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Montréal, Québec, Canada H3C 3A7

el-kebir.boukas@polymtl.ca

October, 2003

Les Cahiers du GERAD

G–2003–69

Copyright c© 2003 GERAD



Abstract

This paper deals with the uncertain class of continuous-time linear systems with
Markovian jumping parameters and multiplicative Brownian disturbance. A design
method for a non fragile robust controller for this class of systems is proposed when
the uncertainties in the system are of norm bounded types. LMI based sufficient con-
dition is developed. The methodology used is mainly based on Lyapunov approach. A
numerical example is presented to show the usefulness of the proposed results.

Key Words: Jump linear system, Linear matrix inequality, Stochastic stability, state
feedback control, Norm bounded uncertainty, Brownian motion.

Résumé

Ce papier traite de la classe des systèmes incertains continus à sauts markoviens et
sujet à des bruits Brownien. Une méthode de design d’un contrôleur nonfragile et
robust pour la classe de systèmes considérée est développée quand les incertitudes sont
du type borné norme. Les résultats développés sont en forme de LMI. La méthodologie
repose sur la méthode de Lyapunov. Un exemple numérique est présenté pour montrer
l’importance des résulats.
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1 Introduction

There exists in practice many systems that can’t be unfortunately modelled by the popu-
lar linear model that is widely used in the literature. Among these systems we quote for
instance the ones with abrupt changes in their structures that may be caused by many
factors like failures, repairs, sudden environmental disturbance, changing subsystem inter-
connections, abrupt variations of the operating point of a nonlinear system, etc. This class
of systems can be modelled by the class of linear system with Markovian jumping param-
eters which was introduced for the first time by Krasovskii and Lidskii (Ref. [1]). The
power of this class of systems to model different practical systems, has been the catalyst
of the development of this class of systems. For a recent review on this class of systems
and its applications we refer the readers to Boukas and Liu (Ref. [2]) and the references
therein on what it has been done on this class of systems. Most of the problems like stabil-
ity, stabilization, H∞ control, filtering and theirs robustness have been tackled and some
interesting results already exist in the literature. For example we can refer the readers to
Mao (Ref. [3]), Shi and Boukas (Ref. [4]), Shi et al. (Ref. [5]), Wang et al. (Ref. [6]) and
to the references therein.

Most of the contributions to the class of systems with Markovian jumping parameters
dealt with the design of controllers that cope with the system uncertainties but none of
them has addressed the robustness with regard to the controllers uncertainties that may
results from different causes like the errors in the electronic components for instance when
the controllers are implemented using electronic components. In their study Keel and
Bhattacharyya (Ref. [7]) have shown that the controller may be very sensitive or fragile
to the errors in the controller parameters even if the design take care of the system uncer-
tainties. To overcome this, the parameters variations should be included in the controller
design phase besides the system uncertainties. The goal becomes then how to design a
controller that is non fragile in the sense that the closed loop system tolerates a certain
changes in the controller parameters and at the same time the system uncertainties that
may affect the different matrices.

Our goal in this paper consists of designing a non fragile controller that can cope
with norm bounded uncertainties that may affect the class of continuous-time Markovian
jumping parameters with Brownian disturbance we are considering in this paper and at
the same time tolerate some changes in the controller parameters. To the best of our
knowledge this problem has never tackled before for this class of systems. Our choice will
be limited to conditions for robust stochastic stabilization in the form of LMI that may be
solved easily using the existing convex optimization algorithms. The methodology using
in this paper is mainly based on Lyapunov method.

The rest of the paper is organized as follows. In section 2, the stabilization problem
is stated. Section 3 gives the main results of the paper. They comprise results on robust
stochastic stability and the design method for a non fragile robust controller. In section 4,
a numerical example is presented to show the usefulness of the developed results.
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The notations used in this paper is standard unless it is mentioned otherwise. For
symmetric matrices X and Y , X > Y (resp. X < Y ) means that X−Y is positive-definite
(resp. negative-definite). I denotes the identity matrix with the appropriate dimension
that may be understood from the context. diag[.] denotes a block diagonal matrix.

2 Problem statement

Consider a continuous-time linear Markovian jumping parameters system defined in a
fundamental probability space (Ω,F , P ) with the following dynamics:{

dxt = A(rt, t)xtdt + B(rt)utdt + W (rt)xt)dw(t)
x(0) = x0

(1)

where xt ∈ R
n is the state vector at time, ut ∈ R

p is the control at time t, w(t) ∈ R
m is a

standard Wiener process that is independent of the Markov process {rt, t ≥ 0}, A(rt, t) is
the state matrix that is assumed to contain uncertainties and its expression is given by:

A(rt, t) = A(rt) + DA(rt)FA(rt, t)EA(rt)

with A(rt), DA(rt), EA(rt) are known matrices, and FA(rt, t) is the uncertainty of the state
matrix; B(rt) is the control matrix that is supposed to be known and W (rt) is a known real
matrix; {rt, t ≥ 0} is continuous-time homogeneous Markov process with right continuous
trajectories taking values in a finite set S = {1, 2, . . . , N} with the following stationary
transition probabilities:

P [rt+∆t = j|rt = i] =

{
λij∆t + o(∆t) i �= j

1 + λii∆t + o(∆t) otherwise
(2)

where ∆t > 0, lim∆t→0
o(∆t
∆t = 0 and λij ≥ 0 is the transition probability from the mode i

to the mode j at time t and λii = −∑N
j=1,j �=i λij .

The uncertainty in the state matrix is assumed to satisfy the following for every rt ∈ S:

F�
A (rt, t)FA(rt, t) ≤ I (3)

Let us now define some concepts that will be used in the rest of the paper.
For system (1), when FA(rt, t) ≡ 0, i.e we drop the system’s uncertainties, we have the

following definitions.

Definition 2.1 System (1), with FA(rt, t) = 0 for all t ≥ 0, is said to be

(i) stochastically stable (SS) if there exists a finite positive constant T (x0, r0) such that
the following holds for any initial conditions (x0, r0):

E

[∫ ∞

0
‖x(t)‖2dt|x0, r0

]
≤ T (r0, x0); (4)
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(ii) mean square stable (MSS) if

lim
t→∞E‖x(t)‖2 = 0 (5)

holds for any initial condition (x0, r0);
(iii) mean exponentially stable (MES) if there exist positive constants α and β such that

the following holds for any initial conditions (x0, r0):

E
[‖x(t)‖2|x0, r0

] ≤ α‖x0‖e−βt. (6)

Remark 2.1 From the definitions, we can see that the mean exponentially stable (MES)
implies the mean square stable (MSS) and the stochastically stable (SS).

When the system’s uncertainties are not equal to zero, the concept of stochastic stability
becomes robust stochastic stability and is defined for system (1), as follows.

Definition 2.2 System (1) is said to be

(i) robustly stochastically stable (RSS) if there exists a finite positive constant T (x0, r0)
such that the condition (4) holds for any initial conditions (x0, r0) and for all admis-
sible uncertainties;

(ii) robust mean exponentially stable (RMES) if there exist positive constants α and β
such that the condition (6) holds for any initial conditions (x0, r0) and for all admis-
sible uncertainties.

Remark 2.2 From the definitions, we can see that the robust mean exponentially stable
(RMES) implies the stochastically stable (RSS).

Definition 2.3 System (1) with FA(rt, t) = 0 for all modes and for t ≥ 0, is said to be
stabilizable in the SS (MES, MSQS) sense if there exists a controller such that the closed-
loop system is SS (MES, MSQS) for every initial conditions (x0, r0).

When the uncertainties are not equal to zero, the previous definition is replaced by the
following one:

Definition 2.4 System (1) is said to be robustly stabilizable in the stochastic sense if there
exists a controller such that the closed-loop system is stochastically stable for every initial
conditions (x0, r0) and for all admissible uncertainties.

The problem we are facing in this paper consists of designing a state feedback controller
that robustly stabilizes the closed loop of the system.

In general the state feedback control is given by:

u(t) = K(rt)x(t), for every rt ∈ S (7)

But in practice the implementation is quite different from this expression and there is
always uncertainties in the gain controller which means that the gain is given by:

K(rt, t) = K(rt) + ∆K(rt, t) (8)
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with ∆K(rt, t) is given by:

∆K(rt, t) = ρ(rt)FK(rt, t)K(rt) (9)

where ρ(rt) is an uncertain real parameter indicating the measure of non fragility against
controller gain variations and FK(rt, t) is the uncertainty that will be supposed to satisfy
the following for every rt ∈ S:

F�
K (rt, t)FK(rt, t) ≤ I (10)

Our goal in this paper is to synthesize the gain for the state feedback controller with
the following form for every rt ∈ S:

K(rt) = γ(rt)B�(rt)P (rt) (11)

where γ(rt) is a real number and P (rt) is symmetric and positive-definite matrix for every
rt ∈ S.

Plugging the controller in the dynamics we get the following closed loop dynamics:

dxt = [A(rt, t) + B(rt)K(rt, t)] xtdt + W (rt)xtdwt

=
[
A(rt) + DA(rt)FA(rt, t)EA(rt) + B(rt)

[
γ(rt)B�(rt)P (rt)

+ρ(rt)FK(rt, t)γ(rt)B�(rt)P (rt)
]]

xtdt + W (rt)xtdwt (12)

In the rest of this we will propose an LMI design approach to compute the controller
gain, P (rr) and γ(rt) for each rt ∈ S.

The following lemmas will be used in the rest of the paper. For their proofs, we refer
the reader to Boukas and Liu (Ref. [2]).

Lemma 2.1 Let D, F and E be real constant matrices of compatible dimensions with
F�F ≤ I, then, the following:

DFE + E�F�D� ≤ εDD� +
1
ε
E�E

holds for any ε > 0.

Lemma 2.2 (Schur Complement) Let the symmetric matrix M be partitioned as

M =
(

X Y
Y � Z

)

with X, Z being symmetric matrices. We have



Les Cahiers du GERAD G–2003–69 5

(i ) M is nonnegative-definite if and only if either⎧⎪⎨
⎪⎩

Z ≥ 0
Y = L1Z

X − L1ZL�
1 ≥ 0

(13)

or ⎧⎪⎨
⎪⎩

X ≥ 0
Y = XL2

Z − L�
2 XL2 ≥ 0

(14)

hold, where L1, L2 are some (non unique) matrices of compatible dimensions.
(ii) M is positive-definite if and only if either{

Z > 0
X − Y Z−1Y � > 0

(15)

or {
X > 0
Z − Y �X−1Y > 0

(16)

Matrices X − Y Z−1Y � is called the Schur complement X(Z) in M .

Lemma 2.3 Let V (x(t), rt) be a function from R
n × S into R such that V (x(t), rt) and

Vx(x(t), rt) are continuous in x for any r ∈ S and such that |V (x(t), rt)| < γ (1 + ‖x‖)
for a constant γ, the generator Lu of (x(t), rt) under an admissible control law u, for x(t)
solution of (1) and rt a continuous time Markov process taking values in S with transition
rates matrix Λ, is given by:

LuV (x(t), rt) = [A(rt)x(t) + B(rt)u(t)]� Vx(x(t), rt)

+
1
2
trace

(
x�(t)W�(rt)Vxx(x(t), rt)W (rt)x(t)

)
(17)

3 Main results

In this section we will develop the main results of this paper that are related to the robust
stability and the robust stabilization problems for the class of systems we are consider-
ing. All the results are LMI based which make them easily solvable using existing convex
optimization algorithms.

Let us now study the stability problem. For this purpose let the control ut = 0 for
t ≥ 0. The following theorem give the result on robust stochastic stability. The following
theorem summarizes the result in this case.
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Theorem 3.1 If there exist symmetric and positive-definite matrices P = (P (1), . . . ,
P (N)) and positive scalar εA such the following LMI holds for every rt ∈ S:[

Jw(rt) P (rt)DA(rt)
D�

A(rt)P (rt) −εAI

]
< 0 (18)

with Jw(rt) = A�(rt)P (rt) + P (rt)A(rt) + W�(rt)P (rt)W (rt) + εAE�
A (rt)EA(rt)

+
∑N

j=1 λrtjP (j), then the system is stochastically stable.

Proof: Let P (rt), rt ∈ S be a symmetric and positive-definite that represents a solu-
tion of the LMI (18), then a Lyapunov function candidate can be given by the following
expression:

V (xt, rt) = x�(t)P (rt)x(t) (19)

Using the results of lemma 2.3, the infinitesimal generator of the Markov process
(x(t), rt) is given by:

LV (x(t), rt) = [A(rt, t)x(t)]� Vx(x(t)) +
N∑

j=1

λrtjV (x(t), j)

+
1
2
trace

[
x�(t)W�(rt)Vxx(x(t), rt)W (rt)x(t)

]
(20)

Using the following expressions of Vx(x(t), rt) and Vxx(x(t), rt):

Vx(x(t), rt) = 2P (rt)x(t) (21)
Vxx(x(t), rt) = 2P (rt) (22)

we obtain:

LV (x(t), rt) = 2x�(t)A�(rt, t)P (rt)x(t)

+
N∑

j=1

λrtjx
�(t)P (j)x(t) + x�(t)W�(rt)P (rt)W (rt)x(t)

= x�(t)
[
A�(rt)P (rt) + P (rt)A(rt) + E�

A (rt)F�
A (rt, t)D�

A(rt)P (rt)

+ P (rt)DA(rt)FA(rt, t)EA(rt) + W�(rt)P (rt)W (rt) +
N∑

j=1

λrtjP (j)
]
x(t)

Based on the results of Lemma 2.1, we have:

2x�(t)P (rt)DA(rt)FA(rt, t)EA(rt)x(t) ≤ 1
εA

x�(t)P (rt)DA(rt)D�(rt)P (rt)x(t)

+εAx�(t)E�
A (rt)EA(rt)x�(t) (23)
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Considering this, the previous relation becomes:

LV (x(t), rt) = x�(t)
[
A�(rt)P (rt) + P (rt)A(rt) +

1
εA

P (rt)DA(rt)D�(rt)P (rt)

+εAE�
A (rt)EA(rt) + W�(rt)P (rt)W (rt) +

N∑
j=1

λrtjP (j)

⎤
⎦ x(t)

≤ x�(t)Γu(rt)x(t) (24)

with

Γu(rt) = A�(rt)P (rt) + P (rt)A(rt) +
1
εA

P (rt)DA(rt)D�(rt)P (rt)

+εAE�
A (rt)EA(rt) + W�(rt)P (rt)W (rt) +

N∑
j=1

λrtjP (j) (25)

Using the condition (18) and Schur complement, we get:

LV (x(t), rt) ≤ −mini∈Sx�(t)λmin (−Γu(i)) (26)

Combining this again with Dynkin’s formula yields

E [V (x(t), rt)] − E [V (x(0), r0)] = E

[∫ t

0
LV (x(s), rs)ds|(x0, r0)

]

≤ −min
i∈S

{λmin(−Γ(i))}E

[∫ t

0
x�(s)x(s)ds|(x0, r0)

]
,

implying, in turn,

min
i∈S

{λmin(−Γu(i))}E

[∫ t

0
x�(s)x(s)ds|(x0, r0)

]
≤ E [V (x(0), r0)] − E [V (x(t), rt)]
≤ E [V (x(0), r0)] .

This yields that

E

[∫ t

0
x�(s)x(s)ds|(x0, r0)

]
≤ E [V (x(0), r0)]

mini∈S{λmin(−Γu(i))}
holds for any t > 0. This proves Theorem 3.1. �

Remark 3.1 The condition we give in this theorem is a sufficient one which means that
if we are not able to find a set P = (P (1), . . . , P (N)) of symmetric and positive-definite
matrices that satisfies the condition (18), this doesn’t imply that the dynamical system is
not robustly stochastically stable.
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Let us now return to the initial problem and see how we can design a robust controller
that can handle the uncertainties in the system matrices and the controller gains.

Based on Theorem 3.1, the closed-loop system will be stable if the following holds for
every rt ∈ S:

[A(rt, t) + B(rt) [K(rt) + ρ(rt)FK(rt, t)K(rt)]]
� P (rt)

+P (rt) [A(rt, t) + B(rt) [K(rt) + ρ(rt)FK(rt, t)K(rt)]]

+W�(rt)P (rt)W (rt) +
N∑

j=1

λrtjP (j) < 0 (27)

Using now the fact that K(rt) = γ(rt)B�(rt)P (rt) and Lemma 2.1, we get:

2x�
t P (rt)DA(rt)FA(rt, t)EA(rt)xt ≤ εA(rt)x�

t P (rt)DA(rt)D�
A(rt)P (rt)x(t)

+ ε−1
A x�(t)(rt)E�

A (rt)EA(rt)xt

2ρ(rt)γ(rt)x�
t P (rt)B(rt)FK(rt, t)B�(rt)P (rt)xt

≤ ε−1
K (rt)ρ(rt)γ2(rt)x�

t P (rt)B(rt)B�(rt)P (rt)xt

+ εK(rt)ρ(rt)x�
t P (rt)B(rt)F�

K (rt, t)FK(rt, t)B�(rt)P (rt)xt

≤ ε−1
K (rt)ρ(rt)γ2(rt)x�

t P (rt)B(rt)B�(rt)P (rt)xt

+ εK(rt)ρ(rt)x�
t P (rt)B(rt)B�(rt)P (rt)xt

Based on this, the previous inequality becomes:

A�(rt)P (rt) + P (rt)A(rt) + εA(rt)P (rt)DA(rt)D�
A(rt)P (rt)

+ε−1
A (rt)E�

A (rt)EA(rt) +
N∑

j=1

λrtjP (j)

+ε−1
K (rt)ρ(rt)γ2(rt)P (rt)B(rt)B�(rt)P (rt) + εK(rt)ρ(rt)P (rt)B(rt)B�(rt)P (rt)

+2γ(rt)P (rt)B(rt)B�(rt)P (rt) + W�(rt)P (rt)W (rt) (28)

This inequality is nonlinear in the design parameters γ(rt) and P (rt) for every rt ∈ S
to cast it into in an LMI, let us put X(rt) = P−1(rt) for each rt ∈ S. Let us now pre- and
post-multiplying (28) by X(rt) we get:

X(rt)Λ(rt)X(rt) = X(rt)A�(rt) + A(rt)X(rt) + εA(rt)DA(rt)D�
A(rt)

+ε−1
A (rt)X(rt)E�

A (rt)EA(rt)X(rt) +
N∑

j=1

λrtjX(rt)X−1(j)X(rt)

+ε−1
K (rt)ρ(rt)γ2(rt)B(rt)B�(rt) + εK(rt)ρ(rt)B(rt)B�(rt)

+2γ(rt)B(rt)B�(rt) + X(rt)W�(rt)X−1(rt)W (rt)X(rt) (29)
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Letting Srt(X) and Xrt(X) be defined as follows:⎧⎪⎨
⎪⎩

Srt(X) =
[√

λrt1X(rt), . . .
√

λrtrt−1X(rt),
√

λrtrt+1X(rt), . . . ,
√

λrtNX(rt)
]

Xrt(X) = diag [X(1), . . . , X(rt − 1), X(rt + 1), . . . , X(N)]
(30)

the term X(rt)
[∑N

j=1 λrtjX
−1(j)

]
X(rt) can be rewritten as follows:

X(rt)

⎡
⎣ N∑

j=1

λrtjX
−1(j)

⎤
⎦ X(rt) = λrtrtX(rt) + Srt(X)X−1

rt
(X)S�

rt
(X)

Using now (29) and Schur complement we get:

⎡
⎢⎢⎢⎢⎢⎣

J(rt) X(rt)E�
A (rt) γ(rt)B(rt) X(rt)W�(rt) Srt(X)

EA(rt)X(rt) −εA(rt)I 0 0 0
γ(rt)B�(rt) 0 − εK(rt)

ρ(rt)
I 0 0

W (rt)X(rt) 0 0 −X(rt) 0
S�

rt
(X) 0 0 0 −Xrt(X)

⎤
⎥⎥⎥⎥⎥⎦ < 0 (31)

where

J(rt) = X(rt)A�(rt) + A(rt)X(rt) + εA(rt)DA(rt)D�
A(rt) + 2γ(rt)B(rt)B�(rt)

+ λrtrtX(rt) + εK(rt)ρ(rt)B(rt)B�(rt) (32)

The following theorem gives a result in the LMI framework that can be used to design
a non fragile robust controller for the class of system we are considering.
Theorem 3.2 If there exist a set of symmetric and positive-definite matrix X = (X(1), . . . ,
X(N)) and positive scalars εA(rt), µ(rt), ν(rt) and a scalar γ(rt) satisfying the following
LMI for every rt ∈ S and for all admissible uncertainties:

⎡
⎢⎢⎢⎢⎣

J(rt) X(rt)E�
A (rt) γ(rt)B(rt) X(rt)W�(rt) Srt(X)

EA(rt)X(rt) −εAI 0 0 0
γ(rt)B�(rt) 0 −µ(rt)I 0 0
W (rt)X(rt) 0 0 −X(rt) 0

S�
rt

(X) 0 0 0 −Xrt(X)

⎤
⎥⎥⎥⎥⎦ < 0 (33)

where

J(rt) = X(rt)A�(rt) + A(rt)X(rt) + εADA(rt)D�
A(rt) + 2γ(rt)B(rt)B�(rt)

+λrtrtX(rt) + ν(rt)B(rt)B�(rt)

µ(rt) =
εK(rt)
ρ(rt)

ν(rt) = εK(rt)ρ(rt)
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then closed-loop system is robustly stochastically stable with non fragility ρ(rt) under the
controller (7) with the gain K(rt) = γ(rt)B�(rt)X−1(rt).

When the controller gains don’t have uncertainties the previous result becomes easier
and it is summarized in the following theorem:

Theorem 3.3 If there exist a set of symmetric and positive-definite matrix X = (X(1), . . . ,
X(N)) and positive scalar εA(rt), and γ(rt) satisfying the following LMI for every rt ∈ S
and all admissible uncertainties:⎡

⎣ J(rt) X(rt)E�
A (rt) Srt(X)

EA(rt)X(rt) −εAI 0
S�

rt
(X) 0 −Xrt(X)

⎤
⎦ < 0 (34)

where

J(rt) = X(rt)A�(rt) + A(rt)X(rt) + εADA(rt)D�
A(rt) + 2γ(rt)B(rt)B�(rt) + λrtrtX(rt)

then closed loop system is robustly stochastically stable under the controller (7) with the
gain K(rt) = γ(rt)B�(rt)X−1(rt).

Proof: The details of the proof is similar to the one of the previous theorem and follows
the same steps. �

4 Numerical example

In this section we will show the usefulness of the proposed results in this paper. For this
purpose let us consider a system with two modes and two components in the state vector.
Let the data in each mode be given by:

• mode 1:

A(1) =
[

1.0 −0.5
0.1 1.0

]

B(1) =
[

1.0 0.0
0.0 1.0

]

DA(1) =
[

0.1
0.2

]
EA(1) =

[
0.2 0.1

]
W (1) =

[
0.2 0.0
0.0 0.2

]
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• mode 2:

A(2) =
[ −0.2 0.5

0.0 −0.25

]

B(2) =
[

1.0 0.0
0.0 1.0

]

DA(2) =
[

0.13
0.1

]

EA(2) =
[

0.1 0.2
]

W (2) =
[

0.1 0.0
0.0 0.1

]

Let the transition probability matrix between these two modes be given by:

Λ =
[ −2.0 2.0

3.0 −3.0

]

Letting εA(1) = εA(2) = 0.5, εK(1) = εK(2) = 0.1, and ρ(1) = 0.5, ρ(2) = 0.6 and
solving the LMI (33), we get:

X(1) =
[

0.0546 0.0044
0.0044 0.0484

]

X(2) =
[

1.6675 −0.1072
−0.1072 0.8727

]
γ(1) = −0.1966
γ(2) = −0.1590

which gives the following controller gains:

K(1) =
[ −3.6290 0.3330

0.3330 −4.0964

]

K(2) =
[ −0.0961 −0.0118
−0.0118 −0.1836

]
.

5 Conclusion

This paper deals with the class of uncertain continuous-time Markovian jump linear sys-
tems. The uncertainties we considered in this paper were of norm bounded type. A design
LMI method was developed to synthesize a state feedback controller that robustly stochas-
tically stabilizes the class under study. The condition we established is easily solvable using
existing convex optimization algorithms.
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