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Abstract

In the present work Sacher’s simple decomposition, originally developed for quadratic
programming problems, is incorporated into a sequential quadratic programming algo-
rithm in order to handle large scale nonlinear programming problems. The resulting
algorithm is tested on several example problems. Results indicate good convergence
of the sequence of quadratic problems and excellent precision in the solution by the
decomposition method. Furthermore, analysis of the evolution of the optimum set of
extreme points of the sequence of quadratic programming problems gave way to the de-
velopment of a procedure for initiating the decomposition with a whole set of extreme
points. This set is determined at the start of each new iteration, based on the results
of the preceding one, bypassing the solution of many master problems. Considerable
computational saving is shown to be achieved by the modified algorithm.

Keywords: Sequential quadratic programming, Nonlinear programming, Simple de-
composition, Large scale, Extreme point.

Résumé

Dans ce travail la méthode de décomposition simple de Sacher, développée pour la
résolution de problèmes quadratiques, est incorporé dans un algorithme de program-
mation quadratique séquentielle pour résoudre des problèmes de programmation non
linéaire généralisée de grande dimension. Cette méthode a été essayée sur plusieurs
exemples de problèmes tests. Les résultats montrent une convergence satisfaisante et
une excellente précision. Par ailleurs, l’analyse de l’évolution du groupe de points
extrêmes retenus dans chaque problème quadratique nous conduit à développer une
procédure permettant de générer un groupe de points extrêmes initial pour chaque
nouvelle itération à partir des points extrêmes de l’itération précédente sans passer par
le programme mâıtre.

Mots Clés : décomposition, programmation non linéaire, programmation quadratique
séquentielle, problèmes de grande dimension.
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1 Introduction

The sequential quadratic programming method (SQP ) was developed by Biggs, Han and
Powell [1–6] for solving nonlinear optimization problems. The solution of a general non-
linear programming problem

(P)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min f(x)

gi(x) ≤ 0 i ∈ I
hi(x) = 0 i ∈ L

x ∈ IRn

where I = {1, 2, . . . , m} and L = {1, 2, . . . , l}, is carried out by iteratively solving a se-
quence of quadratic programming (QP) problems of the form

(QPk)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min Q(d) = 1
2dtBkd + dt∇f(xk)

∇ gi(xk)td + gi(xk) ≤ 0 i ∈ I
∇hi(xk)td + hi(xk) = 0 i ∈ L

d ∈ IRn

Quadratic programming problems can be solved by a variety of algorithms. Being inter-
ested in the treatment of large scale problems their solution is sought in the present work
via a decomposition technique [7], precisely Sacher’s simple decomposition [8–15]. It con-
sists in transforming the original quadratic programming problem QPk, whose variables
form the space vector, into a problem whose variables are the coefficients of the convex
combinations expressing the space vector in terms of the extreme points of the feasible
set. Solving a quadratic programming problem is then achieved via the iterative solution
of two problems: a master problem and a subproblem. Among the attractive features of
this decomposition method are the following advantages:

– the feasible set of the master problem is always the convex hull of a set of affinely
independent extreme points, therefore, the dimension of the master problem never
exceeds n + 1, and actually does not exceed n + 1 − m′ where m′ is the rank of the
Jacobian of the active constraints, including equalities,

– the constraints of the original quadratic problem appear only in the subproblem
which is a linear programming problem,

– there is no need for Lagrange multipliers to be used in coupling master problem and
subproblem.

The objective of the present work is to take advantage of Sacher’s decomposition by in-
corporating it into the SQP algorithm in order to enhance its large scale capabilities.
First, the decomposition algorithm is applied to quadratic programming problems with
unbounded feasible set by expressing the solutions as combinations of extreme points and
extreme rays. The barrier function used in solving the master problem [15] is modified to
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accommodate unbounded feasible domain. The algorithm has been subjected to a signif-
icant number of tests on example problems. A number of these test problems have been
constructed in a way to exhibit specific features such as ill-conditioning of the objective
function [16]. Second, the decomposition method thus implemented is integrated into a se-
quential quadratic programming algorithm to form a general nonlinear programming code
[16] that will be denoted SQPD. The latter has been validated through a number of nu-
merical tests, each problem being subjected to many runs using different starting solutions.
Examination of the evolution of the optimum set of extreme points (SEP ) from a SQP
iteration to another led to the development of a procedure that aims at reducing the com-
putational effort devoted to the generation of intermediate extreme points. The underlying
idea consists in initiating the decomposition process with a whole SEP instead of a single
extreme point. The initial SEP is determined from the results of the preceding iteration
of the SQP sequence without solving a series of master problems and subproblems. In the
present paper, first the simple decomposition for solving QP problems is presented and
extended to unbounded feasible sets. This extension is made by introducing extreme rays
in addition to extreme points. Then, evolution of the sequence of the optimum SEP ’s
is analyzed for the purpose of predicting a relevant SEP and reducing the global effort
required for its generation. Finally, numerical results are presented for several nonlinear
programming example problems that demonstrate the computational saving achieved by
the proposed procedure.

2 Generalities

2.1 Sequential quadratic programming

The sequential quadratic programming method [1–6] combines the advantages of variable
metric methods for unconstrained optimization with the rapid convergence of Newton’s
method for solving nonlinear systems of equations. It is based on the works of Biggs, Han
and Powell [2,4–6]. The algorithm consists in solving a sequence of quadratic programming
problems of the form

(PQ)k

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min Q(d) = 1
2dtBkd + dt∇f(xk)

∇ gi(xk)td + gi(xk) ≤ 0 i ∈ I
∇hi(xk)td + hi(xk) = 0 i ∈ L

d ∈ IRn

where Bk is an approximation of the Hessian L(x∗, λ∗, µ∗), of the Lagrangian function:

l(x, λ∗, µ∗) = f(x) +
∑
i∈I

λ∗
i gi(x) +

∑
j∈L

µ∗
jhj(x)

over the set of feasible directions at the solution x∗ of problem (P), λ∗ and µ∗ being the
optimal Lagrange multipliers.
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2.2 Sacher’s simple decomposition:

Sacher’s simple decomposition [13] is applied to quadratic programming problems of the
form:

(PQ):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min 1
2xtBx + ctx

A1x ≥ b1

A2x = b2

x ≥ 0

where x = (x1, x2, . . . , xn) ∈ IRn is the vector of variables, B is a n × n positive semi-
definite matrix, A1 and A2 are respectively m1 × n and m2 × n matrices, c, b1 and b2 are
vectors of dimensions n, m1 and m2 respectively.

Let S = {x ∈ IRn, A1x ≥ b1, A2x = b2 and x ≥ 0} be the feasible set for problem
(PQ). S is a convex polytope [11], therefore there exist p extreme points x1, x2 , x3 , . . . , xp

(p ≥ 1) and q extreme rays d1 , d2 , d3 , . . . , dq, (q ≥ 0) such that

∀ x ∈ S , ∃ u1, . . . , up , v1, . . . , vq ∈ IR+ such that
p∑

i=1
ui = 1 and x =

p∑
i=1

ui.x
i +

q∑
i=1

vj .d
j .

or, in matrix notation

x = Uu + V v

where

U =

⎛
⎜⎜⎜⎜⎝

x1
1 x2

1 . . . xp
1

x1
2 x2

2 . . . xp
2

. . . . . . . . . . . .
x1

n x2
n . . . xp

n

⎞
⎟⎟⎟⎟⎠ and V =

⎛
⎜⎜⎜⎜⎝

d1
1 x2

1 . . . dq
1

d1
2 d2

2 . . . dq
2

. . . . . . . . . . . .
d1

n d2
n . . . dq

n

⎞
⎟⎟⎟⎟⎠ .

For simplicity of notation, we introduce the n × (p + q) matrix W = (U , V ) and the
(p + q)-vector w =

(
u
v

)
so that x can be written in the form x = Ww. Substituting Ww

for x in problem (PQ) gives rise to an equivalent problem (MP) defined by

(MP) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min 1
2wtQw + stw

p∑
i=1

ui = 1

w ≥ 0

where Q = W tBW is a (p + q) × (p + q)- positive semi-definite matrix and s = W tc is
a (p + q)-vector.
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2.2.1 Simple decomposition algorithm: Sacher’s simple decomposition algorithm
can be summarized in the following steps [13].

Step 1: Let U and V be two matrices made up columnwise of extreme points and extreme
rays respectively. U has at least one column whereas V may be empty.

Step 2: Solve the master problem (PE ). If it is unbounded the problem (PQ) is also
unbounded. Otherwise, let

(
c
u

)
denote the solution of the master problem and let

x̃ = Uu + V v.

Step 3: Solve the subproblem

( SP)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minhtx

A1x ≥ b1

A2x = b2

x ≥ 0
where h = BUu + BV v + c = Bx̃ + c. If the solution of (SP) is bounded, then it
must coincide with an extreme point which will be denoted by xk. Otherwise let dk

be a feasible descent direction (htdk < 0).

Step 4: If (SP) is bounded and has a solution xk such that htx̃ = htxk, then x̃ is the
solution of problem (PQ). Otherwise go to Step 5.

Step 5: If there exists i ∈ IN/ui = 0 (resp. vi = 0) then eliminate extreme point xi (resp.
extreme ray di). If subproblem (SP) is bounded, then replace Uby(U, xk). Otherwise
replace V by (V, dk). Go to Step 1.

2.2.2 Solution of the master problem: The structure of the master problem makes it
suitable for solution by a penalty method. When the feasible set for the original quadratic
problem is bounded the vector w in problem (PE ) is made up solely of the components ui

verifying
p∑

i=1
ui = 1 . The barrier function used is [15]:

K(x, r) = −r
nk∑
i=1

log xi.

where nk is the current number of extreme points and extreme rays. The above function
is not usable in general if the feasible set is unbounded. However, it is applicable under
the assumption of positive definiteness of matrix B. Indeed, let

S =

{
x ∈ IRp × IRq/ x ≥ 0 and

p∑
i=1

xi = 1

}
.
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Define the penalty function Ψ : (x, r) �→ Ψ(x, r) = 1
2xtQx + stx − r

nk∑
i=1

log xi. Assuming

B is positive definite, one has

lim
‖x2‖−→+∞

Ψ(x, r) = +∞

where x = (x1, x2) ∈ IRnk , x1 ∈ IRp and x2 ∈ IRq,

hence ∀ A ≥ 0 , ∃D ≥ 0 / ∀x/
∥∥x2

∥∥ ≥ D, ∀ r ≤ 1, one has Ψ(x, r) ≥ A.

Therefore there exists a compact set IK in IRnk such that

min
x∈S

Ψ(x, r) = min
x∈S∩IK

Ψ(x, r).

x̃ being the optimum of f(x) over S. Then f(x̃) ≤ f(x) ∀ x ∈ S. Let ε > 0. Since the

sum
nk∑
i=1

log xi is bounded from above over IK, it follows that

lim
r−→0

r

nk∑
i=1

log xi = 0,∀x ∈ S ∩ IK

therefore ∃ r1 > 0 / ∀ r ≤ r1, ∀x ∈ S ∩ IK one has r
nk∑
i=1

log xi ≤ ε

which implies ∀ r ≤ r1 , ∀x ∈ S ∩ IK , f(x̃) − ε ≤ f(x) − r
nk∑
i=1

log xi =⇒ ∀ r ≤
r1 , f(x̃) − ε ≤ f(x̃(r)) − ε ≤ Ψ(x̃(r), r), where x̃(r) is the optimum of Ψ(x, r) over S.

Since f is continuous there exists x such that: f(x) − ε ≤ f(x̃) . Thus,

∃ r2 ≥ 0 / ∀ r < r2 , f(x) − r
nk∑
i=1

log xi ≤ f(x̃) + 2ε

=⇒ ∀ r < r2 , Ψ(x̃(r), r) ≤ f(x̃) + 2ε .

Therefore,
∀ε > 0, ∃ r0 > 0 / ∀ r ≤ r0 , f(x̃) − ε ≤ Ψ(x̃(r), r) ≤ f(x̃) + ε hence

lim
r→0

Ψ(x̃(r), r) = f(x̃).

Consider now a nonnegative, decreasing sequence (rk)k∈IN such that

lim
k→∞

rk = 0

and let (xk)k∈IN be the sequence of corresponding solutions xk = x̃(rk). Then

lim
k→∞

Ψ(xk, rk) = f(x̃).
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Since, xk ∈ IK, one can extract a subsequence (xΦ(k))k∈IN converging to x∗. From continu-
ity of f it follows that f(x∗) = f(x̃); and since X∩IK is closed, xΦ(k) ∈ X∩IK =⇒ x∗ ∈
X. Consequently, every accumulation point of the sequence (xk)k∈IN is an optimum for (P ).

Remarks:

– in case the function f is not strictly convex one can choose another penalty function
K(x, r) defined by

K(x, r) = −r
nk∑
i=1

H(xi)

where

H(xi) =
{

log xi if xi ≤ 1
1 − 1

xi
if xi ≥ 1

which is continuous and differentiable over S.

– an advantage of the adopted choice for the penalty function is in that the barrier
function is strictly convex even when the original function is nonconvex. This ensures
uniqueness of the optimum for any value of r. In the following, the objective function
of the problem (PQ) is assumed to be strictly convex. The penalized problem is
written as

(MPPr)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min 1
2

(
u
v

)t

Q

(
u
v

)
+ st

(
u
v

)
− r

nk∑
i=1

log wi

p∑
i=1

ui = 1

For every solution w =
(
u
v

)
let:

– D denote the diagonal matrix of dimension nk having wi as components.
– e denote the nk vector whose first p components are ones and the remaining are

zeroes.

– fr(w) = 1
2wtQw + stw − r

nk∑
i=1

log wi .

– gr(w) = ∇fr(w) = Qw + s − r D−1e .
– Hr(w) = ∇2fr(w) = Q + r D−2 .

Lemma: [15]
For each penalty coefficient rj > 0, let λj be the Lagrange multiplier associated with the
unique constraint of problem (MPrj ). Then

λj = etH−1
rj g

rj

etH−1
rj e
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and the Newton direction for problem MPr at w is given by:

dj = −H−1
rj (grj − λje).

3 Perturbation of extreme points

3.1 Extreme point characterization

In case the feasible set

S = {x ∈ IRn/ A1x ≥ b1, A2x = b2 and x ≥ 0}.
of problem (P ) is unbounded one may change it into a bounded set without altering the
optimum solution, simply by imposing supplementary constraints xi ≤ a, i = 1, . . . , n
where a is a sufficiently large real number. In the following, the assumption of bounded
feasible set will be made. Feasible solutions are, therefore, written as convex combinations
of extreme points only. The feasible set of a generic quadratic programming problem in
the SQP sequence is defined by S = {x ∈ IRn/ ∃A1x ≥ b1, A2 x = b2 and x ≥ 0}. In
order to characterize the extreme points of S we introduce slack variables and rewrite it as
S = {x ∈ IRn/ ∃ h ∈ IRm / (x, h) ∈ H} where

H =
{

(x, h) ∈ IRn × IRm/ A

(
x
h

)
= b , x ≥ 0 and h ≥ 0

}
,

A =
(

A1 −I
A2 0

)
, b =

(
b1

b2

)
, I denoting the m × m identity matrix. Thus, each

extreme point is defined by an m × m nonsingular submatrix of A, or simply by a set of
m columns of A.

3.2 Influence of conditioning

Let B be a nonsingular submatrix of A and x the solution of the equation Bx = b. A small
perturbation in the matrix A and the right hand side b results in a perturbation in the
set H, and possibly in a change in the topology and number of its extreme points. The
following cases may occur for a given extreme point characterized by a matrix B:

i/ the perturbed matrix B+δB is singular, therefore no extreme point can be associated
to it. In other words, at least one extreme point leaves the SEP as a result of the
perturbation. This may happen when the matrix B is ill-conditioned

ii/ The matrix (B + δB) is nonsingular and the equation
(B + δB)x = b + δb

has no nonnegative solution, which implies that the extreme point associated with
matrix B transforms into a point which is not a vertex of the perturbed domain
H

′
= {x ∈ IRn/ (A + δA) x ≥ b + δb and x ≥ 0}. In this case at least one extreme

point enters the SEP . This may occur either at a nondegenerate extreme point with



Les Cahiers du GERAD G–2003–73 8

an ill-conditioned associated matrix B, or at a degenerate point independently of the
conditioning of its associated matrix.

iii/ The matrix (B + δB) is nonsingular and the equation
(B + δB)x = b + δb

has a nonnegative solution, which defines an extreme point (xi + δxi). If the matrix
B is well conditioned the perturbed extreme point should be close to xi according to
the following proposition.

Proposition 1. [18]. Let ‖ . ‖ denote a subordinate matrix norm. If ‖δB‖ < 1
‖B‖ then

‖δx‖
‖x‖ ≤ 1

1−‖B−1‖‖δB‖(Cond(B)(‖δB‖
‖B‖ + ‖δb‖

‖b‖ ))

where

Cond(B) =
∥∥B−1

∥∥ ‖B‖
3.3 Approximation of the optimum SEP

The solution of the quadratic programming problem by the standard simple decomposition
algorithm has been subjected to testing on many example problems. Examination of the
variations of the extreme points through the SQP iterations has shown that, in some prob-
lems, particularly those exhibiting ill-conditioning, the number of extreme points getting in
and out of the SEP is very large. Considering that the generation of each extreme point
requires the solution of a large LP problem in addition to that of the master problem,
the overall computational effort could be improved significantly if the number of extreme
point generations were reduced. On the other hand, it has been noted that, in most cases
and especially at the tail of the sequence, to each point in the optimum SEP of problem
QPk is associated a point in the optimum SEP of problem QPk+1 defined by the same
columns in the coefficient matrix. In such cases the k+1st optimum SEP can be viewed
as the result of the kth optimum SEP by a smooth mapping T. This leads to the idea of
obtaining the entire optimum SEP for a new QP directly from the previous one, at least
in an approximate way, in general. In an attempt to construct an approximation of the
k+1st optimum SEP the following approach is considered. Let {xi, i = 1, . . . , nk} be the
optimum SEP for the kth iteration. For each point xj we seek a corresponding extreme
point, for the feasible set Sk+1, that we characterize as the closest one to xj . The new
extreme point, denoted by yj , is sought as the solution of the problem:

(SPLjk)

⎧⎨
⎩

min
∑

i∈Lj

xi

x ∈ Sk+1

Lj = {i ∈ IN /
∥∥∥xj

i

∥∥∥ ≤ ε}, where ε a small nonnegative real number.
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A drawback of the above formulation is that, due to ill-conditioning or degeneracy, the
new points yi, i = 1, . . . , nk are not necessarily affinely independent, which may cause the
number of points in the SEP to exceed the limit n + 1 − m′ in subsequent steps of the
decomposition procedure. The largest affinely independent subset can be determined by
applying the simplex algorithm to the following problem:

(Rk)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min x =
nk∑
i=1

ui.

nk∑
i=1

uiy
i = x∗

nk∑
i=1

ui = 1

u ≥ 0

where x∗ =
nk∑
i=1

u∗
i y

i , u∗
i are the components of the optimum solution of the master problem

corresponding to the SEP
{
yi, i = 1, . . . nk

}
. The set of independent extreme points is

obtained by retaining solely extreme points whose corresponding optimal coefficients are
positive. The resulting set forms the initial group of extreme points for problem (QP )k+1.

4 Numerical Examples

4.1 Powell’s Problem

Powell’s problem [4] is an example with a small number of variables and exhibiting pro-
nounced nonlinearity. Table I presents the sequence of optimum SEP corresponding to a
run of the SQP algorithm started at the solution x0 = (0,−2, 2, 0,−1) using the unmod-
ified version of the simple decomposition. It can be seen that the maximum number of
extreme points used at a given step is 4, that is less than n + 1 = 6. The basic columns
stabilize from the third iteration for extreme points x3, from the fourth iteration for x1

and from the sixth for x4. It can be noted that the latter leaves the optimum SEP at
iteration 4 and reenters it at the sixth iteration.

The optimum solution obtained is x∗ = (−0.699034,−0.869963, 2.789922, 0.6968791,
−0.69657065) and the objective value is 0.4388502. On the other hand it should be noted
that convergence of the SQP sequence is achieved within 8 iterations with a tolerance of
10−5 on the norm of direction d, i.e., the same number of iterations as reported in [4].

Similarly, Table II presents the sequence of optimum SEP using the starting point x0 =
(−2, 2, 2,−1,−1). In this example, the basic columns are seen to stabilize from the first it-
eration for all extreme points. Extreme point x2 leaves the SEP at the fourth iteration.The
optimum solution obtained is x∗ = (−1.71714, 1.59571, 1.82723,−0.76364,−0.76364) and
the objective value is 0.0539495.
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Table I: Sequence of optimum SEP and ‖d‖ for Powell’s problem x0 = (0,−2, 2, 0,−1).

Itr. 1 2 3 4 5 6 7 8

x1

x2

x3

x4

‖d‖

.00000
49.416
24.166
39.100
0.0000

1.E + 5
49.416
50024.
20039.
1.E + 5

.00000
49.416
50024.
20039.
1.E + 5

1.E + 5
49.416
24.166
39.100
0.0000

0.8074

0.0000
49.570
27.685
25.445
0.0000

1.E + 5
49.570
44132.
49049.
1.E + 5

0.0000
49.570
44132.
49049.
1.E + 5

1.E + 5
49.570
27.699
25.449
0.0000

0.3264

.00000
59.557
35.386
12.031
0.0000

309.49
.00000
23028.
64808.
1.E + 5

309.49
.00000
55.283
47.509
.00000

0.2187

.00000
68.526
42.095
.00000
.74450

184.783
.00000
13505.
76366.
1.E + 5

184.78
.00000
46.717
45.336
.00000

0.1700

.00000
75.862
49.420
.00000
15.535

146.59
.00000
5334.4
90345.
1.E + 5

146.59
.00000
44.959
41.332
.00000

0.0679

.00000
82.122
53.821
.00000
25.021

.00000
82.122
.00000
16968.
16892.

127.80
.00000
44.336
38.406
0.0000

50.599
49.609
50.115
.00000
.00000

0.0044

.00000
82.283
53.782
.00000
24.958

.00000
82.283
.00000
90231.
90155.

127.43
.00000
44.194
38.554
.00000

50.112
49.927
50.021
.00000
.00000

0.0002

0.0000
82.282
53.770
.00000
24.933

.00000
82.282
27.242
1.E + 5
99975.

127.44
.00000
44.183
38.573
.00000

50.049
49.967
50.009
.00000
.00000

.00004

4.2 Ten Bar Truss Design Problem

In this example the optimum design problem for a ten bar truss structure is considered.
The detailed problem statement is given in [19]. The truss is to be designed for minimum
self weight subject to stress constraints and minimum gage restraints on the cross sectional
areas which constitute the design variables of the problem. The problem is solved by the
SQP algorithm using the unmodified simple decomposition. The sequence converges within
6 iterations with a tolerance of 10−6 on ‖d‖.

The optimal solution obtained is x∗ = (7.937867, 0.1, 8.0621, 3.9379, 0.1, 0.1, 5.7447,
5.5690, 5.5690, 0.1) and the optimum volume is 15931,8. Table III shows the sequence
of optimum SEP . It is interesting to note that, except for the first iteration, the optimum
SEP reduces to a singleton. Indeed, the number m′ of active constraints, including lower
bound constraints on the variables, is 10, so that n + 1 − m′ = 1. As a consequence,
there is no master problem to solve. Moreover, the unique extreme point corresponds to
a constant set of basic columns with respect to both the original design variables and the
slack variables.
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Table II: Sequence of optimum SEP and ‖d‖ for Powell’s problem x0 = (−2, 2, 2,−1,−1).

Itr. 1 2 3 4 5

x1

x2

x3

x4

‖d‖

22.3636
77.7196
.000000
108.712
.000000

100.083
.000000
142.486
.000000
82.8055

22.3636
77.7196
.000000
.000000
108.712

100.083
.000000
142.486
82.8054
.000000

0.30900

24.2513
78.7143
.000000
108.738
.000000

94.8945
000000
137.057
.000000
84.7330

24.2513
78.7143
000000
000000
108.738

94.8945
000000
137.057
84.7330
.000000

0.02544

24.3366
79.3742
.000000
108.171
.000000

93.6834
.000000
135.109
.000000
86.0907

24.3366
79.3742
.000000
.000000
108.171

93.6834
.000000
135.109
86.0907
.000000

0.02190

23.1894
81.0056
.000000
106.168
.000000

23.1894
81.0056
.000000
.000000
106.168

93.2352
.000000
130.634
90.0489
.000000

0.00625

23, 0914
81, 0056
.000000
105.985
.000000

23.0914
81.1590
.000000
.000000
105.985

93.1792
.000000
130.233
90.3946
.000000

0.00006

Table III: Sequence of optimum SEP and ‖d‖ for ten bar truss problem.

Itr. 1 2 3 4 5 6

x1 x2 x1 x1 x1 x1 x1

4.76881
.000000
8.09764
3.52469
.000000
.000000
4.39436
4.18233
5.19629
.000000

4.35332
.000000
8.89494
3.39200
.000000
.000000
5.29781
3.25080
4.99725
.000000

6.39218
.000000
7.88101
3.79158
.000000
.000000
5.60752
4.66185
5.43361
.000000

7.57217
.000000
7.96076
3.83744
.000000
.000000
5.64397
5.36208
5.46885
.000000

7.82922
.000000
7.96213
3.83787
.000000
.000000
5.64472
5.46714
5.46899
.000000

7.83786
.000000
7.96213
3.83787
.000000
.000000
5.64472
5.46899
5.46899
.000000

7.83787
.000000
7.96213
3.83787
.000000
.000000
5.74472
5.46899
5.46899
.000000

‖d‖ 2.090 2.008 1.210 0.0257 0.0086 0.00001
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4.3 Large size analytical examples

A family of example analytical problems are now constructed in the following form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
n−p∑
i=1

exp((x2
i − 4)(xi − 4)) +

n∑
i=n+1−p

(x2
i − 1)(xi − 1).

gi(x) = x2
i + x2

i+1 − 5 ≤ 0, i = 1, . . . , n − 1
gn(x) = x2

n + x2
n−1 − 5 ≤ 0

x ≥ 0.1

where p is a positive integer which controls the number of active constraints at the optimum.
The analytical solution of these problems is trivial. Many example problems have been

solved using both the unmodified and the modified decomposition procedures (SQPD) in
order to assess the incidence of the initial SEP approach on the computational effort as the
problem size increases. The computational load, justifiably measured by the total number
of pivots involved in the generation of extreme points, is plotted in Figure 1 as a function
of the number of variables for p = 20. The saving achieved by the modified SQPD method
is clearly demonstrated. It is noted that the computational advantage improves to greater
proportions as the problem size increases. This is essentially explained by two factors. The
first is the redundant generation of intermediate extreme points carried out in the SQPD
algorithm, which is avoided by the modified method. The second is the difference in the
nature of the linear programming subproblems of the SQPD algorithm and those that
generate the initial SEP in the modified algorithm. The second factor is clearly illustrated
by the example problem with n = 450 where the total number of generated extreme points
is nearly the same for both algorithms whereas the modified algorithm requires only half
the number of pivots.

�

�
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• modified SQPD

0 n

np (×1000)

100
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100
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•◦ •
◦ •

◦
•
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◦
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Figure 1: Evolution of total number of pivots versus problem size.
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5 Conclusion

In the present work Sacher’s simple decomposition is applied in solving the quadratic
programming problems of the sequence of the SQP algorithm for nonlinear programming.
The resulting algorithm naturally preserves the superlinear convergence of the sequential
quadratic programming method, and has the advantage of providing improved accuracy
and a capability for handling large scale problems. Furthermore, a procedure is developed
that aims at reducing the computational effort devoted to the generation of intermediate
extreme points. It consists in initiating the decomposition process with a whole set of
extreme points, determined from the results of the preceding iteration, without solving a
series of master problems and subproblems. Numerical results are presented for several
nonlinear programming example problems that demonstrate computational saving up to
60% achieved by the proposed procedure. Possible improvements are under study. Future
work will be devoted to reduction of storage requirement.
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