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Abstract

wdm networks offer a technology that can transferred several optical signals into a
single optical fiber. This allows for more efficient use of the huge capacity of optical
fibers but it also poses new network design and management problems such as rout-
ing and wavelength planning. This paper discusses the rwa problem, i.e., the routing
and wavelength assignment problem in wdm networks. Given a set of requests and
the number of available wavelengths the fibers support, we are to find, through the
network, a route for each connection and assign wavelengths to them. In this pa-
per, we consider the objective of minimizing the number of connections that have to
be denied. We propose a multi-phase heuristic algorithm called rwabou. It begins
with an initialization step in which we compute for each connection, r-shortest paths
from each source to their destination. It is followed by an algorithm with two inter-
active phases. The first phase integrates a Tabu Search heuristic for the wavelength
assignment followed by and interacting with a partial rerouting heuristic phase for
the blocked connections. Computational experience shows that the rwabou heuristic
outperforms some recently published work on traffic instances run on the nsf and the
eon networks. Moreover, comparing the lower bound of the rwabou heuristic with
the best known upper bound allows to conclude to the optimality of the rwa solution
for several benchmark problems and to the very high quality of several others.

Key Words: WDM network, single-hop, graph coloring, blocking probability, wave-
length assignment, routing.

Résumé

Les réseaux wdm offrent une technologie qui permet de transférer plusieurs signaux
optiques dans une seule fibre optique. Cela permet une utilisation plus efficace de la
capacité considérable des fibres optiques mais cela pose aussi de nouveaux problèmes
de conception et de gestion des réseaux, ainsi que de planification du routage et des
longueurs d’onde requises. Ce rapport discute du problème rwa, c’est-à-dire du prob-
lème de routage et d’affectation de longueurs d’onde dans les réseaux optiques wdm.
Étant donné un ensemble de requêtes de connexion et le nombre disponible de longueurs
d’onde dont chaque fibre dispose, nous devons trouver, à travers le réseau, une route
pour chaque connexion et lui affecter une longueur d’onde. Dans ce rapport, nous
considérons l’objectif de minimiser le nombre de connexions qui sont refusées. Nous
proposons une heuristique avec plusieurs phases appelée rwabou. Elle commence avec
une étape d’initialisation dans laquelle nous calculons pour chaque connexion, les r plus
courts chemins de chaque source à chaque destination. Cette étape est suivie par un
algorithme avec deux phases interactives. La première phase intègre une heuristique
de type recherche tabou pour l’affectation des longueurs d’onde suivie d’une phase
heuristique de reroutage partiel pour les connexions bloquées. Les expériences de cal-
cul montrent que la procédure rwabou se comporte mieux que certaines procédures
publiées récemment sur des instances de trafic avec les réseaux nsf et eon. De plus, en
comparant la borne inférieure fournie par la procédure rwabou avec la meilleure borne
supérieure connue, nous pouvons conclure à l’optimalité de la solution pour plusieurs
instances, et à l’excellente qualité de plusieurs autres solutions.
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1 Introduction

All-optical wavelength-division multiplexed (wdm) networks are considered as highly
promising for the next generation of wide-area backbone networks that will need to sup-
port hundreds and thousands of users, each operating at gigabit-per-second speed. In this
paper, we consider a wdm single hop optical network architecture with wavelength routers
interconnected by point-to-point optical links, where connections can be set-up by appro-
priately choosing a wavelength continuous route subject to some grade (GoS) or quality
of service (QoS) constraints or objectives. We concentrate here on the static problem of
routing and wavelength assignment (rwa) with the objective of minimizing the blocking
probability, sometimes called max-rwa problem.

Numerous papers have already appeared on the max-rwa problem, see, e.g., Dutta and
Rouskas [22], Zang, Jue and Mukherjeee [11], Leonardi, Mellia and Marsan [5] for three
surveys. Most of the earliest papers consider two-phase solution approaches where the
routing and the wavelength assignment are decoupled. The first phase corresponds to a
routing phase, either a fixed route strategy based on the computation of shortest routing
paths or an alternate route strategy with, e.g., an ordered list of the r-shortest paths or a
list of link-disjoint paths. The second phase deals with the wavelength assignment prob-
lem, very often reformulated as a graph coloring problem solved using different heuristic
schemes, see, e.g., Hyytiä and Virtamo [15] for a comparison of some of them.

Some authors have also attempted to reformulate the max-rwa problem using integer
programming approaches, with the advantage that the routing and wavelength assignment
are then coupled. For instance, Krishnaswamy and Sivarajan [18] proposed two 0-1 linear
programming formulations of the max-rwa problem which however contains too many
variables in order to be solved efficiently in practice. For this reason, they explore the use of
the linear relaxations of these formulations both for deriving upper bounds and for deducing
heuristic solutions using a rounding-off procedure. An analytical and a computational
comparison of the two formulations of Krishnaswamy and Sivarajan [18] and their upper
bounds with other formulations proposed by, e.g., Coudert and Rivano [4], can be found
in Jaumard et al. [16].

Another approach has been proposed by Chen and Banerjee [3] with a layered-graph
model where routing and wavelength assignment steps are also tightly coupled. However,
using this model for solving the max-rwa problem is still difficult as it reduces to an edge-
disjoint path problem, reformulated as an integer multicommodity flow problem. This
last reformulation can be used both for obtaining upper bounds and designing efficient
heuristics, and computational experience reported by the authors show that it leads to
better results than some heuristics with a two-phase scheme.

We propose a new algorithm, called rwabou, corresponding to an iterative two-phase
heuristic, made of a routing phase interacting with a wavelength assignment phase. Both
phases are called recursively until no further improvement can be obtained on the blocking
rate. Each phase uses the solution output by the previous phase to improve on the blocking
rate. The wavelength assignment phase, which corresponds to a W -stability graph problem
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that differs slightly from the classical graph coloring formulation used by most of the
previous authors, is solved by a Tabu Search meta-heuristic, a well known and efficient
technique for solving highly combinatorial problems.

The paper is organized as follows. In Section 2 we detail the statement of the problem.
The rwabou heuristic is described in Section 3 with two variants. Computational and
comparative results are presented in the last section.

2 Network Model and Problem Formulation

2.1 Notation

We represent the optical fiber network by a multigraph N = (N, L) where each vertex of
N corresponds to a node (e.g., multiplexers or routers) in the physical network and each
edge or link � ∈ L to a fiber between two nodes. Physical links may support several fibers,
and if it is the case, we assume that the definition of the routing paths identifies for each
link the fiber that is used. This entails that two identical paths in terms of physical links
may lead to two different routing paths in the multigraph.

Let D be the traffic matrix that specifies the traffic flow Dsd between each pair {Ns, Nd}
of source-destination nodes. Each matrix element Dsd is defined as a set of Tsd aggregated
flows denoted φt

sd, t = 1, 2, ..., Tsd, where it is assumed that each flow φt
sd can be carried

out on a single wavelength. We will consider both symmetrical and asymmetrical traffic
matrices. For symmetrical traffic, we will assume that N is an undirected multigraph
and that each wavelength is full-duplex, although such theoretical full-duplex wavelengths
might be split into two directional wavelengths in practice. For asymmetrical traffic, N is
a directed multigraph with usually two fibers per link, one for each direction.

We also assume that flows are not bifurcated, i.e., all packets of a given traffic flow are
routed along the same path. Moreover, each lightpath uses the same wavelength along the
whole path (wavelength continuity constraint), i.e., there is no wavelength conversion.

We assume that the physical topology of the network is given and in particular that
the link capacities are given. We denote by C� the capacity of link � expressed by the
number of fibers per link and the number of wavelengths per fiber. Let W be the number
of wavelengths per fiber that is available in the network. Let Φ = {φt

sd : Ns, Nd ∈ N, t =
1, 2, . . . , Tsd} be the set of all connections, i.e., the set of all aggregated flows. Each
aggregated flow φt

sd corresponds to a set of sessions (or individual flows) between the same
source-destination pair denoted by {Ns, Nd} for symmetrical traffic (or from a source to a
destination denoted by (Ns, Nd) for asymmetrical traffic).

2.2 Problem Formulation

In this paper, we propose to study the following planning problem. Given the physical
topology of an optical network N = (N, L) together with link capacities, a set D of
aggregated traffic flows, we want to establish as many lightpaths as possible for the set Φ
of aggregated traffic flows in order to minimize the blocking rate. The lightpath definition
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must satisfy some constraints: (i) two different lightpaths using the same fiber and link
must have distinct wavelengths and (ii) the number of lightpaths using the same link and
fiber should not exceed the capacity of the fiber, or in other words the maximum number
of wavelengths per fiber.

The grade of service (GoS) will be evaluated through the blocking probabilities, that
will be estimated in turn through blocking rates, and the objective will be to maximize
the GoS, i.e., the number of traffic flows that can be accepted in the network. A traffic
flow will be blocked if no wavelength is available on any path satisfying the capacity or
lightpath constraints described in the previous paragraph. The blocking rate might depend
on the services. Assuming that we have, e.g., both voice and video traffic requests, we can
calculate a blocking rate for each service, P voice

blocking and P video
blocking.

The objective function will therefore be written

min
∑

s∈Services

P s
blocking,

where the blocking probability will be defined as follows:

P s
blocking =

number of denied flows of class s

number of requests for flows of class s
.

Assuming priorities to exist, the objective function will be rewritten as follows:

min
∑

s∈Services

ps × P s
blocking,

where ps represents a weight for service s that takes its relative priority into account.

3 The rwabou Algorithm

3.1 Outline of the rwabou algorithm

We propose a two phase algorithm, called rwabou, with a routing phase alternating and
interacting with a wavelength assignment phase until no improvement can be obtained
with respect to the objective function.

The algorithm starts with an initialization step that consists in computing a set Psd of
potential routes in the network N = (N, L) for each pair of source and destination nodes
using a r-shortest path algorithm (see, e.g., Eppstein [6], Yen [23], Martins and Pascoal
[20]). If the traffic is symmetrical, paths are undirected (Psd = Pds), otherwise they are
directed (Psd �= Pds).

The core of the algorithm consists in two alternating phases: a routing phase in which
we select a routing path for each connection in the first routing phase and modify some
paths in the subsequent ones, followed by a wavelength assignment phase. Several rerout-
ing strategies will be explored. The wavelength assignment phase consists in assigning a
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wavelength to the maximum number of connections subject to the selected routing paths:
this corresponds to the W -stability graph problem, i.e., to the problem of minimizing the
number of uncolored vertices given an undirected graph and only W colors for coloring its
nodes.

We will explore two solution schemes to solve the W -stability graph problem associ-
ated with the wavelength assignment phase. Both solution schemes will be color exchange
procedures based on a Tabu Search scheme in which we change the color of one vertex
at each iteration (or equivalently the wavelength assigned to a given connection). In the
first scheme, the basic idea is to start from an infeasible W -coloring, minimize the number
of edge conflicts (i.e., the number of adjacent nodes identically colored), and then remove
iteratively vertices until the W -coloring becomes feasible. In the second scheme, we in-
troduce a dummy color W + 1 for the vertices that cannot be colored with the first W
colors. No coloring constraint applies for the vertices colored with W + 1: no edge conflict
is counted for adjacent nodes identically colored W + 1. The objective is then to minimize
the number of vertices colored with W + 1.

A Tabu Search method can be described as follows. It is an iterative procedure in which
we go from one solution to another through elementary moves towards a given objective
or evaluation function (sometimes constraints are relaxed and introduced with a fixed or
dynamic penalty factor in the objective, leading to a so-called evaluation function). For
each solution s, we define a neighbor N (s). For the coloring problem, N (s) is often defined
as the set of solutions derived from s by changing the color of one vertex. At each iteration
the best move is usually defined as the one going from s to the best solution s′ in N (s). The
best move is defined in absolute value: if there is no solution in N (s) that can improve the
current value of the objective or the evaluation function, we go on with the solution leading
to the smallest deterioration of the objective/evaluation function. In order to avoid going
back to a previous solution, we use a Tabu list in which we insert the deteriorating moves
(in some version all moves) for a given number of iterations corresponding to the length
of the Tabu list. The Tabu Search has been independently introduced by Glover [8] [9]
and Hansen and Jaumard [12] and has since then been widely used successfully for solving
difficult combinatorial problems. Moreover, many refinements have been proposed that
significantly improve on the basic version of Tabu Search in many cases, e.g., aspiration
criterion or diversification strategy, see, e.g., Glover and Laguna [10] for more details and
references.

The W -coloring problem has been widely studied, and several efficient greedy heuristics
and metaheuristics have been proposed to solve it, see, e.g., Brelaz [2] and Leighton [19]
for the most popular greedy schemes, and Hertz and de Werra [13], Hertz, Taillard and
de Werra [14], Galinier and Hao [7] and Avanthay, Hertz and Zuffery [1] for some of the
most current efficient metaheuristics. Although close to the W -coloring problem, the W -
stability graph problem has not been studied much, and no efficient heuristic has yet been
proposed to solve it.

Note that if there exists several connections between a given pair of nodes, they can use
similar or distinct routing paths as long as the traffic flow is not bifurcated.
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3.2 The Wavelength Graph and its Subgraphs

Before describing the Tabu Search algorithms for solving the wavelength assignment prob-
lem, let us first introduce the wavelength graph. It is a graph G = (V, E) defined as follows.
Each node vsd,p,t ∈ V is associated with a potential routing path p for the flow φt

sd. An
edge exists between two nodes vsd,p,t and vs′d′,p′,t′ if the two routing paths p and p′ share
at least one edge (symmetric traffic) or arc (asymmetric traffic).

In Figure 1, we describe a network where we consider a traffic matrix with four con-
nection requests: three requests (flows φ1

12, φ2
12 and φ3

12) between N1 and N2 with three
potential routing paths, one request between N2 and N3 (flow φ1

23) with again three poten-
tial routing paths. In Figure 2, we outline the structure of the wavelength graph. We next
detailed all the edges of the wavelength graph in Figure 3 assuming that three potential
routing paths exist for each pair of origin-destination nodes.

N1

N2

N3

Path 1 Path 5

Path 6

Path 4

Path 3
Path 2

Figure 1: A small network with a set of potential routing paths

The wavelength assignment problem can be defined as follows on the wavelength graph
G = (V, E): find a W -coloring which aims at coloring as much as possible at least one
vertex per set V t

sd, where V t
sd is the set of vertices associated with a given aggregated flow

φt
sd and each vertex vsd,p,t of V t

sd is associated with a potential routing path p for this flow.
Depending on the set of potential routing paths that have been identified at the outset

and on the number of requested connections, the wavelength graph might be quite large.
Therefore, at each iteration k, we consider the subgraph Gk = (V k, Ek) deduced from G in
which V k ⊆ V contains only one vertex vsd,p,t for each traffic flow φt

sd: we retain only one
routing path for each traffic flow. On these subgraphs, the wavelength assignment problem



Les Cahiers du GERAD G–2004–12 6

Path 5

Path 6

Path 4

Path 3
Flow 3 Path 3

Flow 2

Path 3
Flow 1

Path 1
Flow 3

Path 1
Flow 2

Path 1 
Flow 1

Path 2
Flow 2 Path 2

Flow 3

Path 2
Flow 1

Vsd =  V12
3 traffic flows

Vsd = V23
1 traffic flow

Figure 2: Structure of the wavelength graph

is easier to solve and corresponds exactly to the W -stability graph problem. Observe how-
ever that solving the special W -coloring problem on G as stated in the previous paragraph
could lead to a one-phase solution scheme for the rwa problem.

Examples of wavelength subgraphs are given in Figure 4. In the first one G1, it is easy
to find a feasible wavelength assignment with two wavelengths while in the second one G2,
we need three wavelengths if, e.g., we select the same routing path for the flows between
N1 and N2, or otherwise a traffic flow is blocked if only two wavelengths are available.

3.3 Wavelength Assignment and W -coloring

We describe below a first Tabu Search algorithm, called rwabou1, for solving the wave-
length assignment problem.

As explained in Section 3.1, the first solution scheme for the wavelength assignment
phase consists in starting with a possibly infeasible W -coloring. In this case, the first
routing phase is combined with a wavelength assignment procedure that proceeds as follows.
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v23,4,1

v23,6,1

v23,5,1

v12,3,3

v12,3,2

v12,3,1

v12,1,2
V12,1,3

v12,1,1

v12,2,2

v12,2,3

v12,2,1

Figure 3: Wavelength graph G

We consider each traffic flow φt
sd in turn. For each of them, we select a routing path in

the set Psd, starting with the shortest ones, and considering only those that satisfy the
link and fiber capacity constraints. We build an initial wavelength subgraph G0 along with
the selection of routing paths. If at some point, no feasible routing path can be found
for a given connection φt

sd (i.e., no vertex vsd,p,t for p ∈ Psd can be added with a proper
color), we select the path leading to the smallest number of edge conflicts in the current
wavelength subgraph.

For the subsequent wavelength assignment phases, we assume the routing phase to be
completed and we proceed in two steps. We first look for a feasible W -coloring if possible.
If we don’t succeed in finding one, we go on with an iterative process to eliminate the
minimum number of vertices in G in order to remain with a wavelength subgraph that
has a feasible W -coloring. The wavelength assignment procedure can be summarized as
follows.

Input. A wavelength subgraph Gk = (V k, Ek) associated with the path selection of the
previous routing phase.

Step 1. Define an initial wavelength assignment using a greedy procedure similar to the
Leighton’s rlf algorithm [19].

Step 2. Using a Tabu Search similar to the tabucol heuristic of Hertz and de Werra [13],
find the W -coloring with the smallest number of edge conflicts.
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v23,6,1
v12,3,3

v12,1,2

v12,1,1

v23,5,1
v12,1,2

V12,1,3

v12,1,1

Graph G1

Graph G2

Figure 4: Two Wavelength Subgraphs: G1 and G2

Step 3. If no edge conflict remains, exit the wavelength assignment phase.
Step 4. Otherwise, modify the current wavelength graph Gk and eliminate recursively the

vertex with the largest number of edge conflicts in the best W -stability graph solution
found in Step 2 until obtaining a feasible W -coloring problem (we assume that we
compute at each iteration of the Tabu Search algorithm a feasible W -coloring using
an iterative vertex removal procedure as described earlier).

During the experiments, we observe that the best W -stability graph solution was not
necessarily corresponding to the solution with the smallest number of edge conflicts and
that it was often more interesting to consider the best W -stability graph solution in Step 4
rather than the solution with the smallest number of conflicts.

In order to improve the efficiency of the tabucol heuristic, a couple of modifications
were brought with respect to the management of the Tabu list and the stopping crite-
rion. We use a dynamic length Tabu list instead of the fixed size Tabu list of length 7
of the authors and a stopping criterion with a maximum number of iterations without
improvement of the incumbent value. Moreover, a move was inserted in the Tabu list only
when it had led to a deterioration of the current value of the objective.
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3.4 Wavelength Assignment and the W -stability Graph Problem

Observe that the two step process of the wavelength phase described in Section 3.3, that is
first determine if there exist a W -coloring, and then remove the smallest number of nodes in
order to find a feasible wavelength assignment does not necessarily lead to the wavelength
assignment with the minimum blocking rate. Let us consider the example described below
in Figure 5. It corresponds to an optical network with a traffic matrix made of 7 source-
destination pairs leading to the wavelength graph depicted in Figure 5. Two wavelength
assignments are described with two wavelength conflicts for each of them (corresponding
to the dashed links). While in the first case we need to deny only one flow (e.g., deny φ14

between N1 and N4) in order to get a feasible wavelength assignment, it is necessary to
deny two flows (deny, e.g., φ12 between N1 and N2 and φ35 between N3 and N5) in the
second case. In order to overcome this drawback, we made the following modification in
the wavelength assignment phase of the rwabou1 algorithm of the previous section.

Blocking rate: 1/7

N1, N2

N1, N3

N2, N3

N1, N4

N1, N6

N2, N5

N3, N5

N1, N2

N1, N3

N2, N3

N1, N4

N1, N6

N2, N5

N3, N5

Blocking rate: 2/7

N1, N2

N1, N3

N2, N3

N1, N4

N1, N6

N2, N5

N3, N5

wavelength λ1

wavelength λ3

wavelength λ2

Figure 5: Illustration of some drawback of the two step wavelength assignment procedure

Instead of minimizing the number of wavelength conflicts as in the rwabou1 Tabu
Search procedure, we consider directly the objective of minimizing the blocking rate. It
corresponds to a constrained Tabu Search procedure, called rwabou2, for which several
adjustments are needed.

Let us first introduce some notation. Denote by E(λ�) the set of edges in Gk with
identically colored vertices. The wavelength assignment is feasible if

W∑

�=1

|E(λ�)| = 0. (1)
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Let us introduce a dummy wavelength λW+1 and consider the following optimization prob-
lem

min{|V k(λW+1)| :
W∑

k=1

|E(Λk)| = 0},

where V k(λW+1) defines the set of nodes that have been assigned λW+1. This corresponds
to the problem of finding the wavelength assignment with the smallest blocking rate.

In order to solve this last optimization problem, we consider again a Tabu Search proce-
dure in which we start with a wavelength assignment with W wavelengths which might be
infeasible. Indeed, we have two choices, starting with a feasible or an infeasible wavelength
assignment. In the attempts we made, it turned out that it was very difficult to design an
efficient Tabu Search procedure starting with a feasible wavelength assignment. We only
describe below the most successful attempt. In order to take the feasibility condition (1)
into account, we consider the following evaluation function

f(Λ) = |V k(λW+1)| + wpenal
W∑

�=1

|E(λ�)|,

where Λ refers to the current wavelength assignment and wpenal denotes a penalty factor
that is adjusted throughout the Tabu Search procedure in order to end up with a feasible
wavelength assignment with respect to the first W wavelengths. The penalty is increased
(e.g., wpenal ← wpenal + 5 every iteration) when the wavelength assignment becomes too
infeasible, and is decreased (e.g., wpenal ← wpenal/2 every 10 iterations) when it is feasible:
if the wavelength assignment always remains feasible, we observe that the value of f(Λ)
very quickly stabilized and that a large fraction of the solution set is unexplored. Therefore,
going infeasible while controlling the infeasibility level leads to a good strategy for exploring
the solution set and finding the best possible blocking rate.

It remains to specify how we proceed with the color exchange at each step of the Tabu
Search procedure. We consider two ways. In the first one, called rwabou2a, we select at
random either a vertex involved in an edge conflict or a vertex colored with W +1. We next
evaluate with f(Λ) the best alternate color in {1, 2, ..., W, W + 1} if the vertex is involved
in an edge conflict or in {1, 2, ..., W} otherwise. In the second variant, called rwabou2b,
we select the vertex involved in the largest number of edge conflicts and evaluate with f(Λ)
the best alternate color.

3.5 Routing Phase

Several rerouting strategies have been considered. Although we consider one strategy with
several reroutings, we observe that the most efficient strategies consist in rerouting a small
fraction of blocked connections. After each wavelength assignment phase, we order the
blocked connections with respect to their decreasing number of edge conflicts in a list L.
We explore the following four strategies:
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S Next: select the first blocked connection of L and select the next routing path in its list
of potential paths,

S Best: select the first blocked connection of L and select the first routing path, if there
exists one, that leads to a reduction in the number of edge conflicts. If none exists,
select the alternate one leading to the smallest number of edge conflicts,

S Disjoint: select the first blocked connection of L and select the routing path that is the
most edge disjoint (i.e., fiber disjoint) with the current routing path,

S Mul: select the first 5 connections of Lsuch that, and for each of them, select the best
routing path, i.e., the route leading to the best reduction in the number of edge
conflicts.

3.6 Summary of the rwabou algorithms

We summarize below the rwabou algorithm with the flow chart of Figure 6. In the first
variant, the wavelength assignment phase is solved using a W -coloring process as described
in Section 3.3, leading to the so-called rwabou1 algorithm. In the second variant, called
rwabou2 algorithm, we consider a Tabu Search algorithm aiming at solving the W -stability
graph formulation in a one-step process as described in Section 3.4.

Initialization: build the
wavelength graph

Initialization : select a first routing
path for each aggregated flow

Optimize the wavelength assignment 
with Tabu Search:

minimizing the blocking rate

Routing path stopping condition satisfied ? No

Change some routing paths

Yes

Routing and wavelength assignment solution

Figure 6: Flowchart of the rwabou algorithms
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4 Computational and Comparative Results

We describe the computational experience we have performed with the rwabou algorithms
proposed in Section 3 and discuss their performances in comparison with some previous
heuristics proposed in the literature. We also study the deterioration of the grade of service
with incremental traffic.

4.1 Optical Networks

The rwabou algorithms have been tested on two data sets of the literature. We consider
two optical networks widely used in the literature, the nsf and the eon networks. The nsf
network is recalled in Figure 7, it is a network with 14 nodes and 21 optical links, with an
average of 3 links per node. The eon network is described in, e.g., Mahony et al. [21] and
also in Figure 8 below. It is a network with 20 nodes and 39 optical links, with an average
of 4 links per node, see Figure 8.

4.2 Traffic Data

We used the asymmetric traffic matrices of Krishnaswamy [17] that we reproduce below
in Figures 9 and 10. For the experimental results with symmetrical traffic, we modify
those matrices and use max{Dsd, Dds} for the number of connections between a pair of
source-destination nodes {s, d}. The resulting symmetric matrices lead to 191 connections
for the nsf instance and to 270 for the eon one.

1

2

0

4

6

8

11

9

10

12

7

3

13

5

Figure 7: nsf (National Science Foundation Network) Network



Les Cahiers du GERAD G–2004–12 13

4

7

10
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13
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18
1

Figure 8: eon (European Optical Network) Network

4.3 Computational Results

We present below some computational and comparative results for the rwabou algorithms.

4.3.1 Behavior of the Tabu Search Algorithms We illustrate on Figures 11 and 12
some of the typical behaviors of the rwabou1 and rwabou2 Tabu Search procedures
respectively. We use the nsf network with asymmetrical traffic and 10 wavelengths. For the
rwabou1 algorithm, we drew two curves, one for the number of edge conflicts, one for the
number of denied connections. This last number is evaluated as follows: at each iteration,
we use a greedy procedure that sequentially removes vertices until all edge conflicts have
disappeared, considering for each removal the vertex involved in the largest number of
edge conflicts. We can observe on Figure 11 how the two numbers are varying along
with the iterations: while the number of edge conflicts is decreasing, the number of denied
connections is increasing. When the stopping criterion applies for the rwabou1 algorithm,
we consider the incumbent solution in terms of number of denied connections, and apply
again the vertex removal greedy procedure. The curve of the number of edge conflicts is
slightly increasing as the incumbent solution does not correspond to the best solution in
terms of edge conflicts.

For the rwabou2 algorithm, we observe that once we reach a feasible coloring, it is
rather difficult to reduce further the number of vertices colored W +1, even if we allow for
some controlled infeasibility. The variable penalty factor plays a crucial role in reaching
or returning to a feasible solution, and it must take sometimes quite high value before
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- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 total
1 0 1 3 1 1 1 3 0 2 0 1 2 0 3 18
2 0 0 0 2 2 2 1 1 1 2 1 0 1 3 16
3 3 2 0 3 0 1 2 3 1 3 1 2 2 0 23
4 3 1 0 0 1 1 2 3 2 2 1 2 1 3 22
5 1 3 0 2 0 1 0 2 0 3 0 1 1 3 17
6 1 2 1 3 2 0 1 3 3 1 0 1 1 2 21
7 2 2 3 1 3 3 0 0 3 1 2 0 3 3 26
8 3 1 2 3 1 0 1 0 0 3 2 0 3 0 19
9 3 0 1 3 3 3 1 0 0 2 1 1 1 0 19
10 0 0 0 1 2 0 2 0 1 0 1 0 0 3 10
11 1 0 0 2 0 3 0 1 0 3 0 3 1 3 17
12 2 3 1 1 3 2 3 2 2 2 2 0 1 3 27
13 2 0 1 2 0 1 2 0 3 0 2 1 0 3 17
14 1 1 0 2 1 0 1 3 0 1 2 1 3 0 16

Figure 9: Traffic matrix for the nsf network, total of 268 connections

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 total
1 0 1 2 1 1 0 2 0 1 0 1 2 0 2 0 0 1 1 1 0 16
2 1 0 0 2 0 0 1 2 2 1 2 0 1 1 2 0 2 0 1 1 19
3 0 2 0 0 0 1 1 1 2 1 1 1 1 0 2 1 2 0 1 0 17
4 0 1 0 0 2 0 0 0 2 1 2 0 2 2 1 2 2 1 0 1 19
5 0 2 2 1 0 2 1 2 2 0 2 1 1 0 2 2 2 1 2 2 27
6 1 0 1 0 2 0 1 0 2 0 2 0 0 2 2 2 1 0 1 0 17
7 0 0 0 0 0 0 0 1 2 0 1 0 1 1 0 0 2 1 0 0 9
8 1 0 2 0 1 0 2 0 2 1 2 2 2 1 1 2 2 2 2 1 26
9 2 1 0 2 1 0 1 1 0 0 1 1 0 2 0 2 0 2 1 0 17
10 0 1 0 0 0 2 0 0 1 0 0 2 0 2 2 2 1 0 2 0 15
11 1 2 2 1 2 0 2 1 2 1 0 2 1 2 2 0 2 0 1 0 24
12 1 1 0 1 1 2 1 0 1 0 0 0 0 0 2 1 0 2 0 0 13
13 2 2 2 2 0 0 1 1 1 0 1 2 0 0 0 1 1 0 2 1 19
14 0 0 2 2 0 2 0 0 2 1 2 1 1 0 2 1 1 0 0 1 19
15 1 0 2 0 1 0 0 1 0 2 2 2 0 2 0 2 2 1 2 1 21
16 1 0 1 0 1 1 2 0 0 2 2 0 1 1 2 0 1 2 1 2 20
17 0 0 1 2 2 1 1 2 0 0 1 2 0 2 2 1 0 1 1 1 20
18 0 1 2 0 2 2 2 0 1 2 2 0 2 1 0 1 0 0 2 0 20
19 1 0 1 0 2 2 1 0 2 1 2 1 0 2 0 1 1 1 0 2 20
20 1 2 2 0 1 0 0 0 0 1 0 0 0 2 2 0 1 2 2 0 16

Figure 10: Traffic matrix for the eon network, total of 374 connections

we reach a first feasible coloring solution. But the behavior is as expected, when f(Λ) is
increasing due to the penalty factor, the feasibility is improving and the number of vertices
colored W + 1 is increasing. Depending on the instance that was considered, the solution
provided by the rwabou1 algorithm was sometimes better, sometimes worse than the one
obtained with rwabou2.

4.3.2 Adaptative Routing Before comparing the rwabou algorithms with the results
obtained by Krishnaswamy and Sivarajan [18], we study the parameters of the adaptive
routing strategy, and in particular the impact of changing the routing paths. The list of
potential routing paths has been built using Eppstein algorithm [6] with some modifications
for eliminating cycles and was limited to the first 15-shortest paths for all instances. Results
have been obtained with the rerouting strategy S best and are summarized in Table 1 below.
Performance of the rwabou algorithms is measured with the number of edge conflicts with
respect to the W -coloring (only in the rwabou1 algorithm) and the grade of service GoS,
i.e., the number of accepted connections, after several rerouting phases.
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Table 1: Impact of the rerouting phases
rwabou1 rwabou2a rwabou2b

Network Performance # Rerouting Phases # Rerouting Phases # Rerouting Phases

instance indicators 1 100 200 300 400 1 100 200 300 400 1 100 200 300 400
# edge conflicts 284 197 197 197 197

NSFNET/10 GoS 183 187 187 187 187 183 185 186 186 186 183 185 186 187 187
# edge conflicts 125 95 95 95 95

NSFNET/12 GoS 205 206 206 206 206 205 208 209 209 209 205 206 207 209 209
# edge conflicts 68 51 51 39 37

NSFNET/14 GoS 223 225 226 227 227 223 228 229 229 229 223 224 227 227 229
# edge conflicts 45 17 16 16 16

NSFNET/16 GoS 243 245 246 246 246 243 246 247 248 248 243 247 248 248 248

# edge conflicts 340 257 257 257 257
EONNET/10 GoS 274 278 278 278 278 274 275 276 276 276 274 276 276 276 276

# edge conflicts 149 122 122 122 122
EONNET/12 GoS 304 306 306 306 306 304 306 306 306 306 304 305 306 306 306

# edge conflicts 84 64 64 64 64
EONNET/14 GoS 327 329 329 329 329 327 328 329 329 329 327 327 328 329 329

# edge conflicts 55 29 28 28 28
EONNET/16 GoS 347 347 348 348 348 347 347 347 347 347 347 347 347 347 347

We observe that both versions of the rwabou2 algorithms are comparable to the
rwabou1 one. Very few improvements were obtained with the rwabou algorithms af-
ter 100 or 200 rerouting phases, showing that it is difficult to identify the connections to
be rerouted in order to improve the GoS.

4.3.3 Comparison with Krishnaswamy and Sivarajan [18] We now compare the
rwabou heuristics with the two algorithms of Krishnaswamy and Sivarajan [18]. These
two algorithms correspond to two different rounding off heuristics, both associated with a
reformulation of the rwa problem as a 0-1 linear program. In the last column of the two
tables, we indicate the upper bound on the optimal GoS obtained by [18] with the optimal
solution of the linear relaxation of their first mathematical programming reformulation.

The comparative results are summarized in Tables 2 and 3 below. In the first set of
results for rwabou1, the routing paths have been built considering only a shortest path
strategy. In the second set with adaptive routing strategies, we compare the four rerouting
strategies described in Section 3.5. We observe that while S Disjoint seems to perform
better on the nsf instances, it is the S Best that performs best on the eon instances for
the rwabou1 algorithm with one path rerouted at each iteration: we therefore use the
S Mul with a selection of the best alternate path for the five rerouted connections. There
is no clear conclusion for the comparative performance of the rwabou1 and rwabou2
algorithms, results vary from one data set to the next. Comparing with the results of
Krishnaswamy and Sivarajan [18], we observe that we obtain much better GoS for both
all nsf and eon instances. Both rwabou1 and rwabou2 improve easily on the results of
[18] for all rerouting strategies except for the shortest path strategy.

Moreover, we can conclude to the optimality of the solution found by the rwabou
algorithms for several instances: the last three instances for both the nsf and the eon
networks. For the remaining instances, the gap has been significantly reduced as it is
less than or around 1% for the nsf and eon instances between 14 and 18 wavelengths
while it was on the average around 10% with the solutions obtained by Krishnaswamy and
Sivarajan [18] for the same number of wavelengths.
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Table 2: Comparative results on the nsfnet asymmetric network
Algorithm Algorithm Krishnaswamy

rwabou1 rwabou2 and Sivarajan [18]

Shortest Path Adaptive Routing Algo Algo

Routing Next SP Disjoint SP Best SP Mul SP A B Upper Gap

GoS GoS GoS GoS GoS GoS GoS GoS bound

W # % # % # % # % # % # % # #

10 179 66.8% 187 69.8% 187 69.8% 187 69.8% 187 69.8% 186 69.4% 177 150 198 5.5%

12 202 75.4% 206 76.9% 206 76.9% 206 76.9% 212 79.1% 209 78.0% 195 187 218 2.7%

14 219 81.7% 227 84.7% 235 87.7% 227 84.7% 234 87.3% 229 85.4% 215 214 238 1.3%

16 235 87.7% 247 92.2% 253 94.4% 246 91.8% 248 92.5% 248 92.5% 233 226 258 1.9%

18 248 92.5% 264 98.5% 265 98.9% 261 97.4% 265 98.9% 265 98.9% 242 250 267 0.7%

20 256 95.5% 268∗ 100% 268∗ 100% 268∗ 100% 268∗ 100% 268∗ 100% 256 263 268 0%

22 264 98.5% 268∗ 100% 268∗ 100% 268∗ 100% 268∗ 100% 268∗ 100% 264 267 268 0%

24 268∗ 100% 268∗ 100% 268∗ 100% 268∗ 100% 268∗ 100% 268∗ 100% 268 268 268 0%

Table 3: Comparative results on the eonnet asymmetric network
Algorithm Algorithm Krishnaswamy

rwabou1 rwabou2 and Sivarajan [18]

Shortest Path Adaptive Routing Algo Algo

Routing Next SP Disjoint SP Best SP Mul SP A B Upper Gap

GoS GoS GoS GoS GoS GoS GoS GoS bound

W # % # % # % # % # % # % # #

10 248 66.3% 277 74.1% 276 73.8% 278 74.3% 278 74.3% 276 73.8% 262 250 285 2.4%

12 272 72.7% 305 81.6% 305 81.6% 306 81.8% 306 81.8% 306 81.8% 284 278 317 3.5%

14 288 77.0% 328 87.7% 328 87.7% 329 87.9% 329 88.0% 329 87.9% 310 308 337 2.4%

16 303 81.0% 347 92.8% 347 92.8% 348 93.0% 349 93.3% 347 92.8% 319 318 350 0.3%

18 314 83.9% 361 96.5% 361 96.5% 361 96.5% 361 96.5% 359 96.0% 339 334 362 0.3%

20 324 86.6% 369 98.7% 370∗ 98.9% 370∗ 98.9% 370∗ 98.9% 370∗ 98.9% 341 340 370 0%

22 334 89.3% 374∗ 100% 374∗ 100% 374∗ 100% 374∗ 100% 374∗ 100% 355 352 374 0%

24 340 90.9% 374∗ 100% 374∗ 100% 374∗ 100% 374∗ 100% 374∗ 100% 364 364 374 0%

4.4 Symmetrical vs Asymmetrical Traffic

In this section, we perform the same comparisons that in the previous section for symmetric
traffic with the aim of evaluating the variation of bandwidth utilization whether we assume
the traffic to be symmetrical or asymmetrical. We therefore first present in Tables 4
and 5 the performance of the various rwabou algorithms, with an upper bound evaluated
again with the optimal solution of the continuous relaxation of a 0-1 linear programming
formulation of the RWA problem proposed by Jaumard al [16] for symmetrical traffic.
Among the different adaptive routing strategies, the S Best and S Mul perform uniformly
better than the other ones for the rwabou1 algorithm. Although on the nsf instances,
rwabou1 clearly outperforms the rwabou2 algorithm, this is not the case on the eon
instances where their performances are rather equal taking into account the fact that the
number of reroutings in the S mul strategy of rwabou1 has been increased to 1000, while
it remained limited to 300 in rwabou2.

Using upper bounds proposed by Jaumard et al. [16], we can evaluate the quality of
the heuristic solution provided by the rwabou algorithms. For the largest values of W
(i.e., 22 and 24) for instances on both networks, we obtain the optimal solutions. For the
intermediate number of W , the gap is quite small (less than 1%), while it goes up to 5%
for smaller values, i.e. for W = 10.
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Table 4: Comparative results on the nsfnet symmetric network
Algorithm rwabou1 Algorithm rwabou2 Upper

Shortest Path Adaptive Routing bound

Routing Next SP Disjoint SP Best SP Mul SP [16] Gap

Number of GoS GoS GoS GoS GoS GoS GoS

wavelengths # % # % # % # % # % # % #

10 106 55.5% 107 56.0% 109 57.1% 109 57.1% 109 57.1% 107 56.0% 115 5.2%

12 118 61.8% 121 63.4% 121 63.6% 121 63.4% 122 63.8% 119 62.3% 129 5.4%

14 128 67.0% 132 69.1% 132 69.1% 132 69.1% 135 70.7% 131 68.6% 143 5.6%

16 139 72.8% 144 75.4% 142 74.3% 145 75.9% 146 76.4% 144 75.4% 153 4.6%

18 149 78.0% 156 81.7% 153 80.1% 156 81.7% 158 82.7% 153 80.1% 161 1.9%

20 158 82.7% 164 85.9% 163 85.3% 166 86.9% 166 86.9% 163 85.3% 169 1.8%

22 167 87.4% 177 92.7% 174 91.1% 177 92.7% 177 92.7% 174 91.1% 177 0%

24 173 90.5% 183 95.8% 184 96.3% 184 96.3% 185 96.8% 182 95.3% 185 0%

Table 5: Comparative results on the eonnet symmetric network
Algorithm rwabou1 Algorithm rwabou2 Upper

Shortest Path Adaptive Routing bound

Routing Next SP Disjoint SP Best SP Mul SP [16] Gap

Number of GoS GoS GoS GoS GoS GoS GoS

wavelengths # % # % # % # % # % # % #

10 155 57.4% 166 61.5% 163 60.4% 168 62.2% 168 62.2% 168 62.2% 176 4.5%

12 170 63.0% 183 67.7% 182 67.4% 185 68.5% 185 68.5% 183 67.8% 194 4.6%

14 183 67.8% 198 73.3% 199 73.7% 199 73.7% 204 75.5% 199 73.7% 212 3.8%

16 198 73.3% 218 80.7% 215 79.6% 219 81.1% 220 81.5% 219 81.1% 225 2.2%

18 209 77.4% 232 85.9% 231 85.5% 233 86.3% 235 87.0% 233 86.3% 237 0.8%

20 218 80.7% 245 90.7% 242 89.6% 245 90.7% 247 91.5% 245 90.7% 249 0.8%

22 227 84.1% 253 93.7% 253 93.7% 254∗ 94.1% 254∗ 94.1% 254∗ 94.1% 254 0%

24 235 87.0% 260 96.3% 261 96.7% 262∗ 97.0% 262∗ 97.0% 260∗ 96.3% 262 0%

Comparison of bandwidth utilization estimation is done in Table 6 depending on as-
suming the traffic to be symmetrical or asymmetrical. For each network instance, we have
reported the best GoS that has been obtained and we have estimated the variation in
the bandwidth utilization. In order to facilitate the comparison, we have converted the
number of symmetrical connections, i.e. bidirectional connections, in a number of direc-
tional connections, i.e., multiplied by 2. In the third column of each network instance, we
measure the traffic increase resulting from assuming the traffic to be symmetrical, and the
variation in the bandwidth utilization on the fourth column. The bandwidth utilization
rate is measured as follows:

τB =

∑
e∈E

nλ
e

m × W
,

where nλ
e is the number of wavelengths used on edge e. We observe that as the number

of wavelengths and therefore the GoS are increasing, τB is increasing with its increase
corresponding to the additional bandwidth requested by approximating the asymmetrical
traffic with a symmetrical traffic.
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Table 6: Impact of Symmetrical vs Asymmetrical Traffic on the Bandwidth Utilization
Rate

nsf Network EON Network

# wavelengths GoS traffic τB GoS traffic τB

sym asym increase variation sym asym increase variation

10 218 187 5.9% 336 278 8.7%

12 244 212 4.9% 370 306 12.4%

14 270 235 4.7% 408 329 15.2%

16 292 253 42.5% 5.6% 440 349 44.4% 17.2%

18 316 265 10.3% 470 361 19.2%

20 332 268 17.3% 494 370 23.1%

22 354 268 25.6% 508 374 24.5%

24 370 268 28.0% 524 374 29.6%
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Figure 13: Variations of the GoS
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Figure 14: Bandwidth utilization rate

4.5 Performance of the rwabou algorithm on incremental traffic

We next consider the evolution of the GoS and the average number of required wavelengths
(denoted λ) when the traffic is increasing. Denote by T 0 = T the initial traffic symmetrical
matrix for the nsf network, we build incremental traffic matrices as follows. Given a traffic
matrix Ti, we define T i+1 with a 5% increase for the number of connections. For each pair
{Ns, Nd} of source and destination nodes, we randomly generate a random number α

between 0 and 3, and increase the number of connections between this node pair by α.
This process is repeated until we reach the 5% increase in the number of connections.

The results are summarized in the graphs depicted in Figures 13 and 14. We observe
that as the traffic increases, the GoS is decreasing at an increasing rate, while the band-
width utilization rate is stabilizing after some time, and more quickly when the number is
wavelengths is small.



Les Cahiers du GERAD G–2004–12 21

References

[1] C. Avanthay, A. Hertz, and N. Zuffery. A variable neighborhood search for graph
coloring. European Journal of Operational Research, 151:379–388, 2003.

[2] D. Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4), 1979.

[3] C. Chen and S. Banerjee. A New Model for Optimal Routing and Wavelength As-
signment in Wavelength Division Multiplexed Optical Networks. In INFOCOM’96,
Proceedings IEEE, volume 1, pages 164–171, 1996.

[4] D. Coudert and H. Rivano. Lightpath assignment for multifibers WDM optical net-
works with wavelength translators. In IEEE Globecom, Taiwan, November 2002.
OPNT-01-5.

[5] E. Leonardi and M. Mellia and M.A. Marsan. Algorithms for the Logical Topology
Design in WDM All-Optical Netowrks. Optical Networks Magazine, 1:35–46, January
2000.

[6] D. Eppstein. Finding the k shortest paths. SIAM Journal of Computing, 28(2):652–
673, 1999.

[7] P. Galinier and J.-K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3:379–397, 1999.

[8] F. Glover. Tabu Search - Part I. ORSA Journal on Computing, 1:190–206, 1989.
[9] F. Glover. Tabu Search - Part II. ORSA Journal on Computing, 2:4–32, 1990.

[10] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.
[11] H. Zang and J. P. Jue and B. Mukherjeee. A review of routing and wavelength as-

signment approaches for wavelength-routed optical WDM networks. Optical Networks
Magazine, pages 47–60, January 2000.

[12] P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. Com-
puting, 44:279–303, 1989.

[13] A. Hertz and D. de Werra. Using Tabu Search for Graph Coloring. Computing,
39:345–351, 1987.

[14] A. Hertz, E. Taillard, and D. de Werra. A Tutorial on Tabu Search. In Proc. of
Giornate di Lavoro AIRO’95, (Entreprise Systems: Management of Technological and
Organizational Changes), pages 13–24, 1995.

[15] E. Hyyatia and J. Virtamo. Wavelength Assignment and Routing in WDM Network.
In Nordic Teletraffic Seminar (NTS), Copenhagen, Denmark, 14:10 pages, 1998.

[16] B. Jaumard, C. Meyer, B. Thiongane, and X. Yu. ILP Formulations and Optimal
Solutions for the RWA Problem. Submitted for Publication.



Les Cahiers du GERAD G–2004–12 22

[17] R.M. Krishnaswamy. Algorithms for Routing, Wavelength Assignment and Topology
Design in Optical Networks. PhD thesis, Dpt. of Electrical Commun. Eng., Indian
Institute of Science, Bangalore, India, 1998.

[18] R.M. Krishnaswamy and K.N. Sivarajan. Algorithms For Routing and Wavelength
Assignment Based on Solutions of LP-Relaxation. IEEE Communications Letters,
5(10):435–437, 2001.

[19] F.T. Leighton. A graph coloring algorithm for large scheduling problems. Journal of
Research of the National Bureau of Standards, 84(6):489–503, 1979.

[20] E. Martins and M. Pascoal. A new implementation of yen’s ranking loopless paths
algorithm. Submitted, (October 2000), page 2 pages, 2000.

[21] M.J. O’Mahony, D. Simeonidu, A. Yu, and J. Zhou. The design of the european optical
network. Journal of Ligthwave Technology, 13(5):817–828, 1995.

[22] R. Dutta and G.N. Rouskas. A Survey of Virtual Topology Design Algorithms for
Wavelength Routed Optical Networks. Optical Networks Magazine, 1(1):73–89, Jan-
uary 2000.

[23] J.Y. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11):712–716, 1971.


