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Abstract

This paper reports on the on-going development of a hybrid approach for dispatch-
ing and conflict-free routing of automated guided vehicles used for material handling in
manufacturing. The approach combines Constraint Programming for scheduling and
Mixed Integer Programming for routing without conflict. The objective of this work is
to provide a reliable method for solving instances with a large number of vehicles. The
proposed approach can also be used heuristically to obtain very good solution quickly.

Keywords: Automated guided vehicles, hybrid model, constraint programming,
material handling systems, routing.

Résumé

Cet article court porte sur le développement en cours d’une approche hybride sur
un problème de répartition et routage de chariots automatiques dans un atelier de
manufacture flexible. Notre approche combine la programmation par contraintes pour
l’ordonnancement et la programmation linéaire en nombres entiers pour le routage sans
conflits. L’objectif de ces travaux est de fournir une méthode fiable pour résoudre des
instances comportant un grand nombre de véhicules. L’approche proposée peut être
utilisée de façon heuristique pour obtenir rapidement des solutions de bonne qualité.

Mots-clé : chariots automatiques, modèle hybride, programmation par contraintes,
système de manutention, routage.
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1 Introduction

This study focuses on automated guided vehicles (Agvs) in a flexible manufacturing system
(FMS). An Agv is a material handling equipment that travels on a network of paths. The
FMS is composed of various cells, also called working stations, each with a specific function
such as milling, washing, or assembly. Each cell is connected to the guide path network
by a pick-up / delivery (P/D) station where the pick-ups and deliveries are made. The
guide path is composed of aisle segments with intersection nodes. The vehicles are assumed
to travel at a constant speed and can stop only at the ends of the guide path segments.
The guide path network is bidirectional and the vehicles can travel forward or backward.
The unit load is one pallet. The number of available vehicles and the duration of loading
and unloading at the P/D stations are known. As many vehicles travel on the guide path
simultaneously, collisions must be avoided. There are two types of collisions: the first type
may appear when two vehicles are moving toward the same node. The second type of
collision occurs when two vehicles are traveling on a segment in opposite directions. Every
day, a list of orders is given, each order corresponding to a specific product to manufacture
(here, product means one or many units of the same product). Each order determines a
sequence of operations on the various cells of the FMS. Then, the production is scheduled.
This production scheduling sets the starting time for each order. Pallets of products are
moved between the cells by the Agvs. Hence, each material handling request is composed
of a pickup and a delivery with their associated earliest times. At each period, the position
of each vehicle must be known. Time is in fifteen second periods. A production delay is
incurred when a load is picked up or delivered after its planned earliest time. The problem
is thus defined as follows: Given a number of Agvs and a set of transportation requests,
find the assignment of the requests to the vehicles and conflict-free routes for the vehicles
in order to minimize the sum of the production delays.

2 Literature review

For a recent general review on Agvs problems and issues, the reader is referred to the
survey of Qiu et al. (2002). These authors identified three types of algorithms for Agvs
problems: (1) algorithms for general path topology, (2) path layout optimization and (3)
algorithms for specific path topologies. In our study, we work on algorithms for general
path topology. Methods of this type can be divided in three categories: (1) static methods,
where an entire path remains occupied until a vehicle completes its route; (2) time-window
based methods, where a path segment may be used by different vehicles during different
time-windows; and (3) dynamic methods, where the utilization of any segment of path is
dynamically determined during routing rather than before routing as with categories (1)
and (2). Our method belongs to the third category and we focus on bidirectional networks
and conflict-free routing problems with an optimization approach. Furthermore we have
a static job set, i.e., all jobs are known a priori. Krishnamurthy et al. (1993) proposed
first an optimization approach to solve a conflict-free routing problem. Their objective
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was to minimize the makespan. They assumed that the assignment of tasks to Agvs is
given and they solved the routing problem by column generation. Their method generated
very good solutions in spite of the fact that it was not optimal (column generation was
performed at the root node of the search tree only). Langevin et al. (1996) proposed a
dynamic programming based method to solve exactly instances with two vehicles. They
solved the combined problem of dispatching and conflict-free routing. Desaulniers et al.
(2003) proposed an exact method that enabled them to solve instances with up to four
vehicles. They used slightly the same data set as Langevin et al.. Their approach combined
a greedy search heuristic (to find a feasible solution and set bound on delays), column
generation and a branch and cut procedure. Their method presents however some limits
since its efficiency depends highly on the performance of the starting heuristic. If no
feasible solution is found by the search heuristic, then no optimal solution can be found.
The search heuristic performs poorly when the level of congestion increases and the system
considers at most four Agvs.

3 A Constraint Programming / Mixed Integer
Programming approach

The decisions for dispatching and conflict-free routing of automated guided vehicles can be
decomposed into two parts: first, the assignment of requests to vehicles with the associated
schedule, then, the simultaneous routing of every vehicle. The hybrid approach presented
herein combines a Constraint Programming (CP) model for the assignment of requests to
the vehicles with their actual pick-up or delivery times (in order to minimize the delays)
and a Mixed Integer Programming (MIP) model for the conflict-free routing. The two
models are imbedded in an iterative procedure as shown in Figure 1. For each assignment
and schedule found by the CP model, the MIP model tries to find conflict-free routes
satisfying the schedule. CP is used to deal with the first part because it is very efficient for
scheduling and, in the present case, it allows identifying easily all optimal solutions. Here
optimal solutions that are equivalent in terms of value but represent different assignment
might yield very different routing solution. The routing part is addressed with MIP since
it can be modeled with a time-space network with some interesting sub-structures that
allow fast solutions.

The method can be described in three steps:

• Step 1: find an optimal solution x∗ (i.e., an assignment of requests to vehicles) to
the CP model. Let z∗ be the optimal objective function value (the total delay).

• Step 2: use x∗ in the MIP model to find a conflict-free routing. If there exists any,
the optimal solution to the entire model is found. Otherwise (no feasible solution
found), go to step 3.

• Step 3: find another optimal solution to the CP model different from x∗ but with
the same objective function value. If there exists any, return to step 2. If no feasible
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solution has been found with any of the optimal solutions of the CP model, go to
step 1 and add a lower bound to the objective function (f(x) > z ∗) before solving
anew the CP model. This lower bound is set to z∗ and is always updated when
returning to step 1.

3.1 The CP model

The model answers the question “Which vehicle is processing what material handling task
and when?” by yielding an ordered assignment of tasks to Agvs. The total amount
of delays is measured by summing the difference between the actual start time and the
earliest start time of all deliveries. In this model, the distance (time) matrix is obtained
by using shortest paths between nodes. Thus, the delays calculated (which don’t take into
account the possible conflicts) are an approximation (a lower bound) of the actual delays.

Sets and parameters used:

DummyStartTasks: set of dummy starting tasks. Each of them is in fact the
starting node of a vehicle corresponding to the last delivery node of a vehicle in the
previous planning horizon.
Start[k]: starting node of Agv k.
Pickups: set of pick-up tasks.
SP [·,·]: length of the shortest path between a couple of nodes
Node (p): node for task p. It is used here to alleviate the notation.
nbRequests: number of requests to perform.
nbChar: number of vehicles available.
Requests: set of requests. Each request contains two fields: the pick-up task and
the associated delivery task.
DummyStartRequests: set of dummy starting requests.
Inrequest: set of dummy start requests and real requests.
Pick [·]: pick-up field of a request.
Del [·]: delivery field of a request.
Each task (dummy or not) is defined by three fields: the node where the task is to
be performed, the processing time at this work station and the earliest starting time
of the task.
Duration [·]: duration of a task.
Priorities: set of couples of tasks linked by a precedence relationship (the first task
is to be performed before the other).
Tasks: set of all tasks with a (mandatory) successor.
This model uses the three following variables:
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• Alloc[i] = k if task i is performed by vehicle k. The index lower than 1 represent
dummy requests.

• Succ[u] = v if request v is the successor of request u on the same vehicle.

• Starttime[j] is the start time of task j.

For each vehicle a couple of dummy tasks are created, a starting task and an end task. The
starting task has the following characteristics: its node is the starting node of the Agv, its
duration and earliest starting time are set to zero. We define the set Tasks by the set of
dummy start tasks and real pickups and deliveries tasks. A request consists of a pickup
and a delivery tasks. The constraints used in the model are the following:

(1) ∀ k ∈ Char

Alloc[1 − k] = Alloc[nbRequests + k] = k

(2) ∀r ∈ DummyStartRequests
∑

s in Inrequest

(Succ[r] = s) = 1

(3) ∀ o ∈ Tasks

Alloc[o] = Alloc[Succ[o]]

(4) ∀ d ∈ DummyStartTasks

Starttime[d] = 0

(5) ∀ k ∈ Char, ∀ d ∈ DummyStartRequests, ∀ r ∈ Requests

(Alloc[d] = k)∧(Succ[d] = r) ⇒ Starttime[pick[r]] ≥ SP[Start[k], node(pick[r])]

(6) Alldifferent(Succ)

(7) ∀ r ∈ Requests

Startime[pick[r]] + 1 + SP[node(pick[r]),node(del[r])] ≤ Starttime[del[r]]

(8) ∀ r1, r2 ∈ Requests

Succ[del[r1]] = pick[r2] ⇒ (Starttime[del[r1]] + 1 + SP[node(del[r1]), node(pick[r2])]

≤ Starttime[pick[r2]])

(9) ∀ u ∈ Priorities

Starttime[before[u]] + duration(before[u]) ≤ Starttime[after[u]]

(10) ∀ i, j ∈ Tasks : (i �= j) and node(i) = node(j)

(Starttime[i] ≥ Starttime[j] + 1) ∨ (Starttime[i] + 1 ≤ Starttime[j])
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Constraints (1) ensure that a dummy starting task and its dummy end task are per-
formed by the same Agv. Constraints (2) ensure that the successor of a dummy start
request is either a real request or a dummy end request (in this case the vehicle is idle dur-
ing the entire horizon but can move to avoid collisions). Constraints (3) ensure that every
request and its successor must be performed by the same Agv. Constraints (4) ensure that,
at the beginning of the horizon (period zero), each vehicle is located at its starting node.
Constraints (5) specify that each vehicle must have enough time to reach its first pick-up
node. Constraints (6) imply that the successor of each request is unique. Constraints
(7) specify that each vehicle processing a request must have enough time to go from the
pick-up node to the delivery node of the request. Constraints (8) ensure that if one request
is the successor of another request on the same vehicle, the Agv must have enough time to
make the trip from the delivery node of the first request to the pick-up node of the second
request. They link the tasks that must be processed at the same nodes so that there is no
overlapping. Constraints (9) enforce that, for every couple of tasks linked by precedence
relationship, the first task must start and be processed before the beginning of the second
task. Constraints (10) ensure that for each couple of tasks that must be performed on the
same node, one must start one period after the beginning of the other.

3.2 The MIP model

For a given schedule obtained from the CP model, the MIP model allows to find whether
there exists a feasible routing without conflict. This could be seen as a Constraint Sat-
isfaction Problem since we only search for a feasible routing without conflict. However,
the inherent network structure of the routing problem allows using a MIP model where
only the first feasible integer solution is searched for, thus preventing a potentially time
consuming search for the optimal solution of the MIP. The MIP corresponds to a time-
space network which defines the position of every vehicle at anytime (see Figure 2). The
original guide path network is composed of segments of length 1, 2 and 3. This network has
been transformed into a directed network where all arcs are of length 1 by incorporating
dummy nodes on segments of length 2 or 3. At every time period, there is a node for
each intersection node (including the dummy nodes) of the guide paths. An arc is defined
between two nodes of two successive time periods if the corresponding intersection nodes
are adjacent on the guide path layout. Each vehicle enters the network at a given node at
period 0. The time-space network model has the following characteristics:

• One unit of flow is equivalent to one vehicle present in the system.
• The total amount of entering flow at each period is equal to the total number of Agvs

(busy or idle).
• At most one unit of flow can enter in a node (no collision can occur at a node).
• There is flow conservation at each node.
• An arc whose origin and destination are the same node at two successive periods

corresponds to waiting at that node.
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• A vehicle can move without having a task to perform, just for avoiding conflicts.

See Figure 2 for time-space network description.

   

Figure 2: Description of the time-space network (MIP)

Several versions of MIPs are presently under investigation. Here, we present
one that has given interesting results up to now.

Sets and parameters of the MIP model:

Char: the set of agvs
Nodes: the set of nodes
Periods: the set of periods.
ArcsPlus: the set of all arcs (including those with dummy nodes), represented as
an interval of integers.
M is the length of the horizon (number of periods).
The variables Alloc [·] and Starttime [·] obtained from the CP model are used as
input.
Segment[a] is a record having two fields. The first field (Segment[a].orig) is the
origin of the arc whereas the second field (Segment[a].dest) is the destination of a.

The variables of the MIP model:

Y [k, t, p] = 1 if vehicle k ∈ Char is on node p ∈ Nodes at period t ∈ Periods.
Z [k, t, a] = 1 if vehicle k ∈ Char starts visiting arc a ∈ ArcsPlus at period t ∈[0 ...
M-1].

The MIP model is defined as follows:
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Min
∑

k∈Char

∑
t∈Periods

∑
p∈Nodes

Y [k, t, p]

s.t

(1) ∀ k ∈ Char

Y[k,Starttime[2 − k],node[Task[2 − k]]] = 1

(2) ∀ r ∈ Requests

Y[Alloc[r],Starttime[pick[r]],node[Task[r]]] = 1;

(3) ∀ r ∈ Requests

Y[Alloc[r],Starttime[del[r]],node[Task[r]]] = 1;

(4) ∀ r ∈ Requests

Y[Alloc[r],Starttime[pick[r]] + 1,node[Task[r]]] = 1;

(5) ∀ r ∈ Requests

Y[Alloc[r],Starttime[del[r]] + 1,node[Task[r]]] = 1;

(6) ∀ t in Periods, ∀ k in Char∑
p in Nodes

Y [k, t, p] = 1;

(7) ∀ k ∈ Char, ∀ t ∈ [0..M − 1], ∀ a ∈ Arcs

Y[k, t, Segment[a].orig] + Y[k, t + 1, Segment[a].dest] − Z[k, t, a] ⇐ 1;

(8) ∀ k ∈ Char, ∀ t ∈ [0..M − 1], ∀ a ∈ Arcs

Z[k, t, a] ⇐ Y[k, t, Segment[a].orig];

(9) ∀ k ∈ Char, ∀ t ∈ [0..M − 1], ∀ a ∈ Arcs

Z[k, t, a] ⇐ Y[k, t + 1, Segment[a].dest];

(10) ∀ t ∈ [0..M − 1], ∀ k ∈ Char∑
a∈ArcsPlus

Z[k, t, a] = 1;

(11) ∀ t ∈ Periods, ∀ p ∈ Nodes

∑
p∈Nodes

Y[k, t, p] ≤ 1+

⎛
⎜⎝

∑
1

r ∈ Realtasks :

t = Starttime[r] ∧ p = node(Task[r])

⎞
⎟⎠

∗

⎛
⎜⎝

∑
1

r ∈ RealTasks :

t = Starttime[r] − 1 ∧ p = node(Task[r])

⎞
⎟⎠ ;

(12) ∀ t ∈ [0..M − 1], ∀ a ∈ ArcPlus∑
k∈Char

Z[k, t, a] +
∑

k ∈ Char,

b ∈ Opp[a]

Z[k, t, b] ≤ 1;

Constraints (1) specify that every vehicle must be present at its starting node at pe-
riod 0. Constraints (2-3) enforce the presence of vehicles at their task node in due time.
Constraints (4-5) ensure that every vehicle stays at least one period at its task node to



Les Cahiers du GERAD G–2004–21 9

load or unload. Constraints (6) ensure that every vehicle has a unique position at each
period. Constraints (7) imply that if a vehicle starts visiting the origin of an arc at pe-
riod t, it will visit the destination at period t+1. Constraints (8) enforce that if a vehicle
is on a node at period t, it means that it has started visiting an arc (waiting arc or not) at
period t-1. Constraints (9) enforce that if a vehicle is on a node at period t+1, it means
that it has started visiting an incoming arc (waiting arc or not) at period t. Constraints
(10) ensure that every vehicle starts running on a unique arc (real or waiting arc) at each
period. Constraints (11) forbid the presence of two vehicles on the same node except the
case where one vehicle is finishing its task while another is starting its task on a work
station. In a certain sense, these are anti-collision constraints on nodes. Constraints (10)
are anti-collision constraints on arcs: no two vehicles can travel at the same time on the
same arc in opposite directions.

4 Preliminary Results

The method has been implemented in OPL Script. We compared our method to the
approach of Desaulniers et al. and we not only gain on flexibility by using CP but we were
able to solve formerly unsolved cases (their algorithm failed in two instances). We also
solved some new cases with five and six Agvs (the maximum number of Agvs in Desaulniers
et al. was four). The number of Agvs used was limited to six since it didn’t make sense
to increase the number of Agvs with regards to the number of requests. However, larger
applications like container terminal operations use dozens of agvs and no optimization
automated solutions exist. Presently, the size of the MIP model for the routing part is
very large. It depends largely on the size of the horizon. Then larger time horizons will
likely be more difficult to handle. We need to test our method on problems of larger
number of tasks or Agvs with the idea of rolling horizons.

Our method took more computing time than that of Desaulniers et al. even though the
computation times found are below the limit of ten minutes that we set. Our tests were
done on a Pentium 4, 2.5 GHz. Desaulniers em et al. did their tests on a SUNFIRE 4800
workstation (900 MHz).

Our approach can be transformed into a heuristic version by limiting the time of each
scheduling solution to 30 seconds. Experiments are planned to see if this technique can
yield quickly very good solutions.

5 Conclusion

This article reports on the development of a flexible hybrid algorithm based on the decom-
position into CP and MIP components. We were able to solve some formerly unsolved cases
of a complex AGV dispatching and routing problem. Tests on problems with a greater
number of tasks or Agvs are needed to fully evaluate the effectiveness of the proposed
method. It would be interesting to analyze the impact of the number and the diversity
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of precedence relationships between tasks. This research is an ongoing project as we are
now working on refining the presented models and the iterative loop that guides them. As
future work, an adaptation of our approach to a mining context should be very interesting
due to the high level of congestion present in these problems.
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