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Abstract

Using deformed products of arrangements, we construct a family of linear programs
with n inequalities in �d on which, in the worst-case, the least-index criss-cross method
requires Ω(nd) (for fixed d) pivots to reach optimality.

Résumé

En utilisant les produits déformés des polytopes, nous construisons une famille de
programmes linéaires avec n contraintes en �d sur lesquels la méthode entrecroisée du
plus-petit-indice prend Ω(nd) (pour d fixé) pivots pour atteindre le sommet optimal.

Communicated by Professor David Avis, GERAD and School of Computer Science,
McGill University.
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1 Introduction

What is the maximal number of pivots, C(d, n), (along a path) taken by the least-index
criss-cross method to solve a linear program in dimension d with n inequality constraints?
This question was posed by D. Avis in 2002 (private communication). Clearly

C(d, n) ≤
(

n

d

)
− 1 ≤ nd for n ≥ d (1)

since the maximal number of vertices of an arrangement is
(
n
d

)
. In 1978, even before the

birth of the least-index criss-cross method, Avis and Chvátal [1] unknowingly proved its
exponential worst-case behaviour by exhibiting an example where the number of pivots
taken by the simplex method with Bland’s rule on a completely degenerate polytope is
bounded from below by the (2d)th fibonacci number which is of the order (1.618 · · · )2d.

C(d, n) ≥ 1√
5

⎛⎝(1 +
√

5
2

)2d

−
(

1 −√
5

2

)2d
⎞⎠− 1 for n ≥ 2d. (2)

The result follows from the observation that the least-index criss-cross method and the
simplex method with Bland’s rule follow the same pivot path on a completely degenerate
polytope. In 1990, Roos [13] marginally improved the lower bound by constructing the first
example of a nondegenerate polytope where the criss-cross method requires an exponential
number of pivots. In his example, the criss-cross method starts at a vertex of the polytope
and the inequalities are ordered so that the criss-cross method path mimics the behaviour
of the simplex method with Bland’s rule and thus always stays on the boundary of the
polytope. He showed that

C(d, n) ≥ 22d − 1 for n ≥ 2d. (3)

Both of these constructions are variants of the Klee-Minty examples [10]. To date,
all worst-case constructions for the criss-cross method provide a lower bound on C(d, n)
which, asymptotically, leaves a significant gap with the upper bound:

C(d, n) is Ω(22d) and O(nd) for n ≥ 2d where d is fixed. (4)

In fact, it remained unclear whether the criss-cross method could take a path of length
longer than the maximal number of vertices, M(d, n), that a d-polytope with n facets can
have.

C(d, n)
?≥ M(d, n) ( = θ(n� d

2
�) for fixed d) (5)

In the present paper we show how to construct a family of examples which not only answer
this question affirmatively, but also show that C(d, n) is Ω(nd) for fixed d, implying that
nearly every vertex of the arrangement can be visited.
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Theorem 1 (Main Theorem) For fixed d, the function C(d, n) grows like a polynomial
of degree d in n:

C(d, n) is θ(nd) for n ≥ 2d (6)

Our construction uses the powerful tool of a deformed product of arrangements, an
extension of a deformed product of polytopes as defined recently by Amenta and Ziegler
[2]. The reader familiar with polytopes, linear programming, and deformed products of
polytopes can breeze through section 2. Section 3 examines the behaviour of the least-index
criss-cross method on a deformed product of polytopes, and by section 4 we are ready to
construct a family of worst-case examples.

2 Preliminaries

2.1 Polyhedra

A d-polyhedron P is the intersection of n closed halfspaces (inequalities) in �d or equiva-
lently the convex hull of a finite set of points in �d [8, p. 31]. We write these representations
as

(Halfspace-rep.) P = {x ∈ �d : at
ix ≤ bi for 1 ≤ i ≤ n} where ai ∈ �d, and bi ∈ �, (7)

and

(Vertex-rep.) P = conv{p1, . . . , pm} for points pi ∈ �d. (8)

The faces of P are all the subsets of the form F = {x ∈ P : αtx = β} for some α ∈ �d, and
β ∈ �, where αtx ≤ β is a valid inequality for P ; meaning that αtx ≤ β is satisfied for all
x ∈ P. The faces of P are themselves polyhedra and the faces of dimensions 0, 1, d−2, d−1,
and k are called vertices, edges, ridges, facets, and k-faces of P. A bounded polyhedron is
called a polytope. The interested reader is referred to the textbooks by Grünbaum [8] and
Ziegler [19] for a comprehensive study of convex polytopes and their properties.

Definition 1 (Simple Polytopes) A d-polytope is simple if every vertex lies on exactly
d facets.

Definition 2 (Combinatorially Equivalent Polytopes) Two polytopes P and Q are
combinatorially equivalent if there is a bijection between their vertices, vert(P ) = {p1, . . . ,
pm} and vert(Q) = {q1, . . . , qm}, such that for any subset I ⊆ {1, . . . , m}, the convex hull
conv{pi : i ∈ I} is a face of P if and only if conv{qi : i ∈ I} is a face of Q.

Definition 3 (Normally Equivalent Polytopes) Two polytopes P and Q are normally
equivalent if they are combinatorially equivalent and each facet conv{pi : i ∈ I} of P is
parallel to the corresponding facet conv{qi : i ∈ I} of Q.
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Theorem 2 (Upper Bound Theorem, McMullen [11]) A d-dimensional polytope
with n facets has no more than(

n − �d
2�

	d
2


)
+
(

n − 1 − �d−1
2 �

	d−1
2 


)
(9)

vertices, where equality is attained only by the polars of neighborly polytopes (for example,
by the polars of cyclic polytopes).

This upper bound is a polynomial in n of degree 	d
2
 in the case of fixed dimension:

M(d, n) = θ(n� d
2
�) for fixed d. (10)

2.2 Hyperplane Arrangements

A hyperplane is a set h = {x ∈ �d : αtx = β} for some nonzero α ∈ �d, and β ∈ �.
A finite set of hyperplanes H in �d induces a decomposition of �d into connected open
cells called an arrangement AH . The 0, 1, 2, (d − 1), and k-dimensional cells of AH are
termed vertices, edges, faces, facets, and k-cells. Two vertices of AH are adjacent if
they share d − 1 hyperplanes, in other words they share an edge. Given a hyperplane
arrangement, AH ⊆ �d, and a linear functional ϕ : �d → � such that πmin and πmax are
the vertices of AH that minimize resp. maximize ϕ with 0 ≤ ϕ(πmin) ≤ ϕ(πmax) ≤ 1,
then we write ϕ(vert(AH)) ⊆ [0, 1]. We will assume that the hyperplanes are labeled as
H = {h1, h2, . . . , hn}, and that hyperplanes are oriented : each has a positive side and
negative side that are given by {x ∈ �d : αtx > β} and {x ∈ �d : αtx < β}. An
arrangement of oriented hyperplanes is an example of an oriented matroid, and shares
all of its features (see [12]). In particular, each cell of the arrangement is represented
as a signed vector in {+, 0,−}n indicating the position of the cell with respect to the
hyperplanes of H.

Proposition 1 A polytope P ⊆ �d induces an arrangement of oriented hyperplanes AP .

Proof. P is defined by the intersection of a finite number of halfspaces, and a halfspace
is an oriented hyperplane. Thus P induces an arrangement of oriented hyperplanes AP

where the feasible region P is simply the interesection of the nonnegative sides of AP .

Definition 4 (Combinatorially Equivalent Arrangements) Two arrangements are
combinatorially equivalent if the two sets of sign vectors of cells of the arrangements are
exactly the same (i.e. the underlying oriented matroids are exactly the same).

Definition 5 (Normally Equivalent Arrangements) Two hyperplane arrangements
are said to be normally equivalent if they are combinatorially equivalent and the corre-
sponding unit hyperplane normals coincide.

For an introduction to arrangements we refer to Halperin [9], and for a study on their
combinatorial structure see [12] and [17].
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2.3 Linear Programming

Linear Programming is the problem of maximizing a linear functional ϕ over a polyhe-
dron P :

max ϕ(x) : x ∈ P ⊆ �d. (11)

For the remainder of our discussion, we will assume that the linear program is feasible (P
is non-empty), P is simple, and that ϕ is bounded by P .

Starting at a vertex defined by the set H of d intersecting hyperplanes, a pivot is the
operation of exchanging a hyperplane hi ∈ H for a hyperplane hj /∈ H that intersects the
edge H\{hi}. This results in a second vertex defined by H ′ := H\{hi} ∪ {hj} (henceforth
abbreviated by H − hi + hj). Pivot methods attempt to solve a linear program, (P, ϕ), by
moving along the edges of AP from vertex to adjacent vertex, and pivot rules determine
which adjacent vertex to travel to. The sequence of vertices visited is called the pivot
path, and when a pivot rule guarantees convergence to optimality then we say it is finite.
Simplex (pivot) methods try to solve a linear program by pivoting along the boundary
edges of P from vertex vi ∈ P to vertex vj ∈ P such that ϕ(vi) < ϕ(vj). For example,
Bland’s least-index rule [3], is a finite pivot rule for the simplex method where the edge
chosen at vi leaves the hyperplane that is indexed smaller than the other hyperplanes at vi

leaving which would offer to increase ϕ. Chvátal’s classic book [4], provides an expository
introduction to linear programming. See Terlaky and Zhang [15] for a survey on pivot
rules.

b

d

a

c

e

Figure 2.3

Definition 6 (Increasing Edges) For a linear functional α : �d → �, an edge [p′, p′′]
is α-increasing if α(p′′) > α(p′).

In Figure 2.3, [a, b], [a, e], and [d, b] are examples of increasing edges.

Definition 7 (Increasing Rays) Given a start point p ∈ �d and a vector −→v ∈ �d, a
ray r = (p,−→v ) is the set of all points of the form p + λ−→v for all scalar λ ≥ 0. For a linear
functional α : �d → �, a ray is α-increasing if and only if α(−→v ) > 0.

Definition 8 (Primal Infeasible Vertex) A vertex ξi of the arrangement induced by a
linear program (P, ϕ) is primal infeasible if ξi is not a vertex of the polytope P . In other
words, ξi violates at least one inequality of P.

In Figure 2.3, a and b are primal infeasible.
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Definition 9 (Dual Infeasible Vertex) A vertex ξi, defined by the set H of d intersect-
ing hyperplanes of the arrangement induced by a linear program (P, ϕ), is dual infeasible
if there is at least one ray starting at ξi that is ϕ-increasing and satisfies all h ∈ H (every
point on the ray lies on the nonnegative side of all hyperplanes h ∈ H).

In Figure 2.3, a, b, c, and d are dual infeasible.
The optimal vertex which maximizes ϕ is a vertex that is both primal and dual feasible.

2.4 Deformed Products of Polytopes

Recently Amenta and Ziegler [2] presented a construction of deformed products of poly-
topes that generalized all known constructions of linear programs with “many simplex
pivots.”

Definition 10 (Product of Polytopes) The product of two polytopes P ⊆ �d and Q ⊆
�e is given by

P × Q =
{(

x

u

)
:

x ∈ P

u ∈ Q

}
. (12)

The vertices of the product are given by

vert(P × Q) =
{(

pi

qj

)
:

pi ∈ vert(P )
qj ∈ vert(Q)

}
, (13)

and the facet-defining inequalities for P × Q are the inequalities of P together with the
inequalities of Q. Thus taking the product of two polytopes multiplies the number of
vertices and sums the number of facets.

P x Q =

Q =

P =

Definition 11 (Deformed Products of Polytopes) Let P ⊆ �d be a convex polytope,
and ϕ : P → � a linear functional with ϕ(P ) ⊆ [0, 1]. Let V, W ⊆ �e be convex polytopes.
Then the deformed product of (P, ϕ) and of (V, W ) is

(P, ϕ) � (V, W ) :=
{(

x

v + ϕ(x)(w − v)

)
:

x ∈ P

v ∈ V, w ∈ W

}
⊆ �d+e. (14)

To help visualize the deformed product, it is helpful to observe that when V = W , then
the deformed product is the standard product:

(P, ϕ) � (V, V ) = P × V, (15)

and if we examine a cross-section of the deformed product at some ϕ(x) = λ, then we will
observe the Minkowski sum of λW with (1 − λ)V .

We now state some facts about deformed products that are proved in [2].



Les Cahiers du GERAD G–2004–03 6

Lemma 1 Deformed products are convex.

Theorem 3 Let P ⊆ �d be a d-polytope, ϕ : �d → � a linear function with ϕ(P ) ⊆ [0, 1],
and V, W ⊆ �e be normally equivalent e-polytopes, then:

• If P has m vertices and s facets, and if V and W have n vertices and t facets, then
Q := (P, ϕ) � (V, W ) is a (d + e)-polytope with mn vertices and s + t facets.

• For P = conv{p1, . . . , pm}, V = conv{v1, . . . , vn}, and W = conv{w1, . . . , wn}, the
deformed product is a polytope given by

Q = (P, ϕ) � (V, W ) = conv{q(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. (16)

where the vertices of Q, which we denote q(i, j), are defined as:

q(i, j) =
(

pi

vj + ϕ(pi)(wj − vj)

)
:

1 ≤ i ≤ m

1 ≤ j ≤ n.
(17)

• If P, V and W are given by

P = {x ∈ �d : akx ≤ ξk for 1 ≤ k ≤ s},
V = {u ∈ �e : blu ≤ βl for 1 ≤ l ≤ t}, and (18)

W = {u ∈ �e : blu ≤ β′
l for 1 ≤ l ≤ t},

then the deformed product is given by

(P, ϕ) � (V, W ) =
{(

x

u

)
∈ �d+e :

akx ≤ ξk for 1 ≤ k ≤ s

(βl − β′
l)ϕ(x) + blu ≤ βl for 1 ≤ l ≤ t

}
. (19)

• Q = (P, ϕ) � (V, W ) is combinatorially equivalent to P × V .

(P,x) >< (V,W) =

P = 

W =

V = 

x=0 x=1

Note that Q has two types of edges:

• P -edges of the form [q(i′, j), q(i′′, j)] for 1 ≤ j ≤ n and for any 1 ≤ i′, i′′ ≤ m such
that pi′ and pi′′ are adjacent vertices of P, and

• (V, W )-edges of the form [q(i, j′), q(i, j′′)] for 1 ≤ i ≤ m and for any 1 ≤ j′, j′′ ≤ n
such that vj′ and vj′′ are adjacent vertices of V (or, equivalently, wj′ and wj′′ are
adjacent vertices of W ).
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Definition 12 (Deformed Product Programs) Let

max ϕ(x) : x ∈ P (20)

be a linear program in �d and let

max α(u) : u ∈ V and max α(u) : u ∈ W (21)

be two normally equivalent linear programs. Define the deformed product program as

max α̂

(
x

u

)
= α(u) :

(
x

u

)
∈ Q = (P, ϕ) � (V, W ). (22)

The resulting linear program is the deformed product polytope Q with objective function
max α(u).

Now let’s examine the edges of a deformed product program as defined in (22).

Proposition 2 A P -edge [q(i′, j), q(i′′, j)] is α̂-increasing if and only if either [p′, p′′] is
ϕ-increasing and α(wj) > α(vj), or [p′, p′′] is ϕ-decreasing and α(wj) < α(vj).

Proposition 3 A (V, W )-edge [q(i, j′), q(i, j′′)] is α̂-increasing if and only if [vj′ , vj′′ ] is
α-increasing.

3 Criss-Cross Methods

Criss-cross methods are pivot methods for solving a linear program (P, ϕ) whose pivot path
can leave the boundary of P . The first criss-cross method was baptized by Zoints [18],
and the first finite criss-cross method, the least-index criss-cross method, was discovered
independently by Terlaky [14], and Wang [16]. The reader is invited to learn about the
properties, history, and recent developments pertaining to criss-cross methods by looking
at a survey by Fukuda and Terlaky [5].

3.1 The Least-Index Criss-Cross Method

As the name suggests, criss-cross methods have two types of pivots (with respect to an
objective function ϕ): admissible type I pivots and admissible type II pivots.

Definition 13 (Admissible Type I Pivot) For every primal infeasible vertex ξ defined
by the set H of d intersecting hyperplanes, there exists an oriented hyperplane hj /∈ H that
is violated at ξ. A pivot from ξ to vertex ξ′, defined by H ′ := H −hi + hj, is an admissible
type I pivot if ξ′ lies on the nonnegative side of hi.

If hj is selected such that j is minimized, followed by selecting hi to minimize i, then
the pivot is a least-index admissible type I pivot. In Figure 2.3, a pivot from a to c is of
type I.
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Definition 14 (Admissible Type II Pivot) For every dual infeasible vertex ξ defined
by the set H of d intersecting hyperplanes, there exists a ϕ-increasing ray (ξ,−→v ) that lies
on an edge H\{hi} that is on the nonnegative side of hi ∈ H. A pivot from ξ to vertex
ξ′, defined by H ′ := H − hi + hj, is an admissible type II pivot if there exists a point on
(ξ,−→v ) that lies on the nonpositive side of hj.

If hi is selected such that i is minimized, followed by selecting hj to minimize j, then
the pivot is a least-index admissible type II pivot. In Figure 2.3, a pivot from c to e is of
type II, as is a pivot from b to a.

We will denote a pivot, exchanging hi for hj , by pivot(i, j). Using these notions, we
provide the geometric interpretation of the least-index criss-cross method:

Algorithm 1 (The Least-Index Criss-Cross Method) Given a linear program (P, ϕ)
⊆ �d, a linear ordering of the inequalities of P, and a vertex ξ of AP :

Criss-Cross:
If ξ is optimal (both primal feasible and dual feasible) then Stop;

If ξ is primal feasible then let p := +∞. Otherwise let p := j such that pivot(i, j) is
the least-index admissible type I pivot from ξ to ξ′. If no pivot exists then the linear
program is primal inconsistent, Stop;

If ξ is dual feasible then let q := +∞. Otherwise let q := i′ such that pivot(i′, j′) is the
least-index admissible type II pivot from ξ to ξ′′. If no pivot exists then the linear
program is dual inconsistent, Stop;

If p < q, then ξ := ξ′. Otherwise ξ := ξ′′.
Pivot from ξ to ξ, let ξ := ξ and go to Criss-Cross;

Theorem 4 The least-index criss-cross method is finite

Theorem 5 The least-index criss-cross method solves a linear program.

See [7] for simple proofs. From this point forward the criss-cross method will refer to
the least-index criss-cross method.

3.2 Deformed Product of Arrangements

Our goal is to construct a family of deformed product programs on which the criss-cross
method visits almost all vertices of the arrangement. We begin by analyzing the behaviour
of the criss-cross method on the arrangement of hyperplanes of a deformed product pro-
gram. Hence, we define a deformed product of arrangements to be the induced hyperplane
arrangement of a deformed product of polytopes, and we extend Theorem 3 to express the
properties of the induced hyperplane arrangement of (Q = (P, ϕ) � (V, W ), α̂). We facili-
tate understanding by providing an example (see Figure 3.2) which the reader is encouraged
to refer to in order to verify the theorem’s statements.
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Figure 3.2

Theorem 6 Let P ⊆ �d be a d-polyhedron, AP be the underlying hyperplane arrangement
of P , ϕ : �d → � a linear function such that ϕ(vert(AP )) ⊆ [0, 1], and V, W ⊆ �e

be normally equivalent e-polyhedra inducing normally equivalent hyperplane arrangements
AV and AW , then:

• If AP has m vertices and s hyperplanes, and if V and W have n vertices and t
hyperplanes each, then Q := (P, ϕ) � (V, W ) is a (d + e)-polytope whose underlying
arrangement AQ has at least m · n vertices and exactly s + t hyperplanes.

• Specifically, if {π1 . . . πm} are vertices of AP , {υ1 . . . υn} and {ω1 . . . ωn} the vertices
of AV resp. AW , then we can define m · n of the vertices of Q, denoted γ(i, j), as:

γ(i, j) =
(

πi

υj + ϕ(πi)(ωj − υj)

)
:

1 ≤ i ≤ m

1 ≤ j ≤ n.
(23)

• If AP , AV , and AW are given by

AP = {akx ≤ ξk for 1 ≤ k ≤ s},
AV = {blu ≤ βl for 1 ≤ l ≤ t}, and (24)

AW = {blu ≤ β′
l for 1 ≤ l ≤ t},

then the arrangement of hyperplanes of the deformed product Q is given by

AQ =
{

akx ≤ ξk for 1 ≤ k ≤ s

(βl − β′
l)ϕ(x) + blu ≤ βl for 1 ≤ l ≤ t

}
. (25)
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• A cell Ci
Q of AQ is the deformed product of some cell Cj

P with (Ck
V , Ck

W ): Ci
Q =

(Cj
P , ϕ) � (Ck

V , Ck
W ).

Corollary 1 A cell Ci
Q of the hyperplane arrangement of the deformed product is convex

if 0 ≤ ϕ(y) ≤ 1 for y ∈ Ci
Q.

Proof. This follows from Lemma 1 which states that the deformed product of a polytope
is convex if ϕ(P ) ⊆ [0, 1].

Let’s examine the edges of a hyperplane arrangement underlying a deformed product
program. Note that AQ has two types of edges:

• AP -edges of the form [γ(i′, j), γ(i′′, j)] for 1 ≤ j ≤ n and for any 1 ≤ i′, i′′ ≤ m such
that πi′ and πi′′ are adjacent vertices of AP and

• A(V,W )-edges of the form [γ(i, j′), γ(i, j′′)] for 1 ≤ i ≤ m and for any 1 ≤ j′, j′′ ≤ n
such that υj′ and υj′′ are adjacent vertices of AV (equivalently, ωj′ and ωj′′ are
adjacent vertices of AW ).

Proposition 4 Given a deformed product program (22), an AP -edge [γ(i′, j), γ(i′′, j)] is
α̂-increasing if and only if either [πi′ , πi′′ ] is ϕ-increasing and α(ωj) > α(υj), or [π′, π′′] is
ϕ-decreasing and α(ωj) < α(υj).

Proposition 5 A (V, W )-edge [γ(i, j′′), γ(i, j′′)] is α̂-increasing if and only if [υj′ , υj′′ ] is
α-increasing.

The proofs of the preceding statements follow naturally from the proofs given in [2]
for deformed products of polytopes. We are now ready to analyze the behaviour of the
criss-cross method on deformed product programs.

Corollary 2 (The Criss-Cross Method on Deformed Product Programs) Let π1

and πl be the vertices of P that minimize respectively maximize ϕ with 0 ≤ ϕ(π1) ≤
ϕ(πl) ≤ 1. Construct the deformed product program Q, as defined in (22). If we number
the inequalities of Q such that the inequalities of P get smaller indices than the inequalities
corresponding to (V, W ), then the criss-cross method prefers to pivot along AP -edges rather
than A(V,W )-edges.

The result is that if the criss-cross method on (P, ϕ) for the objective function ϕ takes
a path of length l from the π1 to πl, and for −ϕ takes a path of length l′ from πl to π1,
then for (Q, α̂) the criss-cross method will follow a path of length l from γ(1, j) to γ(l, j)
if α(υj) < α(ωj), and a path of length l′ from γ(l, j) to γ(1, j) if α(υj) > α(ωj).

4 The Construction

We construct the worst-case example by first building low dimensional examples where
the criss-cross method takes many pivots. We then show how to take deformed products
of these base cases to construct polyhedra in any dimension where the criss-cross method
behaves badly.
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Definition 15 Let C(d, n) be the maximal number of pivots taken by the least-index criss-
cross method for some linear objective function α on a d-dimensional polyhedron with at
most n facets.

Definition 16 Starting at the vertex of P that minimizes α, let H(d, n) be the maximal
number of vertices visited along a path taken by the least-index criss-cross method for
some linear objective function max α on the arrangement of hyperplanes induced by a
d-dimensional polyhedron with at most n facets.

Clearly C(d, n) ≥ H(d, n) − 1.

Lemma 2 For n ≥ 2, H(1, n) = n

Proof. Consider the following linear program defined by max ϕ = x and polytope, given
by the inequalities (indexed in order of appearance): x ≥ 0 and x ≤ (n−i)λ for 1 ≤ i ≤ n−1
and for some constant λ > 0.

For example, for n = 6:

1 23456

objective

Figure 4a
Let vi be the vertex defined by hyperplane hi for 1 ≤ i ≤ n. The criss-cross method takes
a path of length n from vertex v1 to vertex vn when ϕ = x. The criss-cross method takes
a path of length one from vertex vn to vertex v1 when ϕ = −x.

Note that the construction has n − 2 redundant constraints.

Lemma 3 There exists a pair of normally equivalent 1-polytopes, (V, W ), defined by k
inequalities each (hence k vertices), and a linear functional α, such that α(υi) > α(wi) if
i is even and α(υi) < α(wi) if i is odd.

Proof. Construct V as in Lemma 2. To build W, for each hyperplane hi of V, construct
h′

i of W by translating hi in the positive x-direction by (some suitably small) ε > 0 if i is
odd and by −ε if i is even. The case when k = 5 in is illustrated in Figure 3.2.

Note that α(υk) < α(wk) when k is odd and α(υk) > α(wk) if k is even. The following
example illustrates the construction of a deformed product and the path that the criss-cross
method takes on the underlying arrangement.

Example 1 (See Figure 4b) Construct P (6 inequalities, variable x1, λ = 0.1) and V (5
inequalities, variable x2) as in Lemma 2, and W (5 inequalities, variable x2) as in Lemma 3.
Let Q = (P, x) � (V, W ) and order the inequalities of Q so that the inequalities coming
from P are indexed smaller than those from (V, W ). Consider the path that the criss-cross
method takes on the deformed product program (Q, α̂ = x2).
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Theorem 7 For k ≥ 2 and n > d ≥ 0,

H(d + 1, n + k) ≥
⌈

k

2

⌉
· H(d, n) (26)

Proof. Take a polytope P ⊆ �d with n inequalities for which the least-index criss-cross
method for a linear functional ϕ(x) (rescaled such that ϕ(vert(AP )) ⊆ [0, 1]) follows a
criss-cross method path of length l = H(d, n) starting at vertex p1 and ending at vertex
pl. Now construct the deformed product program

max α

st .: Q = (P, ϕ) � (V, W ),

where V, W ⊆ � and α are defined according to Lemma 3. By Corollary 2 we get that the
criss-cross method applied to (Q, α) first follows a P -path with l vertices from γ(1, 1) to
γ(l, 1), then after one (V, W )-pivot it follows a P -path of length one from γ(l, 2) to γ(1, 2),
then after one (V, W )-pivot it follows a P -path with l vertices from γ(1, 3) to γ(l, 3), then
after one (V, W )-pivot it follows a P -path of length one from γ(l, 4) to γ(1, 4), etc. The
complete path will thus visit

⌈
k
2

⌉
l +
⌊

k
2

⌋
vertices arriving at γ(1, k) or γ(l, k), depending

on whether k is even or odd.

Remark 1 We could use this result to construct examples, by induction, where C(d, n)
is Ω(nd) asymptotically for fixed d. However we choose to postpone this analysis since
iterative deformed products with the 1-dimensional construction would contain a large
number of redundant constraints, in fact n − 2d of them.
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Lemma 4 For n ≥ 3, H(2, n) is Ω(n2).

Proof. Consider the following construction: let the ith inequality of P be defined as

−2(i − 1)x1 − (2(n − i) − 1)x2 ≤ −2(i − 1)(2(n − i) − 1). (27)

This construction ensures that the x1 intercept of the ith inequality is greater than the x1

intercept of the (i− 1)th while the x2 intercept of the ith inequality is less than that of the
(i − 1)th (see Figure 4c).

The least-index criss-cross method on the linear program

Maximize − x2 (28)

s.t.:
(

x1

x2

)
∈ P,

starting at the vertex defined by the intersection of hyperplanes 1 and n (which we denote
(1, n)), will take n − 1 type I pivots (1, n) → (2, n) → · · · → (n − 1, n), and then from
(n−1, n) take one type II pivot to (1, n−1), and then take n−2 type I pivots to (n−2, n−1),
and then one type II pivot to (1, n − 2), and then take n − 3 type I pivots to (1, n − 3),
etc. and ending with one type II pivot from (2, 3) to (1, 2) visiting a total of n(n−1)

2 =
(
n
2

)
vertices.

For example, when n = 7:

Maximize − x2

1: 0x1 − 11x2 ≤ 0
2: −2x1 − 9x2 ≤ −18
3: −4x1 − 7x2 ≤ −28
4: −6x1 − 5x2 ≤ −30
5: −8x1 − 3x2 ≤ −24
6: −10x1 − 1x2 ≤ −10
7: −12x1 − 0x2 ≤ 0

7

1

2

3

4

5

6

Figure 4c

We offer the following remarks about the construction of Lemma 4:

Remark 2 There are n − 2 type II pivots, and (n−1)(n−2)
2 type I pivots.
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Remark 3 For every type I pivot from intersection (i, j) to (g, j), if i is odd then g is
even, and if i is even then g is odd. Every type II pivot has the form (i, j) to (1, i) where
j = i + 1.

Lemma 5 There exist normally equivalent 2-dimensional polyhedra V and W with k facets
(k ≥ 4), and objective function min α for which the criss-cross method takes θ(k2) piv-
ots such that corresponding vertices υ of V and ω of W , defined by the intersection of
hyperplanes hi and hj for i < j, have the following property:

α(υ) > α(ω) when i is odd, and α(υ) < α(ω) when i is even.

7

1

2

3

4

6
8

5

V is 

W is

Figure 4d

Proof. Let V be a 2-polyhedron with k − 1 inequalities as defined in (27) and define the
kth inequality as

0x1 + x2 ≤ 2(k − 2) + C for C >
k

2
.

This additional inequality ensures that V bounds both α and −α. C is chosen such that
the x2 intercept of the kth inequality is greater than that of the (k − 2)th. Build W as
follows: for 1 ≤ i ≤ k−1 take the ith inequality of V, bix ≤ β, and define the ith inequality
of W to be bix ≤ β′ where β′ = β − ε if i is odd and β′ = β + ε if i is even (see Figure
4d). ε is chosen to be positive and suitably small. Let the kth inequality of W be bkx ≤ β′
where β′ = β + ε. Now lets examine corresponding vertices of V and W, υ and ω, defined
by the intersection of hyperplanes hi and hj for i < j:

Case 1: i is odd and j odd. This case is illustrated in Figure 4e. ni and nj represent
the normals of hi and hj respectively, or if you wish the direction of translation by
ε: |ni| = |nj | = ε. Let δ = |d|, θ1 = angle(A), and θ2 = angle(B). By construction,
0◦ ≤ θ1 < θ2 ≤ 90◦, and δ = ε sin θ1 where sin θ1 ≥ 0◦. Now α(w) < α(v − δ) ≤ α(v)
which implies α(υ) > α(ω).
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Case 2: i is even and j even. This case is symmetric to case 1, hence α(υ) < α(ω).
Case 3: i is odd and j even. This case is illustrated in Figure 4f. ni and nj represent the

normals of hi and hj respectively, the direction of translation by ε: |ni| = |nj | = ε.
Let δ = |d|, θ1 = angle(A), and θ2 = angle(B). By construction, 0◦ ≤ θ1 < θ2 ≤ 90◦,
and δ = ε sin(90◦ − θ2) where sin(90◦ − θ2) > 0. Now α(w) ≤ α(v − δ) < α(v) which
implies α(υ) > α(ω).

Case 4: i is even and j odd. This case is symmetric to case 3, hence α(υ) < α(ω).

A
B

h

h

i

j

w

v

n

ni

j

Ad

Figure 4e

ni

jn
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B

h

h

i

j

w

d

C

w

v

Figure 4f

We offer the following remarks about the construction of Lemma 5:
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Remark 4 Starting at (n − 2, n) the criss-cross method on V (or W ) will take one type
II pivot to (1, n) and then follow the path described in Lemma 4.

Remark 5 There are k − 2 type II pivots, and (k−2)(k−3)
2 type I pivots (see Remark 2

setting n = k − 1 and adding one additional type II pivot from (k − 2, k) to (1, k)).

Definition 17 (Switch Pivot) Given two normally equivalent polyhedra V and W , and
a linear objective function α we define a switch pivot to be a pivot from vi to vj (wi

to wj) such that if α(vi) > α(wi) then α(vj) < α(wj), otherwise if α(vi) < α(wi) then
α(vj) > α(wj).

Lemma 6 Let (V, W ) be as defined in Lemma 5. Starting at the intersection of hk−1 and
hk the least-index criss cross method takes a θ(k2) path to the intersection of h1 and h2 on
which there are θ(k2) switch pivots.

Proof. The least-index criss-cross method on (V, W ) takes a θ(k2) length path (see Lemma
4). There are five types of pivots with respect to indices of the intersecting hyperplanes
of the first vertex v1 defined by hi and hj , and the second vertex v2 defined by hi′ and hj′

(j′ = j for type I pivots):

Pivot from (i, j) where i < j to (i′, j′) where i′ < j′ Switch Pivot?
Type I i is odd → i′ is even yes

i is even → i′ is odd yes

Type II i is odd → i′ = 1 is odd no
i is even → i′ = 1 is odd yes
(k − 2, k) → (1, k) yes only if k is even

Thus every type I pivot is a switch pivot, and every second type II pivot is a switch
pivot,

# of switch pivots =

{
(k−2)(k−3)

2 + k−3
2 if k is odd,

(k−2)(k−3)
2 + k−4

2 + 1 if k is even,
(29)

≥ k2

C
for some constant C > 1 and all k ≥ 3. (30)

The number of switch pivots is θ(k2).

Theorem 8 For k ≥ 3, n > d ≥ 0, and some constant C > 1,

H(d + 2, n + k) ≥ k2

2C
· H(d, n). (31)
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Proof. Take a polytope P ⊆ �d with n inequalities for which the least-index criss-cross
method for a functional ϕ(x) (rescaled such that ϕ(vert(AP )) ⊆ [0, 1]) follows a criss-cross
method path of length l = H(d, n) starting at vertex p1 and ending at vertex pl. Let l′ be
the length of the criss-cross method path from pl to p1 for −ϕ. Now construct the deformed
product program

max α (32)

s.t.: Q = (P, ϕ) � (V, W ),

where V, W and α are defined according to Lemma 5. Let vopt be the optimal vertex of
(V, W ). By Corollary 2, we get that the criss-cross method applied to (Q, α) first follows a
P -path with l vertices from γ(1, 1) to γ(l, 1), and then after a (V, W )-switch pivot it follows
a P -path of length l′, and then after a (V, W )-switch pivot it follows a P -path of length
l, and then after a (V, W )-switch pivot it follows a P -path of length l′, etc. The complete
path will visit at least 1

2
k2

C l + 1
2

k2

C l′ vertices ending at (l, opt).

Corollary 3 For n ≥ 2d ≥ 2 and some constant C > 1, C(d, n) = Ω((n
d )d). More specifi-

cally:

C(d, n) ≥
⌊

2n

d
√

2C

⌋d

if d is even, (33)

and

C(d, n) ≥
⌊

2n

(d + 1)
√

2C

⌋d

if d is odd. (34)

Proof. (By induction) Lets begin with the even case, when d = 2m for all m ≥ 0, let
n = km:

H(2m, km) ≥ k2

2C
H(2(m − 1), k(m − 1))

... m times

≥
(

k2

2C

)m−1

H(2, k)

=
k2m

(2C)m by Lemma 4.

Substituting for m = d
2 and k =

⌊
2n
d

⌋
, we get

H(d, n) ≥
⌊

2n

d
√

2C

⌋d

. (35)
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For the odd case, when d = 2m + 1 for all m ≥ 0, let n = k(m + 1):

H(2m + 1, k(m + 1)) ≥ k2

2C
H(2(m − 1) + 1, km)

... m times

≥
(

k2

2C

)m

H(1, k)

=
k2m+1

(2C)m by Lemma 2.

Substituting for m = d−1
2 and k =

⌊
2n

d+1

⌋
, we get

H(d, n) ≥
⌊

2n

(d + 1)
√

2C

⌋d

. (36)

The condition n ≥ 2d guarantees k ≥ 4.

Remark 6 The construction has no redundant constraints when d is even, and
⌊

2n
d+1

⌋
− 2

redundant constraints when d is odd.

Corollary 4 (Main Theorem) For fixed dimension d, the function C(d, n) grows like a
polynomial of degree d in n:

C(d, n) is θ(nd) for n ≥ 2d where d is fixed. (37)

5 Conclusion

Using a construction of deformed product programs, we proved that the worst-case path
length that the least-index criss-cross method for solving a linear program can take is
Ω(nd) for a d-polyhedron defined by n halfspaces (when d is fixed). This result provides a
tighter lower bound that assymptotically achieves the upperbound, and also shows that the
least-index criss-cross method is worse than simplex methods in the worst case. Despite
this negative result, criss-cross methods remain perhaps the best hope of finding a strongly
polynomial algorithm for linear programming (see [6]).
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