{6}\right\}$, the minimum 3-VCS.

```
Algorithm 3 Hitting set
Input: A graph \(G\) and an integer \(k\);
Output: A set \(H\) of vertices or edges.
    Initialization
    \(\mathcal{U} \leftarrow \emptyset ;\)
    Construction
    repeat
        \(H \leftarrow \operatorname{MinHS}(\mathcal{U})\);
        for all \(s \in S\) do
            if \(s \in H\) then
                \(w(s) \leftarrow|S| ;\)
            else
                    \(w(s) \leftarrow 1 ;\)
            end if
        end for
        \(c \leftarrow \operatorname{Min}(G, k-1, w) ;\)
        if \(f(c)<|S|\) then
            \(\mathcal{U} \leftarrow \mathcal{U} \cup\{U(c)\} ;\)
        end if
    until \(f(c) \geq|S|\)
```

While the hitting set finds a minimum critical subgraph, it does so in an exponential number of steps. Therefore, this algorithm may not be suitable for large instances. However, one can stop the algorithm at any time and use $|H|$ as a lower bound on the size of critical subgraphs.

### 2.4 The pre-filtering algorithm

When dealing with large instances, it can be useful to quickly filter out as many vertices and edges as possible, leaving less for the critical subgraph detection algorithm. The prefiltering algorithm is a variation of the insertion algorithm used as pre-processing before one of the aforementioned detection algorithms is applied. At each iteration $i$, Min produces a ( $k-1$ )-coloring $c_{i}$ that minimizes $f$. This coloring has a set $U\left(c_{i}\right)$ of uncolored vertices
or conflicted edges. A weight of $|S|$ is assigned to each element in $U\left(c_{i}\right)$. The algorithm stops when a coloring $c$ is produced with $f(c) \geq|S|$. When this occurs, all vertices or edges with weight 1 are filtered out. Since at least one vertex (resp. edge) of each $k$-VCS (resp. $k$-ECS) gets a weight of $|S|$ at each iteration, smaller critical subgraphs are more likely to remain on the filtered graph rather than bigger ones. Thus, the pre-filtering algorithm acts as an heuristic that isolates smaller critical subgraphs.

```
Algorithm 4 Pre-filtering
Input: A graph \(G\) and an integer \(k\);
Output: A set \(H\) of vertices or edges.
```

```
    Initialization
```

    Initialization
    for all \(s \in S\) do
    for all \(s \in S\) do
        \(w(s) \leftarrow 1 ;\)
        \(w(s) \leftarrow 1 ;\)
    end for
    end for
    Construction
    Construction
    repeat
    repeat
        \(c \leftarrow \operatorname{Min}(G, k-1, w) ;\)
        \(c \leftarrow \operatorname{Min}(G, k-1, w) ;\)
        if \(f(c)<|S|\) then
        if \(f(c)<|S|\) then
            for all \(s \in U(c)\) such that \(w(s)=1\) do
            for all \(s \in U(c)\) such that \(w(s)=1\) do
            \(w(s) \leftarrow|S| ;\)
            \(w(s) \leftarrow|S| ;\)
        end for
        end for
        end if
        end if
    until \(f(c) \geq|S|\)
    until \(f(c) \geq|S|\)
    Extraction
    Extraction
    \(H \leftarrow\{s|w(s)=|S|\} ;\)
    ```
    \(H \leftarrow\{s|w(s)=|S|\} ;\)
```

Consider once more the detection of a 3-ECS for the graph in Figure 2. If we use the pre-filtering algorithm, the first 2-coloring returned by Min gives $U\left(c_{1}\right)=\left\{e_{4}\right\}$. As a result, $e_{4}$ gets a weight of $|S|=7$. Then $U\left(c_{2}\right)$ contains an edge from the set $\left\{e_{1}, e_{2}\right\}$ and another from $\left\{e_{3}, e_{5}, e_{6}, e_{7}\right\}$, for example, $e_{1}$ and $e_{3}$. Both edges get a weight of $|S|=7$, such that the next 2 -coloring $c_{3}$ gives a set $U\left(c_{3}\right)$ containing $e_{2}$ and another edge from $\left\{e_{5}, e_{6}, e_{7}\right\}$, say $e_{5}$. Once both edges get a weight of $|S|=7$, any 2-coloring $c$ has total weight $f(c) \geq|S|$. The pre-filtering algorithm therefore stops and returns the set $H=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$. Notice that $H$ contains only one 3-ECS, $\left\{e_{1}, e_{2}, e_{4}\right\}$, which is of minimum cardinality.

As another example, consider the graph of Figure 3 in which the insertion algorithm fails to find the unique minimum 3-ECS (made of the edges of the middle triangle). As for the insertion algorithm, the first 2-coloring $c_{1}$ yields a set $U\left(c_{1}\right)$ that contains all three edges of the minimum 3-ECS. The weight of these three edges is set equal to $|S|$ and the pre-filtering algorithm then stops with the output $H$ made of these three edges. Hence, in contrast to the insertion algorithm, the pre-filtering algorithm succeeds in finding the minimum 3-ECS.

## 3 Neighborhood weight heuristic

Recall that finding a critical subgraph $H$ of a graph $G$ can be used to compute $\chi(G)$, and that exact coloring algorithms of exponential complexity are more likely to determine $\chi(H)$ rather than $\chi(G)$. Thus, when looking for a critical subgraph, it is essential to find one having as few vertices and edges as possible. We saw in the previous section that the hitting set algorithm finds minimum critical subgraphs. Since this algorithm typically requires an exponential number of iterations, one can instead use the pre-filtering algorithm to isolate small critical subgraphs. This section proposes yet another heuristic to find small critical subgraphs.

When describing the removal and insertion algorithms, we saw that the choice of which vertex or edge gets removed from $G$ or gets their weight set to $|S|$ at any iteration determines which critical subgraph is obtained. The heuristic we now present uses the information contained in the weights of the vertices and edges of $G$ to find smaller critical subgraphs of $G$.
Definition Consider a graph $G=(V, E)$ and a weight function $w_{V}$ that associates a weight $w_{V}(v)$ to each vertex $v \in V$, and let $\mathcal{N}_{V}(v)$ be the set of vertices adjacent to $v$. The neighborhood weight $W_{V}(v)$ of $v$ is defined as

$$
W_{V}(v)=\sum_{v^{\prime} \in \mathcal{N}_{V}(v)} w_{V}\left(v^{\prime}\right)
$$

Definition Consider a graph $G=(V, E)$ and a weight function $w_{E}$ that associates a weight $w_{E}(e)$ to each edge $e \in E$, and let $\mathcal{N}_{E}(e)$ be the set of edges having a common endpoint with $e$. The neighborhood weight $W_{E}(e)$ of $e$ is defined as

$$
W_{E}(e)=\sum_{e^{\prime} \in \mathcal{N}_{E}(e)} w_{E}\left(e^{\prime}\right)
$$

Figure 4 shows examples of neighborhood weights for the vertices (left graph) and edges (right graph) of a graph. The values on the left graph are obtained using the weights of vertices resulting from two iterations of a 3-VCS detection using the insertion algorithm, where vertices shown in bold have a weight of $|S|=6$ and others 1 . Suppose the third 2 -coloration $c_{3}$ produces a set $U\left(c_{3}\right)$ containing the topmost vertex of neighborhood weight 12 and another one with neighborhood weight 7 . The neighborhood weight heuristic favors keeping the vertex $v$ having the greatest value for $W_{V}(v)$, such that the topmost vertex would get its weight changed to $|S|=6$. Thus, the minimum 3-VCS corresponding to the three topmost vertices is found.

The graph on the right of Figure 4 shows the neighborhood weights of the edges after having initialized their weight to 1 . Suppose we are detecting 3-ECSs using the removal algorithm, the neighborhood weight heuristic favors the removal of an edge $e$ having the smallest value for $W_{E}(e)$. Hence, the first edge to be removed would be one of the bottom edges with $W_{E}(e)=2$. This removal destroys two of the 3 -ECSs, such that only the one with minimum cardinality remains.


Figure 4: Vertex (left) and edge (right) neighborhood weights

## 4 Heuristic coloring algorithms

The algorithms presented in section 2 guarantee that $k$-VCSs or $k$-ECSs are found when the input graph has chromatic number $\chi(G) \geq k$ and Min is an exact algorithm. However, the minimum weighted $k$-coloring problem and the minimum partial legal weighted $k$-coloring problem are both NP-hard, and using exact algorithms for larger instances may therefore prove to be impractical. This section discusses the implementation of heuristic coloring algorithms which allow, without any guarantee, to find critical subgraphs of much larger graphs.

Local search has shown to be an efficient strategy when implementing heuristic algorithms for hard optimization problems like the graph $k$-coloring problem. In particular, tabu search algorithms $[9,10]$ have produced excellent results on problems related to the minimum weighted $k$-coloring and minimum partial legal weighted $k$-coloring problems. Accordingly, we now give some details on how to implement such algorithms for critical subgraph detection.

Recall that for the detection of $k$-ECSs, the goal of procedure Min is to find a $(k-1)$ coloring $c$ such that the sum $f_{E}(c)$ of the weights of the edges having both vertices with the same color is minimum. The solution space of this problem is defined as the set of all such colorings, and the cost function is $f_{E}$. Given a coloring $c$, a neighbor solution is obtained by modifying the color of exactly one vertex of an edge in $U_{E}(c)$. To avoid cycling and escape local minima, the tabu strategy forbids assigning to a vertex a color this vertex had in the last $\tau$ iterations of the tabu search, unless this assignment improves the best cost found so far. The parameter $\tau$ is known as the tabu tenure, and its optimal value varies from one instance to another.

For the detection of $k$-VCS, procedure Min has to determine a partial legal $(k-1)$ coloring such that the sum $f_{V}(c)$ of the weights of the non-colored vertices is minimum. The solution space is the set of all such colorings, and the cost function is $f_{V}$. Following the strategy proposed by Morgenstern [17], a neighbor solution of a coloring $c$ is obtained by assigning a color $i$ to a non-colored vertex $v$, and by removing the color on each vertex $v^{\prime}$ adjacent to $v$ with $c\left(v^{\prime}\right)=i$. The tabu strategy forbids to color an non-colored vertex with a color that this vertex had in the last $\tau$ iterations, unless this move improves the best cost found so far.

## 5 Critical subgraphs detection speed-up

This section presents a technique that can be used to speed-up the detection of critical subgraphs when using the removal, insertion and pre-filtering algorithms.

Consider a graph $G$, an integer $k$, a weight function $w$, and let $c$ be a $(k-1)$-coloring produced by Min. Recall that $U(c)$ can be understood as a minimum hitting set of the $k$-VCSs or $k$-ECSs in $G$. Accordingly, if $c$ is a coloring with $f(c)=1$, we know that $U(c)$ contains a single vertex or edge that necessarily belongs to all $k$-VCSs or $k$-ECSs of $G$. We can therefore right away set the weight of this vertex or edge to $|S|$. This technique is very efficient when combined with a local search coloring algorithm which can evaluate millions of solutions in a single run. Indeed, each time the local search encounters a solution $c$ with $f(c)=1$, one can insert the unique element of $U(c)$ in a initially empty set $A$. At the end of the local search, one can assign the weight $|S|$ to each element in $A$. If a graph contains a unique $k$-VCS or $k$-ECS, then this technique can detect this critical subgraph in a single run of the local search, which takes no more than a few seconds.

## 6 A minimum critical subgraphs size lower bound

We have noticed in Section 2.3 that one can stop the hitting set algorithm at any time and use the size of the last hitting set $H$ as a lower bound on the size of a critical subgraph. This is only true in the case where MinHS finds optimal solutions to the NP-hard minimum hitting set problem. We now present another algorithm for computing a lower bound on the size of critical subgraphs

Given a graph $G$, an integer $k$ and an integer $i_{\text {max }}$, the lower bound algorithm computes a lower bound on the size of a $k$-VCS or $k$-ECS, using no more than $i_{\text {max }}$ iterations. This algorithm uses a function $\mu: S \rightarrow \mathbb{N}^{+}$that associates to each vertex or edge $s \in S$ the number $\mu(s)$ of iterations $i$ where this vertex or edge was in the set $U\left(c_{i}\right)$. In other words, $\mu(s)$ is initially equal to 0 for all $s \in S$, and at each iteration $i$, Min returns a coloring $c_{i}$ and $\mu(s)$ is incremented by one unit for each $s \in U\left(c_{i}\right)$. A temporary lower bound $b^{\prime}$ is then obtained from a function $g$ defined below.

Definition Let $s_{1} \geq \ldots \geq s_{|S|}$ be an ordering of the elements in $S$ such that $\mu\left(s_{1}\right) \geq$ $\ldots \geq \mu\left(s_{|S|}\right)$. Given an integer $i, g(\mu, i)$ is defined as the smallest integer $l$ such that $\sum_{j=1}^{l} \mu\left(s_{j}\right) \geq i$

Finally, since the lower bound $b^{\prime}$ given by $g$ can decrease from one iteration to another, the best lower bound $b$ is set equal to the greatest value between the previous best value $b$ and the new bound $b^{\prime}$.

To illustrate the lower bound algorithm, consider once again the graph in Figure 3, which contains one minimum 3-ECS that the insertion algorithm fails to detect. Figure 5 shows the details of the first seven iterations of the algorithm. As before, the first 2coloring $c_{1}$ has a set $U\left(c_{1}\right)$ containing the three edges forming a triangle in the center of the graph. For those edges $e, \mu(e)$ is increased to $1, w(e)$ is set equal to $|S|$, and since only

```
Algorithm 5 lower bound
Input: A graph \(G\), an integer \(k\) and an integer \(i_{\text {max }}\);
Output: A lower bound \(b\).
    Initialization
    for all \(s \in S\) do
        \(\mu(s) \leftarrow 0 ;\)
    end for
    \(i \leftarrow 0\);
    Computation
    while \(i<i_{\text {max }}\) do
        for all \(s \in S\) do
        \(w(s) \leftarrow|S|^{\mu(s)} ;\)
        end for
        \(c \leftarrow \operatorname{Min}(G, k-1, w)\);
        for all \(s \in U(c)\) do
            \(\mu(s) \leftarrow \mu(s)+1 ;\)
        end for
        \(b=\max (b, g(\mu, i))\);
    end while
```



Figure 5: Illustration of the minimum size lower bound algorithm
one of them is required to total $i=1$, the lower bound $b$ is set to 1 . The next 2 -coloring $c_{2}$ is such that $U\left(c_{2}\right)$ contains one of the three middle edges, and four other edges to cover all the remaining 3-ECSs, as shown in the second graph of Figure 5. Thus, the leftmost edge $e$ of the triangle gets $\mu(e)=2$ and since this single value is sufficient to total $i=2, b$ remains equal to 1 . The same happens for $c_{3}$, except that the rightmost edge is in $U\left(c_{3}\right)$ and that two edges are now required to total $i=3$, and thus $b=2$. Next, $c_{4}$ has all three edges of the triangle with $\mu(e)=2$, and given that only two of those are required to total $i=4, b$ remains equal to 2 . The fifth and sixth 2 -colorings then cause two of the edges of the triangle to have $\mu(e)=3$ such that $b$ still remains equal to 2 . However, for the seventh 2 -coloring, three edges are necessary to total $i=7$, and the lower bound $b$ therefore becomes 3. Because $b$ then equals the size of the smallest 3-ECS, all subsequent iterations of this algorithm would be useless. Hence, $i_{\max }=7$ is an optimal number of iterations for this particular graph.

There are cases, however, where this algorithm fails to obtain a lower bound equal to the size of a minimum critical subgraph. For example, consider the graph in Figure 6 which has a chromatic number of 4 . Given the task of finding a lower bound to the minimum 3 -VCS, one can verify that the algorithm returns a lower bound of 2 , while any triangle in this graph is a $3-\mathrm{VCS}$ of size 3 .


Figure 6: A graph producing a sub-optimal minimum size lower bound

## 7 Computational experiments

In this section we present some computational experiments related to the algorithms described in the previous sections. The purpose of these experiments is twofold: to analyze the pros and cons of each algorithm in finding critical subgraphs, and to evaluate the general benefit of finding critical subgraphs of a graph $G$ for the computation of $\chi(G)$.

All experiments were carried out on computers having a 1.6 Ghz Athlon processor and 512 Mb of RAM.

### 7.1 Implementation insights

When using heuristic implementations for procedure Min, the removal and insertion algorithms may produce errors. More precisely, it can happen that, based on the output of Min, vertices or edges are removed from $G$ (i.e. their weight is set equal to 0 ) so that a subgraph $H$ is obtained with $\chi(H)<k \leq \chi(G)$. In the case of the insertion algorithm, such errors can be detected if the output $c$ of Min has value $f(c)=0$. One can correct these errors by restoring the weight of previously removed vertices or edges to 1 , until $f(c)>0$. There are many ways to choose which removed vertex or edge to re-insert first.

One possibility, based on the fact that the error was probably committed at a recent iteration, is to re-insert them in the reverse order of their removal. Another possibility is to use the neighborhood weight heuristics (see Section 3) to select the vertex or edge that is the closest to those of weight $|S|$, thus trying to generate denser critical subgraphs. A similar strategy can be implemented to detect errors in the removal algorithm.

When errors are detected and repaired, it may happen that the subgraph $H$ produced by the removal or insertion algorithm is not critical (especially if the repairing strategy does not re-insert vertices or edges in the reverse order of their removal). Hence, if desired, one can re-apply the critical subgraph detection algorithm on $H$, and repeat this process until no additional vertex or edge can be removed.

### 7.2 Experimental data

The experiments were carried out on two sets of instances. The first set contains ( $n, p$ ) random graphs. Given a positive integer $n$ and a real number $p \in[0,1]$, the corresponding $(n, p)$ random graph is such that $|V|=n$ and all $n(n-1) / 2$ ordered pairs of vertices have a probability $p$ of being linked by an edge in $E$. Parameter $p$ is called the edge density of the graph. As a convention, we give the name " $\mathrm{R}\langle\mathrm{n}\rangle .\langle\mathrm{p}\rangle$ " to a particular $(n, p)$ random graphs generated in our experiments. The second set of instances used for the experiments are the DIMACS benchmark graphs, which come from various sources. For a detailed description of these instances, the reader can refer to [13] or http://mat.gsia.cmu.edu/COLORO4.

### 7.3 VCS versus ECS detection

The first experiment aims at comparing VCS and ECS detection on a $(50,0.5)$ random graph R50.5 that has 590 edges and a chromatic number of 9 . Table 1 shows the results of critical subgraph detection on R50.5 using three algorithms: the removal algorithm with neighborhood weight heuristic $(R e m+h)$, the insertion algorithm also with neighborhood weight heuristic (Ins $+h$ ), and the pre-filtering algorithm followed by Ins $+h$ (Filter + Ins). For each of these detection algorithms, $10 k$-VCSs and $10 k$-ECSs were found for $k=9$, using different random seeds for Min. The average number of vertices and edges of these critical subgraphs is shown under the columns labeled $\left|V^{\prime}\right|$ and $\left|E^{\prime}\right|$, and the resulting average edge densities under the column labeled $p^{\prime}$. The chromatic number of these subgraphs was then obtained using an exact coloring algorithm based on the one described in [18], after an average number of backtracks shown in the column labeled $b t k^{\prime}$.

From these results, we can see that the detection algorithms perform differently on VCSs than on ECSs. For instance, Filter + Ins produces, on average, the smallest VCSs of the three algorithms, but yields the biggest ECSs. On the other hand, Rem $+h$ produces, on average, the biggest VCSs of the three algorithms, while smallest ECSs are obtained by the same algorithm. Differences also emerge between the VCSs and ECSs found by the detection algorithms. While ECSs have fewer edges than VCSs, VCSs tend to have less vertices. Consequently, the edge density of ECSs is much less than that of VCSs ( 0.44 on average for ECSs compared to 0.54 for VCSs). Notice also that the edge density of VCSs is greater than the expected 0.5 . This increase is probably due to the use of the neighborhood
weight heuristic and pre-filtering algorithm that help finding denser subgraphs. A less predictable result is the huge difference in the number of backtracks required for VCSs and ECSs (367 on average for VCSs compared to 1670 for ECSs). This gap can mostly be explained by the difference in edge density of the subgraphs. Firstly, VCSs have fewer vertices resulting in a smaller search space for the exact coloring algorithm. Secondly, the greater number of edges in VCSs results in more constraints to eliminate illegal colorings from the search space, thus reducing the number of backtracks.

When the goal is to find a lower bound on $\chi(G)$, we have observed that it is more efficient to search for VCSs than ECSs. Apart from producing critical subgraphs that are easier for the exact coloring algorithm to solve, VCS detection requires a lesser number of iterations than ECS detection. In the case of the removal algorithm, the number of iterations required to find a critical subgraph, which estimates the calculation time complexity, is, in the worst case, equal to $|V|$ for VCS detection, and $|E|$ for ECS detection. For the insertion algorithm, the number of iterations is, in the worst case, equal to the size of $H$. For example, VCS detection on R50.5 using Ins $+h$ took, on average, 37 iterations while 345 iterations were required for ECSs detection using the same algorithm. For these reasons, the next experiments focus on VCS detection.

|  | VCS |  |  |  | ECS |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | $p^{\prime}$ | $\mathrm{btk}^{\prime}$ | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | $p^{\prime}$ | $\mathrm{btk}^{\prime}$ |
| Rem+h | 38.2 | 384.1 | 0.54 | 380.4 | 36.8 | 327.5 | 0.50 | 1089.4 |
| Ins+h | 37.1 | 355.7 | 0.53 | 348.5 | 41.2 | 344.8 | 0.42 | 1295.4 |
| Filter+Ins | 36.3 | 344.7 | 0.54 | 371.8 | 41.9 | 344.4 | 0.40 | 2625.4 |

Table 1: Vertex-critical and edge-critical subgraph detection on graph $R 50.5$

### 7.4 VCS detection by hitting set algorithm

The next experiment evaluates the hitting set algorithm. We have generated a $(n, 0.5)$ random graph for each $n \in\{15,20,25,30,35,40,45,50\}$. For each such graph $G$, we have applied the hitting set algorithm 10 times for the detection of $k$-VCSs with $k=\chi(G)$, each time using different random seeds for Min and MinHS. The values $\chi(G)$ were obtained by means of the exact coloring algorithm. Table 2 shows the number of vertices $|V|$ and edges $|E|$ of these random graphs, and their chromatic number $\chi(G)$. The column labeled $\left|V^{\prime}\right|$ contains the average number of vertices of the detected $k$-VCSs, and the column labeled iter indicates the average number of iterations that this algorithm took to find the corresponding subgraphs. A tabu search implementation for MinHS was used. Thus, unless the $k$-VCS is a clique, we have no guarantee that it is minimum.

| Graph |  |  | VCS |  |
| ---: | ---: | ---: | ---: | ---: |
| $\|V\|$ | $\|E\|$ | $\chi(G)$ | $\left\|V^{\prime}\right\|$ | iter |
| 15 | 46 | 4 | 4 | 10.9 |
| 20 | 90 | 5 | 5 | 16.6 |
| 25 | 137 | 6 | 9 | 40.4 |
| . continued on next page |  |  |  |  |


| Graph |  |  | VCS |  |
| ---: | ---: | ---: | ---: | ---: |
| $\|V\|$ | $\|E\|$ | $\chi(G)$ | $\left\|V^{\prime}\right\|$ | iter. |
| 30 | 211 | 7 | 7 | 22.2 |
| 35 | 277 | 7 | 7 | 41.7 |
| 40 | 369 | 8 | 25 | 641.5 |
| 45 | 473 | 9 | 42 | 164.8 |
| 50 | 590 | 9 | 32 | 2554.4 |

Table 2: Hitting set algorithm on 0.5 density random graphs
The results presented in Table 2 show that the hitting set algorithm found, for all instances, 10 subgraphs having the same $\left|V^{\prime}\right|$, which indicates that these critical subgraphs are most probably minimum. Most importantly, these results reveal that the number of iterations of the hitting set algorithm is, as predicted, exponential on $|V|$. Notice, however, that this relation is not strictly increasing, as the number of iterations shortly drops when $\chi(G)$ increases. This phenomenon is detailed in an experiment presented later in this paper (see Section 7.6).

### 7.5 Detection heuristics and lower bounds comparison

The next experiment has two goals. The first goal is to analyze the impact of using the neighborhood weight heuristic and the pre-filtering algorithm on VCS detection. The second goal is to compare the lower bounds on the size of a VCS obtained by the hitting set algorithm and by the lower bound algorithm presented in section 6 . Table 3 contains the results of this experiment. The first four columns of this table contain the name, number of vertices and edges, as well as the chromatic number of the instances used in the experiment. The next five columns contain the minimum, median and maximum number of vertices of $10 k$-VCSs for $k=\chi(G)$, found by five detection algorithms, each time using a different random seed for Min: the removal algorithm without any heuristic (Rem), the removal algorithm with the neighborhood weight heuristic ( $R e m+h$ ), the insertion algorithm without any heuristic (Ins), the insertion algorithm with the neighborhood weight heuristic (Ins $+h$ ), and the pre-filtering algorithm followed by Ins $+h$ (Filter + Ins). Finally, the last two columns show the minimum, median and maximum number of vertices of the $k$-VCSs detected for $k=\chi(G)$ by the hitting set algorithm $(H S)$ and the minimum, median and maximun values produced by the lower bound algorithm ( $L B$ ). For HS, the values preceded by " $\geq$ " represent lower bounds obtained when stopping the hitting set algorithm after 3000 iterations.

The results in Table 3 clearly indicate that the removal and insertion algorithms perform better when combined with the neighborhood weight heuristic. In all but one case (Rem on queen6_6), the smallest VCSs found using the heuristic have a lesser or equal number of vertices than the ones found without any heuristic. More importantly, the median number of vertices of VCSs found with the heuristic is strictly smaller for all instances except one (again Rem on queen6_6), while the biggest VCSs found using the neighborhood weight heuristic have fewer vertices for all instances. Thus, the neighborhood weight heuristic also reduces the variance in the size of critical subgraphs found. A good example is DSJC125.1
which contains minimum VCSs of only 10 vertices. The simple removal algorithm found such minimum subgraphs in 2 out of 10 cases, whereas the same algorithm using the neighborhood weight heuristic found one in 6 cases. Furthermore, the biggest VCS found using Rem $+h$ has only 13 vertices, compared to 50 for Rem. Algorithm Filter+Ins seems to perform even better as a heuristic to find smaller VCSs. For the R50.5, R60.5, queen6_6 and queen8_8 instances, Filter+Ins finds VCSs containing fewer vertices than those found by any other detection algorithm. Moreover, for the R50.5 and queen $6 \_6$ instances, these subgraphs were shown minimum by the hitting set algorithm. Considering that Filter + Ins is usually faster than the other detection algorithms, it is probably the best algorithm to find critical subgraphs.

| Graph |  |  |  | VCS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rem | Rem+h | Ins | Ins+h | Filter+Ins | HS | LB |
| name | $\|V\|$ | \| $E$ | $\chi$ | $\left\|V^{\prime}\right\|$ |
| R50.5 | 50 | 590 | 9 | 36,41,44 | 36,38,41 | 37,41,44 | 34,37,39 | 32,36,40 | 32,32,32 | 13,13,13 |
| R60.5 | 60 | 858 | 10 | 48,51,53 | 44,46,48 | 49,52,54 | 45,46,48 | 43,44,46 | $\geq 36$ | 10,10,11 |
| DSJC125.1 | 125 | 736 | 5 | 10,31,50 | 10,10,13 | 68,84,87 | 10,14,53 | 11,14,35 | $\geq 10$ | 4,4,5 |
| queen6_6 | 36 | 290 | 7 | 25,27,29 | 26,27,27 | 27,28,30 | 24,27,28 | 22,24,27 | 22,22,22 | 7,7,7 |
| queen8_8 | 64 | 728 | 9 | 57,58,59 | 54,55,56 | 56,58,60 | 54,55,56 | 53,55,56 | $\geq 29$ | 11,11,12 |
| queen9_9 | 81 | 2112 | 10 | - | 73,74,74 | - | 73,74,75 | 73,75,76 | - | 12,12,13 |

Table 3: Detection heuristics impact and lower bounds of vertex-critical subgraph
As for finding lower bounds on the size of minimum VCSs, the last two columns of Table 3 show that $H S$ performs better than $L B$. For all instances tested with $H S$, the lower bounds found had more vertices than those found with $L B$. For example, $H S$ found a lower bound of 36 vertices for $R 60.5$, while $L B$ produced a best lower bound of 11 vertices. Moreover, $H S$ found actual minimum VCSs for $R 50.5$ and queen6_6. In brief, when the size of the instance allows its use, $H S$ yields better lower bounds than $L B$.

### 7.6 VCS detection on random graphs

The next experiment focuses on finding VCSs in random graphs for the computation of their chromatic number. Because they have no particular structure, $(n, p)$ random graphs are probably the least suitable instances for finding critical subgraphs. Depending on the edge density $p$, such graphs can contain critical subgraphs that have almost as many vertices or edges as the original graph.

Tables 4 and 5 show the results of VCS detection for random graphs of edge density 0.1 and 0.5 . We have generated four different random graphs for each pair $(n, 0.1)$ with $n \in\{100,110, \ldots, 220\}$, and for each pair ( $n, 0.5$ ) with $n \in\{80,90,95,100\}$. The first four columns contain the number of vertices and edges of the instances, an upper bound $k$ for $\chi(G)$, and the number of backtracks required by the exact coloring algorithm to determine $\chi(G)$. Backtrack values given without parentheses indicate that we have been able to compute $\chi(G)$ and, in such a case, we have fixed $k=\chi(G)$. However, backtrack values enclosed in parentheses mean that we have not been able to compute $\chi(G)$ and we

Les Cahiers du GERAD
G-2004-31
indicate the CPU-time (in seconds) it took for the exact coloring algorithm to exceed the maximum allowed number of backtracks (250000000). In such a case, $k$ can be strictly larger than $\chi(G)$.

| Graph |  |  |  | VCS |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rem+h |  |  | Ins+h |  |  | Filter+Ins |  |  |
| \|V| | $\|E\|$ | $k$ | btk | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | $\mathrm{btk}^{\prime}$ | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | $\mathrm{btk}^{\prime}$ | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | btk ${ }^{\prime}$ |
| 100 | 496 | 5 | 92 | 38 | 137 | 109 | 55 | 207 | 271 | 38 | 138 | 122 |
| 100 | 447 | 5 | 193 | 66 | 263 | 233 | 62 | 234 | 333 | 63 | 242 | 282 |
| 100 | 499 | 5 | 33 | 38 | 137 | 63 | 44 | 160 | 66 | 42 | 156 | 55 |
| 100 | 507 | 5 | 135 | 46 | 175 | 105 | 51 | 198 | 151 | 42 | 151 | 237 |
| 110 | 600 | 5 | 114 | 34 | 119 | 32 | 61 | 244 | 201 | 41 | 151 | 116 |
| 110 | 555 | 5 | 45 | 36 | 126 | 40 | 50 | 188 | 98 | 36 | 123 | 97 |
| 110 | 592 | 5 | 131 | 33 | 116 | 58 | 46 | 170 | 330 | 33 | 113 | 30 |
| 110 | 610 | 5 | 72 | 43 | 162 | 117 | 51 | 188 | 57 | 43 | 157 | 76 |
| 120 | 715 | 5 | 7105 | 32 | 113 | 59 | 52 | 199 | 157 | 42 | 156 | 31 |
| 120 | 669 | 5 | 45 | 21 | 63 | 10 | 38 | 134 | 16 | 33 | 108 | 32 |
| 120 | 714 | 5 | 1172 | 31 | 109 | 67 | 50 | 195 | 38 | 36 | 126 | 121 |
| 120 | 706 | 5 | 186 | 27 | 88 | 71 | 61 | 239 | 693 | 43 | 157 | 102 |
| 130 | 795 | 5 | 173090 | 31 | 108 | 30 | 42 | 150 | 87 | 35 | 115 | 39 |
| 130 | 832 | 5 | 62743 | 34 | 120 | 47 | 46 | 171 | 59 | 42 | 154 | 41 |
| 130 | 828 | 6 | 1519301 | 113 | 712 | 1493884 | 112 | 702 | 1898057 | 113 | 710 | 2094563 |
| 130 | 843 | 6 | 462073 | 100 | 617 | 415567 | 101 | 617 | 519210 | 99 | 605 | 323833 |
| 140 | 972 | 6 | 767916 | 99 | 625 | 1551179 | 102 | 637 | 1122434 | 99 | 615 | 970417 |
| 140 | 936 | 6 | 1130903 | 103 | 640 | 1610227 | 107 | 664 | 1439572 | 104 | 647 | 2775637 |
| 140 | 988 | 6 | 138308 | 83 | 499 | 137685 | 94 | 569 | 202552 | 88 | 522 | 149205 |
| 140 | 968 | 6 | 906265 | 105 | 654 | 4436370 | 108 | 681 | 1621338 | 104 | 643 | 3149618 |
| 150 | 1103 | 6 | 829224 | 96 | 610 | 1289371 | 99 | 622 | 887587 | 97 | 606 | 1164246 |
| 150 | 1098 | 6 | 109821 | 93 | 579 | 247208 | 95 | 581 | 148611 | 93 | 565 | 202147 |
| 150 | 1120 | 6 | 79497 | 81 | 481 | 133880 | 87 | 517 | 234917 | 88 | 531 | 274521 |
| 150 | 1128 | 6 | 194667 | 91 | 554 | 115757 | 98 | 606 | 112071 | 98 | 591 | 298509 |
| 160 | 1261 | 6 | 187661 | 87 | 539 | 347890 | 103 | 642 | 407695 | 94 | 582 | 520562 |
| 160 | 1251 | 6 | 101953 | 83 | 501 | 140258 | 95 | 580 | 126134 | 92 | 561 | 96891 |
| 160 | 1274 | 6 | 107938 | 79 | 474 | 71615 | 91 | 536 | 148744 | 83 | 497 | 81926 |
| 160 | 1279 | 6 | 199720 | 87 | 529 | 250846 | 103 | 647 | 7955344 | 93 | 564 | 257126 |
| 170 | 1430 | 6 | (43603) | 80 | 487 | 168991 | 97 | 597 | 340743 | 89 | 550 | 167544 |
| 170 | 1414 | 6 | 8320828 | 80 | 477 | 85597 | 96 | 581 | 490732 | 85 | 500 | 94995 |
| 170 | 1460 | 6 | (45118) | 69 | 405 | 7660 | 80 | 470 | 7367 | 73 | 421 | 10720 |
| 170 | 1440 | 6 | 70336660 | 85 | 516 | 193161 | 96 | 581 | 61871 | 93 | 563 | 207389 |
| 180 | 1603 | 6 | (46199) | 78 | 467 | 10347 | 102 | 613 | 294620 | 87 | 519 | 44426 |
| 180 | 1617 | 7 | (44611) | 158 | 1386 | (41491) | 159 | 1386 | (42298) | 158 | 1389 | (41474) |
| 180 | 1584 | 7 | (45690) | 168 | 1471 | (45480) | 168 | 1467 | (45627) | 168 | 1467 | (45627) |
| 180 | 1639 | 7 | (43834) | 148 | 1278 | (37592) | 148 | 1266 | (39431) | 150 | 1286 | (39265) |
| 190 | 1799 | 7 | (49624) | 147 | 1281 | (39683) | 156 | 1359 | (41245) | 152 | 1327 | (41473) |
| 190 | 1784 | 7 | (47708) | 152 | 1327 | (41621) | 157 | 1352 | (43114) | 154 | 1337 | (41929) |
| . . continued on next page |  |  |  |  |  |  |  |  |  |  |  |  |


| Graph |  |  |  | VCS |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rem+h |  |  | Ins+h |  |  | Filter+Ins |  |  |
| \|V| | $\|E\|$ | $k$ | btk | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | btk ${ }^{\prime}$ | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | btk ${ }^{\prime}$ | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | btk ${ }^{\prime}$ |
| 190 | 1826 | 7 | (49295) | 140 | 1206 | (38256) | 152 | 1307 | (40572) | 141 | 1206 | (38298) |
| 190 | 1785 | 7 | (49653) | 158 | 1389 | (44149) | 160 | 1403 | (43280) | 160 | 1405 | (44872) |
| 200 | 2036 | 7 | (50830) | 139 | 1220 | (46450) | 147 | 1291 | (46855) | 148 | 1281 | (45411) |
| 200 | 1941 | 7 | (48910) | 153 | 1343 | (63880) | 155 | 1347 | (64474) | 155 | 1347 | (63452) |
| 200 | 2026 | 7 | (46221) | 130 | 1113 | (44259) | 150 | 1288 | (60526) | 148 | 1277 | (47730) |
| 200 | 1977 | 7 | (47076) | 146 | 1278 | (46846) | 147 | 1281 | (47080) | 152 | 1324 | (48111) |
| 210 | 2221 | 7 | (61537) | 134 | 1166 | (34091) | 148 | 1289 | (37564) | 144 | 1256 | (37077) |
| 210 | 2123 | 7 | (54287) | 146 | 1277 | (38301) | 157 | 1367 | (39882) | 154 | 1342 | (40706) |
| 210 | 2226 | 7 | (64066) | 129 | 1109 | (33831) | 143 | 1213 | (35316) | 136 | 1161 | (35703) |
| 210 | 2175 | 7 | (59757) | 139 | 1210 | (36732) | 153 | 1331 | (38900) | 149 | 1283 | (38497) |
| 220 | 2422 | 7 | (62081) | 132 | 1145 | (32986) | 148 | 1279 | (37429) | 139 | 1208 | (35358) |
| 220 | 2348 | 7 | (59384) | 137 | 1188 | (34917) | 149 | 1290 | (37488) | 148 | 1281 | (36713) |
| 220 | 2435 | 7 | (56396) | 125 | 1070 | (31717) | 146 | 1259 | (37417) | 134 | 1144 | (34620) |
| 220 | 2387 | 7 | (58686) | 135 | 1166 | (34208) | 145 | 1241 | (34873) | 144 | 1245 | (35136) |

Table 4: Vertex-critical subgraph detection on 0.1 density random graphs

| Graph |  |  |  | VCS |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rem+h |  |  | Ins+h |  |  | Filter+Ins |  |  |
| \|V| | $\|E\|$ | $k$ | btk | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | btk ${ }^{\prime}$ | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | btk ${ }^{\prime}$ | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | btk ${ }^{\prime}$ |
| 80 | 1547 | 12 | 14029599 | 64 | 1051 | 1285350 | 66 | 1086 | 3887945 | 63 | 1007 | 726965 |
| 80 | 1528 | 12 | 12860059 | 59 | 911 | 293100 | 60 | 926 | 531284 | 58 | 884 | 429381 |
| 80 | 1609 | 13 | 7255750 | 75 | 1440 | 21670437 | 73 | 1380 | 6590146 | 72 | 1343 | 6387828 |
| 80 | 1582 | 13 | 58684771 | 75 | 1425 | 22694200 | 74 | 1389 | 14340999 | 73 | 1350 | 20529374 |
| 90 | 1924 | 13 | 128822599 | 74 | 1398 | 17898027 | 75 | 1402 | 30015939 | 71 | 1288 | 17201820 |
| 90 | 1984 | 13 | 133509732 | 72 | 1354 | 4320820 | 73 | 1374 | 7693584 | 72 | 1334 | 11737502 |
| 90 | 1978 | 14 | (26310) | 88 | 1908 | (26010) | 87 | 1870 | (26268) | 87 | 1870 | (26253) |
| 90 | 2003 | 14 | (26271) | 86 | 1858 | (25914) | 84 | 1783 | (25912) | 84 | 1783 | (26381) |
| 95 | 2223 | 14 | (28823) | 82 | 1723 | (27079) | 83 | 1754 | (27116) | 82 | 1703 | (26512) |
| 95 | 2149 | 14 | (27836) | 89 | 1931 | (26961) | 89 | 1935 | (26994) | 88 | 1896 | (27510) |
| 95 | 2223 | 14 | (28861) | 83 | 1777 | (27784) | 88 | 1906 | (26981) | 84 | 1797 | (27024) |
| 95 | 2208 | 14 | (28553) | 85 | 1834 | (26831) | 84 | 1780 | (34611) | 86 | 1841 | (26097) |
| 100 | 2381 | 14 | (30027) | 83 | 1748 | (25375) | 87 | 1869 | (25959) | 83 | 1724 | (26025) |
| 100 | 2444 | 14 | (30107) | 81 | 1690 | (26861) | 85 | 1828 | (25663) | 82 | 1711 | (25304) |
| 100 | 2469 | 15 | (30328) | 97 | 2345 | (28932) | 96 | 2297 | (28595) | 97 | 2342 | (28454) |
| 100 | 2465 | 15 | (31121) | 100 | 2465 | (29744) | 99 | 2425 | (29499) | 99 | 2414 | (29335) |

Table 5: Vertex-critical subgraph detection on 0.5 density random graphs
We have applied each algorithm 10 times on each instance, every time using a different random seed for Min. The other columns of Tables 4 and 5 contain the number of vertices and edges of the smallest $k$-VCS obtained by Rem $+h$, Ins $+h$ and Filter + Ins for each instance, as well as the number of backtracks required to determine the chromatic number of these $k$-VCSs. Once more, backtrack values enclosed in parentheses indicates that the chromatic number of the corresponding subgraphs could not be determined by the exact coloring algorithm, and can be strictly smaller than $k$.


Figure 7: Vertex reduction of $(n, 0.1)$ random graphs versus $n$

Figures 7 and 8 were produced using the VCSs obtained by Filter + Ins ${ }^{1}$. Each curve contains instances for a particular value of $k$, and are drawn such that abscissa values are the number of vertices $|V|$ of these instances, and ordinate values are the minimum, average and maximum reductions of vertices for the corresponding critical subgraphs. Given a critical subgraph of $\left|V^{\prime}\right|$ vertices, the vertex reduction is calculated as follows:

$$
\frac{|V|-\left|V^{\prime}\right|}{|V|}
$$

These figures first show that the vertex reduction decreases as $p$ increases. Thus, the maximum vertex reduction reached for instances of 100 vertices is $62 \%$ when $p=0.1$, whereas the maximum reduction for $p=0.5$ is only $18 \%$. This result comes as no surprise, since denser instances tend to have larger critical subgraphs. Furthermore, these figures reveal two opposite trends when considered separately. On the one hand, the vertex reduction decreases as $k$ increases. Consider, for example, the reduction values for the curves in Figure 7. For $k=5$, the maximum vertex reduction is $73 \%$, while this value drops to $57 \%$ for $k=6$, and $39 \%$ for $k=7$. The same goes for the curves in Figure 8, where the maximum vertex reduction is $21 \%$ for $k=13,18 \%$ for $k=14$, and $3 \%$ for $k=15$. On the other hand, the vertex reduction increases with $n$, for a particular value of $k$. Consider once more Figure 7. For $k=5$, the maximum vertex reduction increases from $62 \%$, when $n=100$, to a higher $73 \%$, for $n=130$. Likewise, for $k=6$ the reduction rises from $24 \%$, for $n=130$ to $57 \%$ for $n=170$. Finally, the same happens for $k=7$, where the reduction increases from $7 \%$ to $38 \%$ as $n$ varies from 180 to 220 .

[^0]

Figure 8: Vertex reduction of $(n, 0.5)$ random graphs versus $n$


Figure 9: Back reduction of $(n, 0.1)$ random graphs versus $n$

Figure 9 shows the maximum backtrack reduction for the $k$-VCSs obtained with a particular value of $k$. Consider the backtrack reduction curve for $k=5$. For $n=100$, the maximum backtrack reduction is $-33 \%$ (i.e. the number of backtracks actually increases). However, the maximum backtrack reduction rises to an excellent $77 \%$ for $n=110$, and almost $100 \%$ for $n=120$ and $n=130$. For $k=6$, the maximum backtrack reduction starts off at a positive $30 \%$ for $n=130$, but then drops to $-8 \%$ for $n=140$ and a low $-40 \%$ for $n=150$. Fortunately, the maximum reduction increases again to a positive $24 \%$ for $n=160$ and reaches close to $100 \%$ for $n=170$ and $n=180$. These results suggest that searching for critical subgraphs is especially useful for instances having as many vertices as possible for a particular $\chi(G)$.

In most combinatorial problems, there is a very sharp transition between instances that can be solved optimally and those that cannot. In the case of random graphs of edge density 0.1 , the exact coloring algorithm used in this experiment solved all instances of 160 vertices with less than 200000 backtracks, while two out of four instances of 170 vertices were not solved after 250000000 backtracks, and none of the instances of 180 vertices were solved within the same limit. However, these instances are close to the maximum number of vertices for $k=6$, and are thus excellent candidates for the critical subgraph detection. In fact, the two instances of 170 vertices that were not solved within limits produced critical subgraphs that were easily solved in 167544 and 7367 backtracks, and the one instance of 180 vertices for $k=6$ gave a critical subgraph that was solved in only 10347 backtracks.

As a final observation, the results of this experiment reveal a surprising phenomenon. As the number of vertices of a given instance is reduced, one can expect the exact coloring algorithm, which has a computational complexity exponential in the number of vertices, to solve that instance in a lesser or equal number of backtracks. However, Figure 9 shows that this is not always the case. For example, for instances of 150 vertices, all the critical subgraphs found increased the number of backtracks instead of reducing it. A more striking example is a critical subgraph found by Ins $+h$ that reduced the number of vertices from 160 to 103 . While the original instance took 199720 backtracks to solve, this critical subgraph was solved after as much as 7955344 backtracks ( $3883 \%$ increase). This phenomenon, was previously observed by Herrmann and Hertz in [11].

### 7.7 VCS detection on benchmarks

The last experiment, which results are presented in Table 6, deals with DIMACS benchmark graphs. The purpose of this experiment is to find VCSs in these instances in order to compute a lower bound on their chromatic number. The first four columns in Table 6 contain the names of the instances, their number of vertices and edges, as well as the number of backtracks needed by the exact coloring algorithm to determine $\chi(G)$. Backtrack values enclosed in parentheses represent the number of backtracks made by the exact coloring algorithm after reaching a 4 hour CPU-time limit. In such a case, no value was obtained for $\chi(G)$. The next column contains a lower bound $k$ on $\chi(G)$. Values of $k$ preceded by an asterisk "*" indicate that $\chi(G)$ is known, and that $k=\chi(G)$. The following three columns contain the number of vertices and edges of the smallest $k$-VCSs, found within
five attempts using a different random seed for Min, and the number of backtracks required by the exact coloring algorithm to determine the chromatic number of these subgraphs. Once again, values enclosed in parentheses indicate that this chromatic number was not determined within the same CPU-time limit, and might be different from $k$. Finally, the last column contains lower bounds on the size of $k$-VCSs obtained by means of the lower bound algorithm.

| Graph |  |  |  |  | VCS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| name | \|V| | E\| | btk | $k$ | $V^{\prime} \mid$ | $E^{\prime} \mid$ | btk' | LB |
| myciel3 | 11 | 20 | 4 | ${ }^{*} 4$ | 11 | 20 |  | 11 |
| myciel4 | 23 | 71 | 106 | ${ }^{*} 5$ | 23 | 71 |  | 23 |
| myciel5 | 47 | 236 | 30998 | *6 | 47 | 236 |  | 47 |
| myciel6 | 95 | 755 | (138446852) | *7 | 95 | 755 |  | 95 |
| myciel7 | 191 | 2360 | (77223695) | *8 | 191 | 2630 |  | 189 |
| mug88_1 | 88 | 146 | 2204467 | *4 | 88 | 146 |  | 55 |
| mug88_25 | 88 | 146 | 942961 | *4 | 88 | 146 |  | 56 |
| mug100_1 | 100 | 166 | 1406570 | *4 | 100 | 166 |  | 67 |
| mug100_25 | 100 | 166 | 974170 | *4 | 100 | 166 |  | 68 |
| 1-Insertions_4 | 67 | 232 | 104296036 | ${ }^{*} 5$ | 67 | 232 |  | 67 |
| 1-Insertions_5 | 202 | 1227 | (133727661) | 6 | 202 | 1227 | - | 202 |
| 1-Insertions_6 | 607 | 6337 | (50929137) | 7 | 607 | 6337 |  | 448 |
| 2-Insertions_3 | 37 | 72 | 3064 | *4 | 37 | 72 |  | 37 |
| 2-Insertions_4 | 149 | 541 | (154902785) | *4 | 37 | 72 |  | 14 |
| 2-Insertions_5 | 597 | 3936 | (48458541) | 6 | 597 | 3936 |  | 208 |
| 3-Insertions_3 | 56 | 110 | 723616 | * 4 | 56 | 110 |  | 56 |
| 3-Insertions_4 | 281 | 1046 | (95076991) | 5 | 281 | 1046 |  | 220 |
| 3-Insertions_5 | 1406 | 9695 | (13784327) | 6 | 1406 | 9695 |  | 73 |
| 4-Insertions_3 | 79 | 156 | (228367528) | *3 | 13 | 13 |  | 6 |
| 4-Insertions_4 | 475 | 1795 | (70891706) | 5 | 475 | 1795 |  | 232 |
| fpsol2.i.1 | 496 | 11654 | (169107715) | *65 | 65 | 2080 | 0 | 24 |
| fpsol2.i. 2 | 451 | 8691 | , | *30 | 30 | 435 | 0 | 24 |
| fpsol2.i. 3 | 425 | 8688 | 2 | *30 | 30 | 435 | 0 | 24 |
| inithx.i. 1 | 864 | 18707 | 1 | *54 | 54 | 1431 | 0 | 41 |
| inithx.i. 2 | 645 | 13979 | (139157853) | *31 | 31 | 465 | 0 | 25 |
| inithx.i. 3 | 621 | 13969 | (141407783) | *31 | 31 | 465 | 0 | 25 |
| mulsol.i. 1 | 197 | 3925 | 1 | *49 | 49 | 1176 | 0 | 44 |
| mulsol.i. 2 | 188 | 3885 | 6 | *31 | 31 | 465 | 0 | 24 |
| mulsol.i. 3 | 184 | 3916 | 6 | *31 | 31 | 465 | 0 | 25 |
| mulsol.i. 4 | 185 | 3946 | (161605284) | *31 | 31 | 465 | 0 | 24 |
| mulsol.i. 5 | 186 | 3973 | (161214648) | *31 | 31 | 465 | 0 | 28 |
| zeroin.i. 1 | 211 | 4100 | 24 | *49 | 49 | 1176 | 0 | 44 |
| zeroin.i. 2 | 211 | 3541 | 11472 | *30 | 30 | 435 | 0 | 27 |
|  |  |  |  |  | ontinu | ued | ext | page |


| Graph |  |  |  |  | VCS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| name | $\|V\|$ | $\|E\|$ | btk | $k$ | $\left\|V^{\prime}\right\|$ | $\left\|E^{\prime}\right\|$ | btk ${ }^{\prime}$ | LB |
| zeroin.i. 3 | 206 | 3540 | 11472 | *30 | 30 | 435 | 0 | 27 |
| le450_15a | 450 | 8168 | (54447597) | *15 | 15 | 105 | 0 | 7 |
| le450_15b | 450 | 8169 | (49996287) | *15 | 15 | 105 | 0 | 7 |
| le450_15c | 450 | 16680 | (40481025) | *15 | 15 | 105 | 0 | 3 |
| le450_15d | 450 | 16750 | (35180270) | *15 | 15 | 105 | 0 | 3 |
| le450_25a | 450 | 8260 | 14 | *25 | 25 | 300 | 0 | 20 |
| le450_25b | 450 | 8263 | 12 | *25 | 25 | 300 | 0 | 19 |
| le450_25c | 450 | 17343 | (41188964) | *25 | 25 | 300 | 0 | 7 |
| le450_25d | 450 | 17425 | (42974825) | *25 | 25 | 300 | 0 | 7 |
| le450_5a | 450 | 5714 | (21467721) | ${ }^{*} 5$ | 5 | 10 | 0 | 2 |
| le450_5b | 450 | 5734 | (28479480) | *5 | 5 | 10 | 0 | 2 |
| le450_5c | 450 | 9803 | 5 | *5 | 5 | 10 | 0 | 2 |
| le450_5d | 450 | 9757 | 5754158 | ${ }^{5}$ | 5 | 10 | 0 | , |
| school1 | 385 | 19095 | 17 | *14 | 14 | 91 | 0 | 2 |
| school1_nsh | 352 | 14612 | (59393984) | 14 | 14 | 91 | 0 | 2 |
| anna | 138 | 493 | 8 | *11 | 11 | 55 | 0 | 11 |
| david | 87 | 406 | 36 | *11 | 11 | 55 | , | 11 |
| homer | 561 | 1629 | (244497375) | *13 | 13 | 78 | , | 13 |
| huck | 74 | 301 | 211680 | *11 | 11 | 55 | 0 | 11 |
| jean | 80 | 254 | 8645 | *10 | 10 | 45 | 0 | 10 |
| games120 | 120 | 638 | (516246020) | *9 | 9 | 36 | 0 | , |
| miles1000 | 128 | 3216 | 4583894 | *42 | 42 | 861 | 0 | 41 |
| miles1500 | 128 | 5198 | 1692256 | *73 | 73 | 2628 | 0 | 73 |
| miles250 | 128 | 387 | (136594896) | *8 | 8 | 28 |  | 8 |
| miles500 | 128 | 1170 | 8 | *20 | 20 | 190 | 0 | 20 |
| miles750 | 128 | 2113 | 434 | *31 | 31 | 465 | 0 | 28 |
| DSJC125.1 | 125 | 736 | 227 | ${ }^{*} 5$ | 10 | 26 | 1 | 4 |
| DSJC125.5 | 125 | 3891 | (71844096) | 14 | 80 | 1674 | 37453055 | - |
| DSJC125.9 | 125 | 6961 | (68250955) | 40 | 78 | 2782 | (205206643) |  |
| DSJC250.1 | 250 | 3218 | (42398413) | 6 | 70 | 410 | 3621 |  |
| DSJC250.9 | 250 | 27897 | (33839645) | 50 | 133 | 8052 | (88911252) | - |
| DSJR500.1 | 500 | 3555 | (141520342) | 12 | 12 | 66 | 0 | 11 |
| DSJR500.1c | 500 | 121275 | (6401403) | 63 | 63 | 1953 | 0 | 2 |
| DSJR500.5 | 500 | 58862 | (73970922) | 26 | 26 | 325 | 0 | 1 |
| queen5_5 | 25 | 160 | 1 | ${ }^{*} 5$ | 5 | 10 | 0 | 5 |
| queen6_6 | 36 | 290 | 410 | * 7 | 25 | 148 | 45 | 7 |
| queen7_7 | 49 | 476 | 2555 | * 7 | 7 | 21 | 0 | 5 |
| queen8_12 | 96 | 1368 | (139081460) | *12 | 12 | 66 | 0 | 11 |
| queen8_8 | 64 | 728 | 597552 | *9 | 54 | 538 | 188021 | 11 |
| queen9_9 | 81 | 2112 | 80603809 | *10 | 74 | 897 | 135083408 | 12 |
|  |  |  |  |  |  | . conti | nued on next p | page |


| Graph |  |  |  |  | VCS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| name | $\|V\|$ | $\|E\|$ | btk | $k$ | $\left\|V^{\prime}\right\|$ | $E^{\prime} \mid$ | btk ${ }^{\prime}$ | LB |
| queen10_10 | 100 | 2940 | (134401345) | 10 | 10 | 45 | 0 |  |
|  |  |  |  | *11 | 89 | 1220 | (424776367) | 11 |
| queen11_11 | 121 | 3960 | (116006580) | *11 | 11 | 55 | 0 | 6 |
| queen12_12 | 144 | 5192 | (101315208) | *12 | 12 | 66 | 0 | - |
| queen13_13 | 169 | 6656 | (90800757) | *13 | 13 | 78 | 0 | 6 |
| queen14_14 | 196 | 8372 | (83679129) | *14 | 14 | 91 | 0 | - |
| queen15_15 | 225 | 10360 | (69555352) | 15 | 15 | 105 | 0 |  |
| queen16_16 | 256 | 12640 | (72473005) | 16 | 16 | 120 | 0 |  |
| ash331GPIA | 662 | 4185 | 14 | * 4 | 9 | 16 | 2 | 2 |
| 1-FullIns_3 | 30 | 100 | 7 | *4 | 7 | 12 | 1 | 7 |
| 1-FullIns_4 | 93 | 593 | 5567 | *5 | 15 | 43 | 6 | 14 |
| 1-FullIns_5 | 282 | 3247 | (106523508) | *6 | 31 | 144 | 271 | 19 |
| 2-FullIns_3 | 52 | 201 | 1850 | ${ }^{*} 5$ | 9 | 22 | 1 | 9 |
| 2-FullIns_4 | 212 | 1621 | (209999176) | *6 | 19 | 75 | 8 | 19 |
| 2-FullIns_5 | 852 | 12201 | (91922086) | *7 | 39 | 244 | 715 | 31 |
| 3-FullIns_3 | 80 | 346 | 366830 | *5 | 5 | 10 | 0 | 5 |
| 3-FullIns_4 | 405 | 3524 | (164058937) | *7 | 23 | 116 | 10 | 23 |
| 3-FullIns_5 | 2030 | 33751 | (34366333) | *8 | 47 | 371 | 1675 | - |
| 4-FullIns_3 | 114 | 541 | 80247163 | *7 | 13 | 51 | 1 | 13 |
| 4-FullIns_4 | 690 | 6650 | (126559559) | *8 | 27 | 166 | 12 | 25 |
| 5-FullIns_3 | 154 | 792 | (448858523) | *8 | 15 | 70 | 1 | 15 |

Table 6: Vertex-critical subgraph detection on Color04 graphs
To facilitate the presentation of the results in Table 6, we will divide the instances in three categories. The first category is composed of instances that are probably vertexcritical for $\chi(G)$. Graphs having myciel, mug or Insertions in their name fall into this category. Results in Table 6 show that for the fourteen instances where $k=\chi(G)$ (i.e., there is an asterisk in the fifth column), we have got a proof that $G$ is a vertex critical since $V$ is the output of the detection algorithm. In the six other cases were $k$ is possibly strictly smaller than $\chi(G)$, we have a proof that either $k<\chi(G)$ or $G$ is vertex critical. Furthermore, because we used the speed-up technique in combination with the detection algorithm, these graphs were shown possibly critical after only a small number of iterations, even for those with a great number of vertices. For example, 3-Insertions_5 which has 1406 vertices, was shown possibly vertex-critical by Ins $+h$ using the speed-up technique in only 22 iterations ${ }^{2}$. The speed-up technique is thus highly useful for showing that a given graph is critical. As regards lower bounds on the size of VCSs, we found in most cases values close or equal to $|V|$. For example, we obtained a lower bound equal to $|V|$ for all but one myciel graphs.

The second category contains the instances which have cliques as minimum $k$-VCSs, for $k=\chi(G)$. The graphs anna, david, homer, huck, jean, as well as those having fpsol2,

[^1]inithx, mulsol, zeroin, le450, school1, games120 or miles in their name are such instances. These instances are interesting because they have the smallest possible critical subgraphs (i.e., $k$-VCSs with $k$ vertices) that are therefore easier to detect. Moreover, the chromatic number of a clique is equal to its number of vertices, such that the exact coloring algorithm is not required at all. From Table 6, we see that cliques were found as VCSs for all 39 instances in this category, among which 17 had not been solved by the exact coloring algorithm. Once more, the lower bound procedure gives decent results for instances in this second category.

Finally, the last category is composed of all the instances falling in none of the two first categories. Among those are the DSJC instances, which are standard ( $n, p$ ) random graphs used by Aragon et al. in [1]. As mentioned in the previous experiments, random graphs are generally poor candidates for the detection algorithms because, as opposed to instances in the second category, they have critical subgraphs of large size. Except for DSJC125.1, which has a 5-VCS of only 10 vertices, we therefore focused on the search of interesting lower bounds $k \leq \chi(G)$ for these instances. We thus showed for DSJC125.5 that $\chi(G) \geq 14$, while, to our knowledge, the best known bound for this instance was 13 . Additionally, we were able to show that $\chi \geq 6$ for DSJC250.1. However, the lower bound $k$ one can obtain for a given instance is limited by the size of the $k$-VCSs that can be found for this instance. Thus, even though we were able to find a $k$-VCS for DSJC250.9 for $k=50$, this subgraph was too big ( 133 vertices and 8052 edges) for the exact coloring algorithm to determine its chromatic number.

The queen $N \_N$ graphs are also comprised in this last category of instances. These graphs are particular because the minimum $k$-VCSs for $k=\chi(G)$ are either cliques ${ }^{3}$ or subgraphs containing most of the vertices of the original instance. Accordingly, we were able to find $k$-VCSs for $k=\chi(G)$ when these subgraphs were cliques (i.e., queen5_5, queen7_7, queen8_12, queen11_11, queen12_12, queen13_13 and queen14_14). We were also able to compute $\chi(G)$ for queen6_ 6 , queen8_8 and queen9_9 after finding $k$-VCSs that are small enough to be solved by the exact coloring algorithm. Finally, we only achieved a lower bound of $k=N$ for queen10_10, queen15_15 and queen16_16.

The last set of instances in this category are the FullIns graphs, which were built by adding extra nodes to critical graphs. These instances are therefore perfect candidates for critical subgraph detection. To our knowledge, the chromatic number of all theses instances was known except for 2-FullIns_4, 2-FullIns_5, 3-FullIns_4 and 4-FullIns_4. For these four graphs, we were able to raise the best known lower bound to equal the best known upper bound, thus fixing the chromatic number. We have found, for $k=\chi(G)$, $k$-VCSs in all these instances and could easily compute the chromatic number of these critical subgraphs using an exact coloring algorithm. Notice that when applied on the original graph, the exact coloring algorithm could only determine the chromatic number of 5 of these instances.

[^2]To finish, the bounds obtained for this category of instances are much lower than the number of vertices of the critical subgraphs found. Knowing that these instances most probably have large minimum critical subgraphs, we come to the conclusion that $L B$ gives poor results for this category of instances.

### 7.8 Calculation time of detection algorithms

Since procedure Min accounts for almost all of the calculation complexity of the critical subgraph detection algorithms ${ }^{4}$ the total CPU-time mainly depends on the number of time this procedures is called (i.e. number of iterations), as well as on the time spent on each call. We have implemented procedure Min using a tabu search procedure (see Section 4). If the tabu search is stopped too early, its output is possibly not optimal, and this induces errors that have to be repaired. On the other hand, if the tabu search is run for a very long time, the detection algorithms, in turn, will take a lot of time to complete their task. Instead of defining a general stopping criteria that works reasonably well on all instances, we found easier tuning the tabu search for each instance. Moreover, since our aim is not to design the fastest possible critical subgraph detection algorithm, a small amount of time has been spent on this tuning. Here are some general indications on the total time needed to detect critical subgraphs using our tuning.

The detection of VCSs for the instances in Tables 4 and 5, using the removal and insertion algorithms, took a few seconds for the smaller instances up to a few hours for the bigger ones. Furthermore, the pre-filtering algorithm helped, in most cases, to lower the calculation time for the bigger instances to under an hour. Notice however, these instances were the worst encountered during experimentation. Indeed, the detection algorithms on critical benchmark graphs took only a few seconds, using the speed-up technique. In addition, the detection algorithms generally took a few minutes for instances which have cliques as minimum critical subgraphs. Finally, the time needed to obtain lower bounds on the size of critical subgraphs, using the hitting set algorithm and the lower bound algorithm, depends on the quality sought for these bounds. In the case of the hitting set algorithm, an hour is usually enough to produce a good bound, while a few minutes is sufficient for the latter algorithm.

## 8 Conclusion

We have presented algorithms to find vertex-critical and edge-critical subgraphs of a given graph. We have also described algorithms to find minimum critical subgraphs, as well as lower bounds on the size of these subgraphs. In addition, we have shown that such critical subgraphs could be used to find a lower bound on $\chi(G)$. Furthermore, because these algorithms need to solve the NP-hard $k$-coloring problem, we have indicated how heuristic algorithms for this problem can be used within the detection algorithms. Finally, we have presented various strategies to accelerate the detection algorithms, to find smaller critical subgraphs, and to correct errors that may occur because of the use of heuristic algorithms.

[^3]Experiments were carried out on different types of instances to evaluate the detection algorithms and to find lower bounds on the chromatic number. Those experiments have shown that some detection algorithms are more efficient than others. For example, we saw that the pre-filtering algorithm significantly reduces the number of iterations for the detection algorithms, and serves as a good heuristic to find small critical subgraphs. Furthermore, these experiments made it possible to identify on which instances the detection algorithms perform best. Using these results, we were able to improve known lower bounds on $\chi(G)$ for some instances, and even to compute the chromatic number of instances for which only bounds were known.

## References

[1] Aragon, C.R., Johnson, D.S., Mcgeoch, L.A., Schevon, C., Optimization by Simulated Annealing: an Experimental Evaluation. Part II, Graph Coloring and Number Partitioning, Operations Research 39, 1991, 378-406
[2] Brown, J.R., Chromatic Scheduling and the Chromatic Number Problem, Management Science 19/4, 1972, 456-463
[3] Chinneck, J.W., Finding a Useful Subset of Constraints for Analysis in an Infeasible Linear Program, INFORMS Journal on Computing 9/2, 1997
[4] Chinneck, J.W., Feasibility and Viability, Advances in Sensitivity Analysis and Parametric Programming, T. Gal and H.J. Greenberg (eds.), Kluwer Academic Publishers, International Series in Operations Research and Management Science 6, 1997
[5] Fleurent, C., Ferland, J.A., Genetic and Hybrid Algorithms for Graph Coloring, Annals of Operations Research 63, 1996, 437-461
[6] Galinier, P., Hao, J.K., Hybrid Evolutionary Algorithms for Graph Coloring, Journal of Combinatorial Optimization 3/4, 1999, 379-397
[7] Galinier, P., Hertz, A., Solution Techniques for the Large Set Covering Problem, Research Report G-2003-44, Les Cahiers du GERAD, Montréal, Canada, 2003
[8] Garey, M.R., Johnson, D.S., Computers and Intractability : A Guide to the Theory of NPCompleteness, W.H. Freman and Company, NY, 1979
[9] Glover, F., Tabu Search - part I, ORSA Journal on Computing 1/3, 1989, 190-206
[10] Glover, F., Tabu Search - part II, ORSA Journal on Computing 2/1, 1989, 4-32
[11] Herrmann, F., Hertz, A., Finding the Chromatic Number by Means of Critical Graphs, ACM Journal of Experimental Algorithmics 7/10, 2002, 1-9
[12] Hertz, A., de Werra, D., Using Tabu Search for Graph Coloring, Computing 39, 1987, 345-351
[13] Johnson, D.S., Trick, M.A., Proceedings of the 2nd DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26, American Mathematical Society, 1996
[14] Kubale, M., Jackowski, B., A Generalized Implicit Enumeration Algorithm for Graph Coloring, Communications of the ACM 28/4, 1985, 412-418
[15] Mackworth, A.K., Constraint Satisfaction, S.C. Shapiro (Ed.) Encyclopedia on Artificial Intelligence, John Wiley \& Sons, NY, 1987
[16] Mehrotra, A., Trick, M.A., A Column Generation Approach for Exact Graph Coloring, INFORMS Journal on Computing 8, 1996, 344-354
[17] Morgenstern, C., Distributed Coloration Neighborhood Search, D.S. Johnson and M.A. Trick, eds. Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society 26, 1996, 335-357
[18] Peemöller, J., A Correction to Brélaz's Modification of Brown's Coloring Algorithm, Communications of the ACM 26/8, 1983, 593-597
[19] Tsang, E., Foundations of Constraint Satisfaction, Academic Press, London, 1993
[19] Van Loon, J., Irreducibly Inconsistent Systems of Linear Inequalities, European Journal of Operational Research 8, 1981, 283-288
[20] de Werra, D., Heuristics for Graph Coloring, Computing 7, 1990, 191-208


[^0]:    ${ }^{1}$ The VCSs found using $R e m+h$ and $I n s+h$ produce similar curves.

[^1]:    ${ }^{2}$ As many as 1152 vertices of the critical subgraph were found after the first iteration, and 1372 after the second.

[^2]:    ${ }^{3}$ This is always the case for odd values of N that are not multiple of 3 .

[^3]:    ${ }^{4}$ Except for the hitting set algorithm which also uses MinHS.

