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Abstract

The elementary shortest path problem with resource constraints (ESPPRC) is a
widely used modeling tool in formulating vehicle routing and crew scheduling appli-
cations. The ESPPRC often occurs as a subproblem of an enclosing problem, where
it is used to implicitly generate the set of all feasible routes or schedules, as e.g. in
the column generation formulation of the vehicle routing problem with time windows
(VRPTW). The ESPPRC problem being NP-hard in the strong sense, classical solution
approaches are based on the corresponding non-elementary shortest path problem with
resource constraints (SPPRC), which can be solved using a pseudo-polynomial labeling
algorithm. While solving the enclosing problem by branch-and-price, this subproblem
relaxation leads to weak lower bounds and sometimes impractically large branch-and-
bound trees. A compromise between solving ESPPRC and SPPRC is to forbid cycles
of small length. In the SPPRC with k-cycle elimination (SPPRC-k-cyc), paths with
cycles are allowed only if cycles have length at least k + 1. The case k = 2 forbids
sequences of the form i − j − i and has been successfully used to reduce integrality
gaps. We propose a new definition of the dominance rule among labels for dealing with
arbitrary values of k ≥ 2. The numerical experiments on the linear relaxation of some
hard VRPTW instances from the Solomon’s benchmark show that k-cycle elimination
with k ≥ 3 can substantially improve the lower bounds of vehicle routing problems
with side constraints. The new algorithm has proved to be a key ingredient for getting
exact integer solutions for well-known hard problems from the literature.

Résumé

Le problème de plus courts chemins élémentaires avec contraintes de ressources
(ESPPRC) est un outil de modélisation d’usage répandu pour formuler des applica-
tions de tournées de véhicule et d’horaires d’équipage. Le problème ESPPRC apparâıt
souvent comme un sous-problème d’un problème englobant, où il est alors utilisé pour
générer implicitement l’ensemble de tous les chemins ou de tous les horaires, comme
par exemple dans la formulation de génération de colonnes du problème de tournées de
véhicules avec fenêtres de temps (VRPTW). Le problème ESPPRC étant NP-difficile
au sens fort, les approches de résolution classiques sont basées sur le problème corre-
spondant de plus courts chemins non élémentaires (SPPRC), pour lequel un algorithme
de résolution pseudo-polynomial existe. Lors de la résolution du problème englobant
par séparation et évaluation, cette relaxation dans la définition du sous-problème mène
à des bornes inférieures de moins bonne qualité et parfois à des arbres de branchement
de taille inacceptable en pratique. Un compromis entre la résolution des problèmes
ESPPRC et SPPRC consiste à interdire les cycles de faible longueur. Dans le prob-
lème SPPRC avec élimination des k-cycles (SPPRC-k-cyc), les chemins avec cycles
sont permis seulement si les cycles comportent au moins k + 1 arcs. Le cas k = 2
interdit les séquences de la forme i− j− i et a déjà été utilisé avec succès pour réduire
les gaps d’intégrité. Nous proposons une nouvelle définition de la règle de dominance
entre les étiquettes pour supporter des valeurs de k ≥ 2 arbitraires. Les résultats
numériques obtenus sur la relaxation linéaire de cas de VRPTW difficiles tirés des prob-
lèmes de Solomon montrent que l’élimination des k-cycles avec k ≥ 3 peut améliorer
substantiellement les bornes inférieures des problèmes de tournées de véhicules avec
contraintes. Le nouvel algorithm constitue un ingrédient clé pour l’obtention de solu-
tions entières optimales sur des problèmes réputés difficiles dans la littérature.

Acknowledgments: Work of the second author was initiated and mainly realized
while he was a research associate at GERAD.
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1 Introduction

The elementary shortest path problem with resource constraints (ESPPRC) is a widely
used modeling tool in formulating vehicle routing and crew scheduling applications, see
e.g. (Desaulniers et al., 1998). The ESPPRC consists of finding shortest paths that do not
contain cycles from a source to all other nodes of a network. The ESPPRC often occurs as
a subproblem of an enclosing problem, where it is used to implicitly generate the set of all
feasible routes or schedules, as in the column generation formulation of the vehicle routing
problem with time windows (VRPTW), see (Cordeau et al., 2001). The ESPPRC problem
being NP-hard in the strong sense (Dror, 1994), classical solution approaches are based on
the corresponding non-elementary shortest path problem with resource constraints (SP-
PRC), which can be solved using a pseudo-polynomial labeling algorithm (Desrochers and
Soumis, 1988). While solving the enclosing problem by branch-and-price (see (Barnhart
et al., 1998) for an introduction to the methodology), this subproblem relaxation leads to
weak lower bounds and sometimes impractically large branch-and-bound trees.

A compromise between solving ESPPRC and SPPRC is to forbid cycles of small length.
In the SPPRC with k-cycle elimination (SPPRC-k-cyc), paths with cycles are allowed only
if cycles have length at least k+1. The case k = 2 forbids sequences of the form i− j− i, is
well known (Houck et al., 1980), and has been successfully used to reduce integrality gaps
for the VRPTW (Kolen et al., 1987; Desrochers et al., 1992). We propose a new definition
of the dominance rule among labels for dealing with arbitrary values of k ≥ 2. This new
rule can be embedded in any algorithm for finding the minima of a set of vectors, such as a
naive quadratic algorithm or a multi-dimensional divide-and-conquer algorithm, in order to
identify the set of irrelevant labels. The multi-dimensional divide-and-conquer algorithm
was first presented by Kung, Luccio, and Preparata (Kung et al., 1975) to find the maxima
of a set of vectors, and was later generalized by Bentley (Bentley, 1980) to solve a wide
variety of problems, e.g. domination problems, maxima, range searching, closest pair, and
nearest neighbor problems. The numerical experiments on the linear relaxation of some
hard VRPTW instances from the Solomon’s benchmark (see (Solomon, 1987)) show that
k-cycle elimination with k ≥ 3 can substantially improve the lower bounds. Using well-
known techniques for branching and cutting (Kohl, 1995; Kohl et al., 1999; Rich, 1999),
the new algorithm has proved to be a key ingredient for getting exact integer solutions for
well-known hard problems from the literature.

We start with some basic notation on graphs, resource constraints and the definition
of the shortest path problems with resource constraints in Section 2. Section 3 deals with
pareto-optimality and the concept of useful paths. Section 4 defines a template labeling
algorithm for solving SPPRC and SPPRC-k-cyc and identifies the main building blocks of
such labeling algorithm. In Section 5 we review cycle elimination, its basic definitions, and
the progress which has been made to adapt dominance rules to incorporate cycle elimination
constraints. Section 6 focuses on the building blocks of a labeling algorithm for the general
case of k-cycle elimination with k ≥ 2. We will introduce the concept of hole sets, generalize
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dominance rules, describe the corresponding data structures and algorithms, and derive
bounds necessary for the final worst-case complexity results. Section 7 discusses various
extensions. Computational results for the VRPTW are presented in Section 8 and the
paper ends with final conclusions in the last section.

2 Shortest Path Problems with Resource Constraints

The shortest path problems with resource constraints that we consider in this paper are
extensions of the classical one-to-all shortest path problem, where the cost is replaced by
multi-dimensional resource vectors which are accumulated along paths and constrained at
intermediate nodes. The objective is to find all pareto-optimal paths from a source node
to all other nodes. The problem is stated on a simple digraph G = (V,A), with V being
the non-empty set of nodes and A being the set of arcs. Let s ∈ V be designated as the
source node. Minimal resource consumptions are associated to arcs, while lower and upper
bounds on cumulative consumption from the source node are imposed at each node.

We state the resource constraints by considering individual paths. A path P =
(a1, . . . , ap) is a finite sequence of arcs (some arcs may occur more than once) where the
end node of ai is identical to the start node of ai+1 for all i = 1, . . . , p − 1. The graph
being simple, such a path can be written as P = (v0, v1, . . . , vp) with the understanding
that (vi−1, vi) ∈ A for all i ∈ {1, . . . , p}. The number of arcs p is the length of the path.
An elementary path is a path in which all nodes are different.

A cycle is a path (v0, v1, . . . , vp) of length p > 1 having v0 = vp. For the sake of
simplicity, we name any cycle of length less than or equal to k as a k-cycle or small cycle.
To refer to its exact length p, it can be denominated as a cycle of length p.

The resources are represented as vectors in R
R, where R is the number of different

resources. The minimal resource consumptions associated to an arc (i, j) ∈ A are denoted
by tij = (t1ij , . . . , t

R
ij) and the resource intervals associated to a node i ∈ V are denoted by

[ai, bi] with ai = (a1
i , . . . , a

R
i ) and bi = (b1i , . . . , b

R
i ). We assume for now that t1ij > 0 holds

for all arcs (i, j) ∈ A. This condition will be relaxed in Section 7.

A vector T = (T 1, . . . , TR) ∈ R
R is not greater than (i.e. dominates) a vector S =

(S1, . . . , SR) ∈ R
R if for all components i = 1, . . . , R, the inequality T i ≤ Si holds. We

denote this fact by T ≤ S. The relation ≤ provides a partial ordering of the vector space
R

R. A vector T = (T 1, . . . , TR) ∈ R
R is lexicographically less than or equal to a vector

S = (S1, . . . , SR) ∈ R
R, which we write T �lex S, if they are equal or if there exists an

index i∗ ∈ {1, . . . , R} with T i = Si for all 1 ≤ i < i∗ and T i∗ < Si∗ . The lexicographical
ordering provides a total ordering of the vector space R

R. Furthermore, the ≤-relation is
included in the lexicographical relation, i.e. T ≤ S implies T �lex S.

A path P = (v0, v1, . . . , vp) is resource-feasible if there exist vectors Ti ∈ R
R for all

positions i = 0, 1, . . . , p such that Ti ∈ [avi , bvi ] holds for all i = 0, 1, . . . , p and Ti−1 +
tvi−1,vi ≤ Ti holds for all i = 1, . . . , p.
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Assume that an arbitrary path P = (v0, v1, . . . , vp) is given. Checking whether P is
resource-feasible or not can be done by computing a minimal cumulative resource con-
sumption at each node along the path and validating these consumptions against the
upper bounds. For each node position i = 0, 1, . . . , p, a vector Ti in R

R can be computed
recursively from the lower bounds at the start node v0

T0 := av0 (1)

and from the minimal consumption along the path given by

Ti := max{avi , Ti−1 + tvi−1,vi} for all i ∈ {1, . . . , p}. (2)

The path P is resource-feasible if and only if Ti ≤ bi for all i ∈ {0, 1, . . . , p} defined by
(1) and (2). We associate to each resource-feasible path P = (v0, v1, . . . , vp) the unique
resource vector res(P ) = Tp computed by (1)–(2).

Using the preceding notation, the shortest path problem with resource constraints (SP-
PRC) consists of finding the set of all pareto-optimal resource vectors and a corresponding
set of resource-feasible paths starting at the source node s. Whenever there are cycles of
negative length for some resource r ∈ {1, . . . , R}, some pareto-optimal paths could contain
cycles. The existence of negative length cycles occurs naturally, for example, in the “cost”
resource when using the SPPRC as a subproblem in a column generation or Lagrangean
relaxation framework.

If cycles are not allowed in the solution to the SPPRC, then one needs to include cycle
elimination constraints, leading to the formulation of the elementary shortest path problem
with resource constraints (ESPPRC). In particular, integer feasibility of node partitioning
problems into several paths implies that the chosen subsets correspond to elementary paths
(e.g., VRPTW).

In this paper, we focus on the controlled introduction of cycle elimination constraints, by
specifying the minimum length k+1 of the allowed cycles in the solution. This defines the
shortest path problem with resource constraints and k-cycle elimination (SPPRC-k-cyc).
In problems that need elementary shortest paths as a part of the solution, two extreme
approaches are, on the one hand, solving ESPPRC subproblems and on the other hand,
solving SPPRC subproblems. Usually, lower bounds obtained with the former approach are
tighter than the ones obtained with the latter. These tighter lower bounds are expected to
lead to smaller branch-and-bound trees. Nonetheless, branching rules are needed to obtain
integer solutions in both cases. Moreover, the complexity of the ESPPRC limits the size of
the instances solvable in practice. We propose the SPPRC-k-cyc as a means to get better
lower bounds than SPPRC while keeping the computational effort tractable.

3 Pareto-Optimality and Useful Paths

Let F(u, v) be the set of all resource-feasible paths from a node u to a node v and S be the
set of all paths feasible with respect to cycle-elimination constraints, i.e. S = {all paths} for
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SPPRC, S = {elementary paths} for ESPPRC, and S = {k-cycle free paths} for SPPRC-
k-cyc. For a given path P ∈ S, we denote E(P ) the set of all possible extensions Q such
that (P,Q) ∈ S, i.e. E(P ) = {Q ∈ S : (P,Q) ∈ S}.

The SPPRC, SPPRC-k-cyc, and ESPPRC have been stated as the problems of finding
the set of all pareto-optimal resource vectors and corresponding resource-feasible paths in
S starting at the source node s. Note that a vector T ∈ R

R in a set is pareto-optimal if
no other vector S ∈ R

R from the set satisfies S ≤ T . The set of pareto-optimal resource
vectors at node v ∈ V is denoted as PO(v). Obviously, the set of solutions at node s
is PO(s) = {as}. The task of the SPPRC, SPPRC-k-cyc, or ESPPRC is to compute the
sets PO(v) for v ∈ V \ {s}. The corresponding set of pareto-optimal paths POP (v) is
given by POP (v) = {P ∈ S ∩ F(s, v) : res(P ) ∈ PO(v)}. Obviously, there can exist
more pareto-optimal paths than resource vectors, i.e. |POP (v)| ≥ |PO(v)|, but we need to
compute only one path for each pareto-optimal resource vector.

In the following, we will analyze the relation between PO(v), POP (v), and a set of
useful paths which need to be considered for constructing PO(v) in a (labeling) algorithm.
In order to construct the set of solutions PO(v), paths from the sets of solutions under
consideration at predecessor nodes of v can be extended according to (2). For efficiency
considerations, one should restrict this extension step to small subsets of paths at predeces-
sor nodes that will nonetheless produce all the pareto-optimal resource vectors at node v.
We will show that for solving SPPRC one can consider a single path from POP (v) for
each element of PO(v) while for solving SPPRC-k-cyc and ESPPRC other useful paths,
not necessarily in POP (v), also have to be considered.

Lemma 1 Let P1, . . . , Pt and P be paths in F(s, v) ∩ S. Let
(D) res(Pi) ≤ res(P ) for all i ∈ {1, . . . , t}
(E) E(P ) ⊆ E(P1) ∪ · · · ∪ E(Pt).

Let Q ∈ S be an arbitrary path ending at node w.

If P can be feasibly extended in direction to Q, i.e. (P,Q) ∈ F(s, w) ∩ S, then the
same holds for at least one Pi, i ∈ {1, . . . , t}, i.e. (P,Q) ∈ F(s, w) ∩ S, with res(Pi, Q) ≤
res(P,Q).

Lemma 1 implies that a path P fulfilling the above conditions is not useful and does not
need to be considered for constructing the sets PO(v) for any v ∈ V .

In the case of the SPPRC, the equality E(P ) = S holds for all paths P so that condi-
tion (E) is always true. For solving SPPRC, Lemma 1 can be interpreted in the following
way:

1. Consider only pareto-optimal paths.
2. For any set of pareto-optimal paths ending at the same node and having the same

resource vector, keep only one of these arbitrarily.
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One possible way to formalize the latter idea of choosing one path among paths with the
same resource vector is to restrict the ≤ relation between their resource vectors by an
acyclic dominance relation ≺dom comparing paths. For resolving the ambiguity, we can
devise any total order on paths, for example, by comparing their finite node sequences or
more efficiently, by attaching to each path a unique arbitrary number (an identifier “id”)
at path construction time. Using the latter idea, we have for two different paths P1 and
P2 either id(P1) < id(P2) or id(P1) > id(P2). For paths P1, P2 ∈ F(s, v) the relation
P1 ≺dom P2 holds iff res(P1) < res(P2) or (res(P1) = res(P2) and id(P1) < id(P2)).

In the SPPRC-k-cyc (resp. ESPPRC), the feasibility of extending a path depends on
two aspects, namely, the resource vector and the last k nodes (resp. all visited nodes) of
the path. Because of this latter aspect, given distinct paths P and Q with P ≺dom Q
ending at the same node, there could exist feasible extensions of Q that are not feasible
for P . To cover all feasible extensions E(Q) of Q, one needs a set {P1, . . . , Pl} of paths with
Pi ≺dom Q for all i ∈ {1, . . . , l}. This means that for each feasible extension of Q, there
has to be at least one path Pi which can be extended in the same way . Note that many of
these paths Pi could have identical resource vectors, even identical to res(Q). As long as
some feasible extensions of Q are not covered, Q cannot be discarded. Such a path Q could
also be used to cover feasible extensions of another path R for which res(Q) ≤ res(R).

For all cases (SPPRC, ESPPRC, SPPRC-k-cyc), we can now describe a set of paths
which have to be considered for constructing PO(v) at each node v ∈ V . This set of useful
paths is defined as

U(v) = {Q ∈ S ∩ F(s, v) : E(Q) �⊆
⋃

P∈S∩F(s,v):P≺domQ

E(P )}. (3)

For the SPPRC, the set U(v) contains exactly |PO(v)| different pareto-optimal paths
because

⋃
P∈S∩F(s,v):P≺domQ E(P ) is either S or ∅ depending on whether there exists a

path P with P ≺dom Q or not (note that the union over an empty index set is the empty
set).

One of the main contributions of this paper is to develop an efficient way of encoding
E(Q) and

⋃
P∈S∩F(s,v):P≺domQ E(P ) and to check inclusion among these sets. The labeling

algorithm for SPPRC – presented in the next section – based on the idea of useful paths
will end up with at least one path with pareto-optimal resource vector, i.e. one element
P ∈ POP (v) for each resource vector in PO(v). In addition to this we will show for
SPPRC-k-cyc that the maximum number of useful paths to consider, i.e. |U(v)|, grows by
a factor α(k) (independent of the size of the digraph) compared to |PO(v)| in the SPPRC.

4 Labels and Labeling Algorithms

This section presents the remaining concepts and notation that are needed to discuss the
literature on cycle elimination and our labeling algorithm.
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The concept of labels has been introduced to efficiently store a large number of different
paths and their corresponding resource vectors. Whenever two paths P1 and P2 share a
subset of arcs as a prefix, this common part is stored as a single chain of labels. For a
comprehensive introduction to the ideas of labeling algorithms for shortest path problems,
the reader is referred to (Ahuja et al., 1993) and for labeling algorithms for the SPPRC to
(Desrochers and Soumis, 1988; Powell and Chen, 1998).

Let P = (v0, v1, . . . , vp) be any resource-feasible path starting at the source node v0 = s.
Each subpath Pi = (v0, . . . , vi) for i = 0, . . . , p is also resource-feasible by definition.
Instead of storing all these paths separately, a label Li is associated to each path Pi.
A label L = L(P ) associated to a path P = (v0, v1, . . . , vp) ∈ F(s, vp) is consequently
defined as the resource vector res(P ) = Tp = (T 1

p , T
2
p , . . . , T

R
p ) ∈ R

R and (a link to) its
predecessor label corresponding to the subpath (v0, v1, . . . , vp−1). Since there is a one-to-
one correspondence between labels and paths, we write L = L(P ) (resp. P = P (L)) to
refer to corresponding label (path) and res(L), E(L), etc. instead of res(P ), E(P ). The last
node of the corresponding path P = P (L) is named the resident node of L and is denoted
by v(L) = vp. The predecessor node, when it exists, is denoted by pred(L) = vp−1. The
initial label L at the source node s corresponding to the path P = (s) of length 0 does not
have a predecessor node, and pred(L) is then defined as −.

In SPPRC labeling algorithms (see e.g. (Desrochers and Soumis, 1988; Powell and Chen,
1998)), new labels need to be produced from existing ones before being compared and either
being kept or discarded. Extending a label L resident at node vp = v(L) in direction to
node vp+1 ∈ V (resp. along the arc (vp, vp+1) ∈ A) means to check whether or not the
vector Tp+1 defined by (2) satisfies the upper bounds, i.e. the condition Tp+1 ≤ bvp+1 .

We use the fact that efficient labeling algorithms exist for solving the SPPRC to derive
an algorithm for the SPPRC-k-cyc. Because of our hypothesis that t1ij > 0, these algorithms
can use a label-setting approach and only extend pareto-optimal, or more generally useful,
labels. We assume that two algorithmic steps can be identified and isolated in the base
SPPRC algorithm:

1. Dominance rule: discard a label L if it can be proved that this label is not needed
to produce any pareto-optimal path at any node v ∈ V ;

2. Path extension step: produce a new path at node w from an existing pareto-optimal
resource-feasible path at a node v with (v, w) ∈ A, such that the new path is resource-
feasible.

The dominance rule is meant to be invoked from a general dominance algorithm, which
could be a naive quadratic all-pairs comparison algorithm or a more sophisticated multi-
dimensional divide-and-conquer algorithm as described in (Kung et al., 1975; Bentley,
1980). A template labeling algorithm for the SPPRC family of problems can be built as
follows.
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Algorithm 1 (* Template Labeling Algorithm for (E)SPPRC, SPPRC-k-cyc *)
1: (INPUT:)

Digraph (V,A) with resources R, resource windows [ai, bi], minimal consumptions tij , t1ij > 0.
2: (Initialization)

let U(v) := ∅ for all v ∈ V
3: let L := {L} be the set of unprocessed labels, with v(L) = s, res(L) = as and pred(L) = −.
4: let tmin := min(ij)∈A t1ij .
5: (Main Loop)

while L �= ∅

6: let v be a node associated to a label Lv ∈ L with res1(Lv) being minimum over all labels in
L.

7: identify a subset of labels Lv ⊂ L resident at node v with “small” resource res(L)1, i.e.
Lv := {L ∈ L : v(L) = v, res(L)1 < res(Lv) + tmin}.

8: set L := L \ Lv

9: (Dominance Algorithm)
apply a dominance algorithm to all labels resident at node v, i.e. to U(v) ∪ Lv

10: let U ′(v) be the subset of Lv that was not discarded when applying the dominance rule
within the dominance algorithm

11: let U(v) := U(v) ∪ U ′(v)
12: (Path Extension Step)

for each label L ∈ U ′(v)
13: produce feasible extensions L′ of L for each w ∈ V such that (P (L), w) ∈ F(s, w) ∩ S
14: add these feasible extensions L′ to L
15:(FILTER:)

extract the sets PO(v) of pareto-optimal resource vectors from {res(P ) : P ∈ U(v)} for all
v ∈ V

16:(OUTPUT:)
Sets of pareto-optimal labels corresponding to PO(v) for each node v ∈ V

The use of an intermediate set Lv of potentially permanent labels, made possible by the
hypothesis that t1ij > 0, allows batch processing of several labels in the dominance and
path extensions steps (see (Desrochers and Soumis, 1988) for better bucket criteria than
our expository use of tmin). The sets PO(v) can be extracted from U(v) by using any
vector dominance algorithm, as in the case of the plain SPPRC algorithm. By refining the
dominance rules to discard non-useful paths instead of all non-pareto-optimal paths and
by adapting the path extension step, the same algorithms solve the SPPRC, SPPRC-k-cyc
or ESPPRC.

The path extension step is easily modified to take into account the specificity of SPPRC-
k-cyc and ESPPRC. The feasibility criterion has to include the validation of cycle-elimi-
nation constraints. For the SPPRC-k-cyc, this is done by not extending a label L to nodes
identical to v(L) or any of the k − 1 predecessor nodes pred1(L), . . . predk−1(L). For the
ESPPRC, the label L cannot be extended to any of its predecessor nodes.
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The dominance rule needs to leave on each node v not only one pareto-optimal label
corresponding to each vector in PO(v) but also other useful labels that will have to be
extended to incident nodes. Section 5 presents the criteria for ESPPRC and for the special
case of SPPRC-2-cyc. Section 6 explains the details of dealing with k-cycle elimination for
general values of k ≥ 2.

5 A Review of Cycle Elimination

The dominance relation can be used to identify pareto-optimal paths when the resource
vectors of labels are distinct (as is the case when resource vectors are taken from a set).
In this case, labels that are dominated are not pareto-optimal. For the SPPRC, this
means that dominated labels can be discarded, since they correspond neither to useful
intermediate subpaths nor to final pareto-optimal paths. However, labels with identical
resource vectors might arise when extending several labels from predecessor nodes. In the
context of the SPPRC, only one arbitrary label with a given resource vector has to be
considered, because all such labels share the same feasible extensions. For the SPPRC-
k-cyc, we pointed out in Section 3 that many paths might be needed to cover all the
possible extensions of a single path. This means that dominated labels cannot be discarded
without considering their possible extensions. In particular, it is no longer true that we can
choose an arbitrary representative label for a given resource vector and discard the others.
Therefore, when considering cycle elimination, the dominance relation still identifies pareto-
optimal paths but fails to provide a criterion to eliminate useless intermediate subpaths.

In the first subsection, we propose a simple but inefficient dominance rule for k-cycle
elimination which groups labels according to the sequence of their k last nodes before
applying the usual elimination rule based on dominance. The next two subsections present
more efficient algorithms for specific values of k. If k ≥ |V |, then the SPPRC-k-cyc becomes
equivalent to the ESPPRC and Beasley and Christofides (Beasley and Christofides, 1989)
as well as Guéguen et al. (Guéguen et al., 1998) have proposed to handle cycle elimination
by encoding the already visited nodes as additional binary resources. If k = 2, Houck
et al. (Houck et al., 1980) provide refined elimination rules that allow to discard a label
if there are two dominating labels with different predecessors. Kohl and Larsen (Kohl,
1995; Larsen, 1999) extend these rules further by analyzing resource consumptions in the
neighborhood of each node.

5.1 Simple Dominance Rule for k-Cycle Elimination

A correct rule for using dominance in order to eliminate a label L is to ensure that the
dominating label Ldom has the same feasible extensions as L:

Let labels L and Ldom have identical predecessor vectors pred(L) = pred(Ldom)
and the same resident node v(L) = v(Ldom). Then the usual elimination crite-
rion for SPPRC based on dominance (Ldom ≺dom L) applies.
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This approach works because labels with identical predecessor vectors and the same
resident node share the same feasible extensions. But there is one important drawback
with such a simple approach: In the worst case, we expect the number of labels to grow
by a factor of O (nk−1) (for example, take a complete digraph (V,A) with all resource
consumptions equal to one and resource intervals [0, k]).

Efficient cycle elimination requires a reduction in the number of labels, which can be
obtained by allowing labels with different predecessor vectors to contribute parts of the
feasible extensions that are needed to eliminate a given label.

5.2 Dominance Rules for the Elementary SPPRC

For large values of k (i.e. k ≥ |V |), the SPPRC with k-cycle elimination becomes equivalent
to the ESPPRC. In this case, it is not necessary to store the predecessor nodes of a label
L as a sequence. Since it is not allowed to visit a node more than once, its position in the
vector pred(L) is irrelevant and pred(L) can be considered as a set. Then, labels can be
grouped according to their predecessor set and the usual elimination criterion for SPPRC
based on dominance applies to each group. This improves over the strategy presented in
the previous subsection because more labels are grouped together and all the permutations
of predecessor nodes being considered as identical.

Beasley and Christofides (Beasley and Christofides, 1989, page 384) model the ESPPRC
by defining one additional binary resource for each node in the graph. The minimum
resource consumption on an arc (i, j) ∈ A with respect to the additional resource j is 1
while the other minimum resource consumptions are set to 0. This approach allows to
solve the ESPPRC as an SPPRC with many resources. Instead of considering additional
resources, their approach can be interpreted as a reformulation of the elimination criterion
taking into account subsets of already visited nodes:

Let labels Ldom and L have predecessor sets satisfying pred(Ldom) ⊆ pred(L)
and the same resident node v(Ldom) = v(L). Then the usual elimination crite-
rion for SPPRC based on dominance (Ldom ≺dom L) applies.

Guéguen et al. (Guéguen et al., 1998) improve the idea of Beasley and Christofides
by a change in the point of view on the predecessor set pred(L). The predecessor set
pred(L) originally represents the “set of nodes which have been visited” by the path P (L).
An other interpretation is that pred(L) is the “set of nodes which cannot be visited any
more”. Their improvement is to look at the resource vector res(L) of a label L to identify
nodes which cannot be visited anymore (e.g. because of time window constraints and non-
negative travel times). These nodes are added to the set pred(L). As a result, the usual
elimination criterion for SPPRC can eliminate more labels.

5.3 Enhanced Dominance Rules for 2-Cycle Elimination

The SPPRC with 2-cycle elimination has been first studied by Houck et al. (Houck et al.,
1980) in the context of solving the traveling salesman problem. The presentation of this
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section is taken from (Kohl, 1995; Larsen, 1999), which covers and extends the label
elimination rules of Houck et al.

The rules are sensitive to the occurrence of labels with identical resource vectors. The
ambiguity resulting from having both L1 ≺dom L2 and L2 ≺dom L1 for two labels L1 and
L2 with the same resource vector res(L1) = res(L2) can be avoided by using the same
strategy as described in Section 3.

The following three definitions are the key elements for the 2-cycle case.

• A label Ldom with resource vector (T 1
dom, . . . , T

R
dom) is called strongly dominant if it

is not dominated and at least one of its resources r∗ ∈ {1, . . . , R} satisfies

T r∗
dom + tr

∗
v(Ldom),pred(Ldom) > br

∗
pred(Ldom). (4)

The inequality (4) means that Ldom cannot be extended to its predecessor node. As
a consequence, any label L dominated by a strongly-dominant label Ldom cannot be
extended to pred(Ldom) and can therefore be discarded.

• A label Ldom is called semi-strongly dominant if it is not dominated and it is not
strongly dominant.
Semi-strongly dominant labels L have the potential of being extended to the second
node v = v(L) of a 2-cycle w − v − w.

• A label L is called weakly dominant if it is only dominated by semi-strongly dominant
labels, these semi-strongly dominant labels Ldom

1 , . . . , Ldom
p have the same predecessor

node pred(Ldom
1 ) = · · · = pred(Ldom

p ) and the predecessor of L is different, i.e.
pred(L) �= pred(Ldom

1 ).

All labels which are neither strongly dominant nor semi-strongly dominant nor weakly
dominant can be discarded.

A weakly dominant label is not allowed to be discarded. Instead it has to be extended
at least to the predecessor node of its dominating labels. Efficient algorithms for SPPRC-
2-cyc only extend weakly dominant labels to the predecessor node of its dominating la-
bels, although this is not a logical requirement. For further details about implementing a
SPPRC-2-cyc algorithm, the reader is referred to (Kohl, 1995; Larsen, 1999).

6 Dominance for an SPPRC-k-cyc Labeling Algorithm

As pointed out in Section 4, the main building blocks of a labeling algorithm are the
path extension step and the dominance rule, regardless of the problem at hand, SPPRC,
SPPRC-k-cyc or ESPPRC. In this section, we focus on the dominance aspects for SPPRC-
k-cyc for a given value of k ≥ 2. We first propose an efficient encoding of each set E(P ) of
possible extensions and of unions E(P1)∪ · · · ∪E(Pt) of covered extensions. We then derive
worst-case bounds on the size of such an encoding and on the number of useful paths with
same resource vectors that might be kept at each node.
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6.1 Encoding the Possible Extensions by Hole Sets

It is possible to encode efficiently (possibly infinite) sets of paths for which a finite set
of positions are fixed. We name set form such a set of paths with some positions being
assigned to fixed nodes. A set form can be encoded as a single finite vector s of elements
v ∈ V ∪ {·}, with the meaning that this vector represents all paths Q ∈ S whose ith node
is v if fi = v ∈ V .

For a label L corresponding to a path P = P (L) ∈ S ∩ F(s, v) the following property
holds: Q ∈ E(P ) if and only if Q = (v1, . . . , vk, . . . , vq) ∈ S and (v1, . . . , vk) ∈ E(P ).
Therefore, the relevant information of paths Q ∈ E(P ) can be encoded by only considering
the first k nodes of Q. By taking the complement of E(P ) with respect to S, we can
encode E(P ) as the implicit complement of a finite union of set forms, each set form being
encoded as a vector of length k. We name self-hole set of the path P the finite union H(P )
of set forms identified by the set of paths Q which, when appended to P , produce a
path (P,Q) �∈ S infeasible with respect to k-cycle elimination constraints.

As a 4-cycle elimination example, a label L with last 4 nodes
(pred3(L), pred2(L), pred1(L), v(P )) = (a, b, c, v) cannot be extended to any
path Q ∈ H(L) included in one of the following set forms: (v, ·, ·, ·), (·, v, ·, ·), (·, ·, v, ·),
(·, ·, ·, v), (c, ·, ·, ·), (·, c, ·, ·), (·, ·, c, ·), (b, ·, ·, ·), (·, b, ·, ·), (a, ·, ·, ·).

The representation of H(L) as the union of set forms is quadratic in k, i.e. up to(
(k+1)

2

)
= k(k + 1)/2 different set forms are necessary. Of course, for a label L with less

than k predecessors (i.e. predk(L) = −), H(L) needs fewer set forms. Also, a set form can
be discarded from the representation of H(L) if it corresponds to a set of paths that is
already included by another set form in H(L), e.g. (a, ·, b) encodes a subset of (a, ·, ·) and
can therefore be discarded.

Let L be a label resident at node v and let L1, . . . , Lt be a collection of labels all resident
at the same node v = v(Li) for which Li ≺dom L. Lemma 1 tells that L does not need to
be considered for constructing the set PO(u) for any u ∈ V if all its possible extensions are
covered by the union of the possible extensions of labels Li, i ∈ {1, . . . , t}. The existence
of a set of t labels satisfying the above criterion implies that the union can also be taken
over all the labels Li ≺dom L, i.e. the specific subset of t labels is irrelevant to the validity
of the lemma. From de Morgan’s law it follows that

E(L) ⊆
⋃

Li≺domL

E(Li) ⇐⇒
⋂

Li≺domL

H(Li) ⊆ H(L).

We can therefore implement the dominance criterion defined by Lemma 1 using our self-
hole sets, for which we have to provide the implementation of the intersection and subset
operations.
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6.2 Intersection of Self-Hole Sets

In this section, we present an algorithm to compute the intersection of two collections of
set forms {s1, . . . , sp} and {t1, . . . , tq}, corresponding to the intersection of the self-hole
sets associated to two labels. Its complexity (with respect to time and space) is bounded
by O (kpq). We take care not to keep in the resulting collection any set form that explicitly
forms a k-cycle.

We recommend to store each hole set as a list of set forms. The check whether a set
form s = (s1, . . . , sk) is included in the set form t = (t1, . . . , tk) or not can be performed in
O (k) time. For each position i = 1, . . . , k the condition ti ∈ {·, si} must be satisfied. E.g.,
(·b · acd) ⊆ (·b · · · d) but (·b · acd) �⊆ (·b · ·ad) and (·b · acd) �⊆ (·b · ecd).

The intersection s∩ t of two set forms s = (s1, . . . , sk) and t = (t1, . . . , tk) can either be
the empty set ∅ or a new set form u = (u1, . . . , uk). Both cases can be computed in O (k)
amortized time. The subtle problem is to identify a k-cycle in O (k) time, i.e. identical
nodes �= · at different positions in s and t resulting in s ∩ t = ∅. Therefore, a field f [ ]
indexed by the characters in V with values {0, 1} has to be initialized once with f [w] := 0
for all w ∈ V . For each position i = 1, . . . , k three different cases have to be considered.
Firstly, if {si, ti} = {w, ·} for a node w ∈ V then set ui := w and invert f [w] := 1− f [w].
If the result is f [w] = 0 then a k-cycle is found and s ∩ t = ∅. The two other cases are
ui := · if {si, ti} = {·} and s ∩ t = ∅ if · �= si �= ti �= ·. After the computation of s ∩ t one
has to reset the field f [ ] by setting f [si] := 0 and f [ti] := 0 for each i ∈ {1, . . . , k}. The
overall complexity of h intersection operations is O (|V |+ h · k), i.e. O (k) amortized time
for a single intersection operation. Note further that the resulting intersection u := s ∩ t
is the empty set if there exists a position i ∈ {1, . . . , k} with (ui, ui+1) /∈ A. If the digraph
is represented by an adjacency matrix this check can be performed in constant time; for a
representation with adjacency lists, the check requires O (|V |) effort.

The following algorithm for computing the intersection of hole sets consists of three
blocks: one to identify set forms in different hole sets including each other, a second to
perform the intersection on all remaining pairs, and a third to check for inclusion in the
resulting collection of set forms.

Algorithm 2 (* Intersection of hole sets *)
1: (INPUT:) 2 hole sets encoded as two collections {s1, . . . , sp} and {t1, . . . , tq} of set forms.
2: (Initialization)

let H1 := {s1, . . . , sp}, H2 := {t1, . . . , tq}, result := ∅.
3: (Check for inclusion in input sets)

for all s ∈ H1 and all t ∈ H2 do
4: if s ⊆ t (resp. t ⊆ s) then
5: let result := result ∪ {s} (resp. result := result ∪ {t}).
6: let H1 := H1 \ {s} (resp. H2 := H2 \ {t}).
7: (Compute intersection)

for all s ∈ H1 and all t ∈ H2 do
8: if s ∩ t �= ∅ then
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9: let result := result ∪ {s ∩ t}.
10:(Check for inclusion in result set)

for all {s, t} ⊆ result, s �= t do
11: if s ⊆ t (resp. t ⊆ s) then
12: let result := result \ {s} (resp. result := result \ {t}).
13:(OUTPUT:) result.

The steps 3–6 are included for the purpose of accelerating the subsequent steps, i.e. to
insert fewer set forms s and t into the preliminary result set with s ⊆ t. In both cases (with
or without the steps 3–6), the overall complexity of Algorithm 2 is bounded by O (k · p · q).

Computing the intersection of more than two hole sets can be done iteratively. In the
course of the dominance step of Algorithm 1, the result of these intersections needs to be
“accumulated” separately for each potentially discarded label. We define Hrun(L) as the
running-hole set of label L, which starts as S and is reduced by intersection with each
self-hole set H(Li) of each label Li ≺dom L considered during the dominance step. Using
running hole sets, a label L can be discarded as soon as Hrun(L) ⊆ H(L).

Let Hrun(L) = {s1, . . . , sp} be the current running-hole set of label L and H(L) =
{t1, . . . , tq} be its self-hole set. Checking whether Hrun(L) ⊆ H(L) holds can be performed
using a one-by-one subset comparison of set forms si with the set forms tj .

It is easy to see that there exists a more efficient way of checking Hrun(L) ⊆ H(L).
The running-hole set of a label L just after its creation is represented by the single set
form (· · · · ·). Since H(L) does not change in the course of the algorithm, the check for
si ⊆ tj has to be performed only when set forms si of Hrun(L) are created or modified.
Whenever we find si ⊆ tj , the set form si is obviously included in H(L). Furthermore, any
intersection operation undertaken to modify Hrun(L) can only replace si by one or several
subsets of si or eliminate si. In these cases, the result of the intersection is still a subset
of Hrun(L). Therefore, set forms s of Hrun(L) with s ⊆ H(L) can be eliminated. This
processing, i.e. to check a set form s of Hrun(L) directly after its creation and possibly
eliminating it, creates a modified running-hole set Hmod−run(L) = Hrun \H(L).

As a result, checking Hrun(L) ⊆ H(L) reduces to checking Hmod−run(L) = ∅. More-
over, all the labels resident at a given node v will have set forms forbidding the occurrence
of node v at any of the next k positions, and that node v is the only node that forces us to
encode set forms using k components. By using Hmod−run(L) to accumulate intersections
of hole sets, we can therefore dispense from encoding any set form related to the resident
node, and we can use vectors of only k − 1 elements to encode all the relevant dominance
information. For the remaining of the paper, we will use this quadratic encoding with only
k(k − 1)/2 =

(
k
2

)
set forms.

For example, in the case of k = 3, ifH(L1) = {(a·), (b·), (·b)} andH(L2) = {(c·), (d·), (·d)}
with four different nodes a, b, c, d ∈ V , then H(L1) ∩H(L2) = {(ad), (bd), (cb), (db)}. Ta-
ble 1 shows all different cases of intersections of the self-hole sets of two labels L1 and L2
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depending on the predecessor vectors pred(L1) and pred(L2). It is evident that for k-cycle
elimination with k > 3 the number of different cases grows rapidly.

6.3 Upper Bound on the Number of Set Forms in an Intersection of Hole
Sets

The following theorem is a key result for bounding the increase in complexity that comes
from the adjunction of k-cycle elimination constraints to SPPRC. We hereafter use the
fact that only k − 1 elements are necessary to encode set forms. In order to simplify the
notation we define k̄ := k − 1 and K̄ := {1, 2, . . . , k − 1}.

Theorem 1 The maximum number of different set forms needed to represent any inter-
section of hole sets H(L1)∩H(L2)∩· · ·∩H(Lp) of any set of p labels L1, . . . , Lp is (k−1)!2.
This bound is tight in the sense that one can construct a set of k− 1 labels {L1, . . . , Lk−1}
needing (k − 1)!2 different set forms to describe the intersection of their hole sets.

Proof: First of all, it is helpful to define the type I(s) of an arbitrary set form
s = (s1, . . . , sk̄) ∈ (V ∪ {·})k̄:

I(s) := {i ∈ K̄ : si = ·} ⊆ K̄.

[For example, I(·a · c) = {1, 3} and I(adcb) = ∅.]
In the following, we want to describe the maximum number of different set forms
that can be generated from a given set form s by intersecting it with several (ar-
bitrarily chosen) hole sets H(L1), H(L2), . . . . It is obvious that this maximum
number of different set forms created from s is determined by the type I = I(s) of
s. Therefore, we denote by nk(I) the maximum number of different set forms which
can be generated from a set form of type I by intersection with arbitrarily chosen
holes sets. nk is defined on all subsets I ⊆ K̄. The following recurrences are valid
for nk:

nk(∅) = 1;

nk(I) =
∑
i∈I

(k − i) · nk(I \ {i}) for all ∅ �= I ⊆ K̄.

The first equation is trivial. The second equation is implied by the intersection
operation, i.e. at the ith position of the intersection, one can only place those
predecessor predj(L) having j ≥ i. For each position i, there are k − i different
possibilities. [For example, when intersecting s = (·b · a) with a hole set H(L)
then there are k − 1 = 4 possibilities to place predecessors of L at position 1, and
k − 3 = 2 possibilities to place them at position 3.]
This recurrence is solved by

nk(I) = |I|! ·
∏
i∈I

(k − i). (5)
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The following proof is by induction on the cardinality of I. For I = ∅, the for-
mula (5) gives nk(∅) = 1 which is correct. Now assume that (5) is true for all
subsets of K̄ with cardinality |I| − 1. It follows

nk(I) =
∑
i∈I

((k − i) · nk(I \ {i})) =
∑
i∈I


(k − i) ·


(|I| − 1)! ·

∏
j∈I\{i}

(k − j)







=

(∑
i∈I

(|I| − 1)!

)
·


(k − i)

∏
j∈I\{i}

(k − j)


 = |I|! ·


∏

j∈I

(k − j)


 .

This proves (5). Especially, we get nk(K̄) = k̄! · k̄! = k̄!2. This means that we can
generate at most k̄!2 different set forms starting from the trivial set form (· · · · ·) by
intersecting with several hole sets H(L1), H(L2), . . . .
To show that the bound k̄!2 is tight, we can choose any k̄ different labels L1, . . . , Lk̄

and predecessor vectors pred(Li) with completely disjoint node sets, i.e. k̄2 different
nodes predj(Li) for i, j ∈ {1, . . . , k̄}. The intersection H(L1)∩H(L2)∩ · · · ∩H(Lk̄)
consists of exactly k̄!2 different set forms s and each one is of type I(s) = ∅. �

6.4 Upper bound on the Number of Labels with Identical Resource Vec-
tors

In this section, we show that the contribution of a self-hole set to a running-hole set cannot
be split in arbitrarily fine pieces. There exists an upper bound α(k) on the number of labels
which can properly contribute to the intersections of hole sets that are computed as the
running-hole sets of dominated labels. In particular, the number of useful labels with
identical resource vector is also bounded by α(k).

Given any collection of labels L1, . . . , Lq with identical resource vectors res = res(Li)
and v = v(Li), i = 1, . . . , q, this collection can be (uniquely) sorted according to the
adopted resource-dominance rule, i.e.

L1 ≺dom L2 ≺dom . . . ≺dom Lq,

and any other label Ldom dominating Li will also dominate Li+1. Therefore, their running-
hole sets fulfill

Hrun(L1) ⊇ Hrun(L2) ⊇ · · · ⊇ Hrun(Lq). (6)

By the definition of the running-hole set, we see that Hrun(Li+1) is identical to
H(Li) ∩ Hrun(Li). Therefore, the condition Hrun(Li+1) = Hrun(Li) is equivalent to
H(Li) ∩ Hrun(Li) = Hrun(Li), i.e. Hrun(Li) ⊆ H(Li). We see that Li can be discarded
if Hrun(Li) = Hrun(Li+1), with i < q. Equivalently, instead of Hrun(Li+1) we might con-
sider the intersection of self-hole sets of all dominating labels with H(Li+1). Therefore, Lt

can be discarded if It = It−1 where It is defined by It := Hrun(L1) ∩
(⋂t

i=1H(Li)
)
.
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The preceding analysis shows that we can remove some of the labels L1, . . . , Lq with
identical resource vectors within the chain (6). Since Hrun(Lj) and Hrun(Lj+1) (or equiva-
lently Ij−1 and Ij) differ only by a single intersection with one self-hole set (i.e. H(Lj)), we
will study longest chains of intersections of running-hole sets with self-hole sets. Clearly,
the maximum length of a proper chain of intersections of hole sets bounds the maximum
number of labels with identical resource vectors that we have to consider.

Theorem 2 Let L1, L2 . . . , Ls be labels with self-hole sets H(L1), H(L2), . . . , H(Lq) with
the property that their intersections

It :=
t⋂

i=1

H(Li)

for t = 1, . . . , q defines a properly decreasing chain I1 ⊃ I2 ⊃ · · · ⊃ Iq. Then, the length q
of this chain is bounded by a number α(k) which depends on k but not on the size of the
graph or the width of the resource windows.

The bound α(k) = k · (k − 1)!2 is a valid upper bound. This bound α(k) is not always
tight.

Proof: We assume that I1 ⊃ I2 ⊃ · · · ⊃ Iq is a decreasing chain of hole sets con-
structed by intersection operations with some self-hole setsH(L1), H(L2), . . . , H(Lq).
Consecutive intersections Ij−1 and Ij are different and their difference is caused by
a single intersection with the self-hole set H(Lj), i.e. Ij = Ij−1 ∩H(Lj).
By Theorem 1, each intersection Ij consists of rj different set forms s1j , . . . , s

rj

j with
1 ≤ rj ≤ (k − 1)!2. Therefore, a maximum of (k − 1)!2 different set forms each
having (k−1) components gives rise to (k−1)(k−1)!2 different components within
these set forms. The intersection operation Ij−1 ∩H(Lj) performs modifications on
the set forms s1j−1, . . . , s

rj−1

j−1 of Ij−1 to compute the set forms of Ij . It
(i) either generates one or more additional set forms which are constructed from
existing set forms of Ij−1 by replacing a component with entry “·” by a value v ∈ V ,
(ii) or removes one or more set forms of Ij−1.
The number of operations of type (i) is, therefore, bounded by the maximum num-
ber of components, i.e. (k− 1)(k− 1)!2, while the number of operations of type (ii)
is obviously bounded by the maximum number of different set forms, i.e. (k − 1)!2.
Each intersection performs at least one operation of type (i) or (ii). Altogether, this
yields an upper bound of α(k) = (k − 1)(k − 1)!2 + (k − 1)!2 = k(k − 1)!2. �

Remark 1 For the cases of k = 2, 3, we can show that the bounds α′(2) = 2 and α′(3) = 6
are tight. The bound for k = 3 has been computed using an enumeration procedure to
compute all possible chains of intersection of self-hole sets of labels. For the general case
of k > 4, we conjecture that α′(k) = k! is a valid and tight upper bound. It is easy to
construct chains of labels with different predecessor vectors which generate a chain of k!
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properly decreasing intersections. So, if α′(k) = k! is a valid bound, then it is also tight. A
proof of this conjecture is still an open problem.

There exist examples showing that, by ordering the labels L1, . . . , Lt with identical
resource vectors in different ways, one might obtain sets of undominated labels of different
cardinality. However, we do not try to adapt the ordering (find a good permutation) of
labels with identical resource vectors to produce a small or minimum cardinality label sets,
for the following two reasons. On one hand, we might have to solve a set-covering problem
to find one label set of minimum cardinality. On the other hand, performing operations
of complexity Ω(n log n) (where n is the number of labels) is already computationally too
costly.

6.5 Strongly, Semi-Strongly and Weakly Dominant Labels in k-Cycle
Elimination

Kohl’s definitions of (semi-)strongly and weakly dominant labels from Subsection 5.3 can
be extended to the k-cycle elimination case with k ≥ 3. The extension is based on a
modification of the definition of the self-hole set H(L) of a label L.

A set form s = (· · · · ·w · · · · ·) in H(L) represents a set of forbidden extensions of label L.
The extensions of label L along each path included in s would involve a minimum resource
consumption at the terminal node w. The idea of strongly dominant labels is that their
resource consumption along all paths of the form s is too big, i.e. the extension does not
result in a new resource-feasible label. In this case, the set form s is not necessary to
represent H(L) because neither L nor a label dominated by L can be feasibly extended
along any path in s.

To make the idea and notation more precise, let the set form s = s(q, w) of H(L) have
the entry w ∈ V at position q, 1 ≤ q ≤ k̄. Let the label L be resident at node v, let
Q = (w1, . . . , wq) be an arbitrary path of length q − 1 with end node wq = w and let
P (L,Q) = (P (L), Q) be the concatenation of the path corresponding to label L and path
Q. Furthermore, let r∗ ∈ {1, . . . , R} be any resource and T r∗

P (L,Q) be the minimum resource
consumption of path P (L,Q) computed by (2). If for a set form s = s(q, w)

min{T r∗
P (L,Q) : Q path of length q − 1 with end node w} > br

∗
w (7)

then there exist no feasible extensions of L along paths included in s. As a consequence,
s is unnecessary, i.e. s might be removed from the description of H(L). Let Hmod−self (L)
denote the modified self-hole set of label L constructed from the self-hole set H(L) by
removing all unnecessary set forms.

For the case k = 2, the above inequality (7) has a simplified formulation given by condi-
tion (4). In general, the condition (7) involves a huge set of paths and it is computationally
too costly to be checked. Instead of this, we propose the use of a weaker condition. For
resources r∗ with non-decreasing resource consumption tr

∗
ij > 0, we a priori compute the
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minimum resource consumption t̄r
∗

vw between each pair of nodes v, w (the nodes v, w are
not necessarily connected through an arc (v, w) ∈ A). Instead of condition (7), we check
res(L)r∗ + t̄r

∗
vw > br

∗
w .

Summing up, the dominance rules of this section and the modification of the self-hole
set Hmod−self (L) allow the following interpretations:

• Strongly dominant labels Ldom are those undominated labels having
Hmod−self (Ldom) = ∅. If any other label L is dominated by a strongly-dominant
label Ldom it can be discarded (because Hrun(L) ⊆ Hmod−self (Ldom) = ∅ implies
Hrun(L) ⊆ H(L)).

• Semi-strongly dominant labels Ldom are those undominated labels which fulfill
Hmod−self (Ldom) �= ∅.

• Weakly dominant labels L are dominated labels with Hrun(L) �⊆ Hmod−self (L).

From the dominance rules of Section 6.1 it follows that all other labels, neither strongly
dominant nor semi-strongly dominant nor weakly dominant, can be discarded.

7 Extensions

In this short section, we present three possible extensions to our definition of SPPRC-k-cyc,
that can be accommodated with few modifications to our algorithm: Non-positive resource
consumptions t1ij ≤ 0, the generalization of the resource update T i := max{avi , Ti−1 +
tvi−1,vi} by resource extension functions and task cycle elimination with sequences of tasks
associated to nodes and arcs.

7.1 Non-positive Resource Consumptions

The assumption that all resource consumptions t1ij for (i, j) ∈ A are strictly positive (see
p. 2) enables the use of a label setting algorithm for treating labels. In fact, the weaker
condition that tij �lex 0 is readily supported by our algorithm. This hypothesis allows
label setting algorithms to process labels in increasing order. In our labeling algorithm,
Algorithm 1, the choice of labels with a “small” resource consumption res(L)1 under all
unprocessed labels L with the above assumption guarantees that all labels which are ex-
tended (step 12–14) are never identified as discardable in later iterations. In essence, the
defining property of label setting algorithms is that those labels chosen to be extended are
kept without modification until the end of the labeling process.

The general ideas of label setting as well as label correcting algorithms are, for instance,
explained in the book (Ahuja et al., 1993). Label correcting algorithms are applicable to
shortest path instances where negative arc lengths occur. The presence of non-positive
resource consumptions trij for all resources r = 1, . . . , R does not affect the validity of
the dominance rules (presented in Section 6). The existence of negative t1ij means that the
strategy of treating labels in a strictly increasing order has to be replaced by a more flexible
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label processing strategy. The well-known Bellman-Ford label correcting algorithms for the
1-dimensional SPP adds newly generated labels to the end of a queue (data-structure) and
expands labels L one-by-one starting with the label currently at the top of the queue.
A more sophisticated generalized label correcting strategy for the SPPRC has been used
in (Powell and Chen, 1998) and is directly applicable for the SPPRC-k-cyc label processing.

7.2 Resource Extension Functions

(Desaulniers et al., 1998) point out that resource extension functions (REF) allow a more
flexible modeling of the dependencies between resource variables T r

i than that is possible
with the simple update formula (2), i.e. Tj := max{aj , Ti + tij}, when arc (i, j) is used.
Recall that resource vectors at node i and j are denoted by Ti = (T 1

i , . . . , T
R
i ) resp. Tj =

(T 1
j , . . . , T

R
j ). Desaulniers et al. discuss REF as functions of the form f r

ij(Ti) defined for
each arc (i, j) ∈ A and each resource r = 1, . . . , R. REF may be linear or nonlinear. The
resource update formula (2) is then replaced by

T r
j ≥ f r

ij(Ti) = f r
ij(T

1
i , . . . , T

R
i ) (8)

which means that the resource variable T r
j might depend on the values of all the resource

variables of node i. Practically relevant examples include load dependent cost functions
(Dumas et al., 1991), the VRP(TW) with simultaneous pickups and deliveries (Min, 1989),
and various applications in airline and crew scheduling.

Furthermore, it is also shown in (Desaulniers et al., 1998) that for the case of non-
decreasing REF (including all resources, in particular the cost resource) the dominance
principle of SPPRC remains valid. For two given resource vectors Ti ≤ T ′

i at node i, the
extension along arc (i, j), computed by (8), yields two resource vectors Tj and T ′

j with
Tj ≤ T ′

j .

In this sense, the dominance rules of Section 6 and the SPPRC-k-cyc algorithm are fully
compatible with the use of non-decreasing REF.

7.3 k-Cycle Elimination for Task Sequences associated to Nodes and
Arcs

Let T be a set of tasks. Associate a sequence Si resp. Sij of tasks to each node i ∈ V
resp. arc (i, j) ∈ A. Node cycle elimination is just a special case of task cycle elimination
where the task set coincides with the node set and each sequence Si only consists of node i,
i.e. T = V , Si = (i) for all i ∈ V , and Sij = () for all (i, j) ∈ A. For each path P , the
concatenation of the node and arc task sequences naturally defines a corresponding task
sequence S(P ). The SPPRC with task-k-cycle elimination consists of finding the set of
all pareto-optimal resource vectors res(P ) paths P without sequences of tasks containing
k-cycles.

Only slight modifications of the definitions given in Section 6 are necessary to handle
this extension. The set E(P ) of possible extensions of path P has to take task sequences
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into account. The self-hole set H(L) of a label L resident at node v has to consider the
last k tasks implied by the task sequences associated to the predecessor arcs and nodes of
P (L). All labels resident at node v share the last |Sv| tasks. Because of this, the encoding
of set forms needs to use vectors of length k−|Sv|, compared to k̄ = k−1 when node cycles
are forbidden. Finally, the extension step of the SPPRC-k-cyc algorithm has to check for
k-cycles of tasks instead of nodes.

The main scope of application for eliminating k-cycles of tasks are aggregated networks
and discretized networks. In the first case, parts of an original network Go = (Vo, Ao) are
shrunken together yielding a smaller, aggregated network G = (V,A). A single node of G
might correspond to a set of nodes and arcs in Go and, therefore, node-cycle elimination
in Go is equivalent with task-cycle elimination in G.

In a discretized network, several nodes i1, . . . , ip ∈ copy(i) correspond to a single node i
of an original network. For instance, for the discretization of the SPPTW, nodes i ∈ V are
duplicated into p = bi −ai+1 nodes according to the time windows [ai, bi] to represent the
distinct points in the resource space. In order to eliminate k-cycles, the task set T consists
of the nodes of the original network and each node ip ∈ copy(i) of the discretized network
has the associated task sequence Sip = (i).

8 Application: Lower Bounds for Vehicle Routing Problems
with Side Constraints

This section illustrates the application of the new SPPRC-k-cyc algorithm as a subproblem
solver within a branch-and-price algorithm. One of the most prominent vehicle routing
problems with side constraints is the VRPTW. Solomon’s benchmark VRPTW instances
(Solomon, 1987) have attracted numerous researchers to develop both exact and heuristic
solution procedures. For a comprehensive review of VRPTW heuristics see e.g. (Rochat
and Taillard, 1995; Chiang and Russell, 1997; Gambardella et al., 1999; Taillard et al.,
2001).

For our implementation of improving lower bounds in exact branch and price methods
for the VRPTW, we have chosen the same setup as (Kohl, 1995; Larsen, 1999; Rich, 1999;
Kohl et al., 1999; Kallehauge et al., 2001), i.e. 168 instances with 25, 50, and 100 customers
where time and distances are rounded with precision 0.1. The objective is to minimize the
total cost, i.e. the traveled distance. We use several standard techniques to improve a
standard branch-and-price approach for VRPTW which have been published, e.g. pre-
processing (see (Desrochers et al., 1992)), 2-path cuts (see (Kohl, 1995; Kohl et al., 1999)),
and nearest neighbor networks for partial pricing (see (Gamache et al., 1999), in (Larsen,
1999) called limited subsequence).

In the following short computational analysis, the values lb1(k) for k ≥ 2 describe the
lower bound of the VRPTW instance given by the solution of the LP-relaxation of the
master program when k-cycle elimination is applied (i.e. the solution of the root node of
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the search tree). The value lb1(1) is the lower bound implied by solving the subproblem as
a plain SPPRC. The integrality gap [lb1(1), opt] is given with respect to this value and the
optimal solution opt. After adding the 2-path cutting planes, the improved lower bound is
denoted as lb2(k) (cutting planes are only added to the restricted master program at the
root node).

The Figures 3(a)–(c) depict the increasing lower bounds for three selected instances
(R204.25, R209.50, RC205.100). For these instances, k-cycle elimination for k ≥ 3 obvi-
ously helps to drastically increase the lower bound. In those cases it leads to significantly
smaller branch and bound search trees. For instance, the 50 customer problem r209.50
which was previously unsolved with 2-cycle elimination is now solved by 3-cycle elimina-
tion with a search tree of 59 nodes in 705 seconds. With 4-cycle elimination the same
problem instance has a reduced search tree with 6 nodes and can be solved within 142 sec-
onds CPU time. These and all other computations (see Table 2) were performed on a
standard PC with Intel Pentium III processor, 600MHz with 512MB main memory. The
algorithm is coded in C++ and the callable library of CPLEX 7.0 (CPLEX, 1997) is used
to solve the restricted master problem (RMP).

These results show that incorporating k-cycle elimination into the subproblem solution
procedure is a promising and attractive method for attacking well-known hard instances
of vehicle routing problems with side constraints. A detailed analysis of the impact of
k-cycle elimination for different values of k ≥ 2 and for all Solomon VRPTW instances as
well as other VRP is beyond the scope of this paper. With the methods at hand, more
than 15 previously unsolved VRPTW instances of the Solomon benchmark set (with 25, 50
and 100 customers) could be solved to proven optimality, see Table 2. We refer interested
readers to the technical reports (Irnich and Villeneuve, 2003) and (Irnich, 2003)) which
address the detailed analysis and further issue of improving branch and price algorithms
for vehicle routing problems with side constraints.

9 Conclusions

In this paper, we have presented variants of the shortest path problem with resource
constraints which incorporate cycle-breaking rules to eliminate cycles of length k or less
for different values of k ≥ 2. The contribution of this paper is the development and analysis
of effective, pseudo-polynomial labeling algorithms for solving the corresponding SPPRC-
k-cyc problems. Solving SPPRC-k-cyc is not only interesting from a theoretical point of
view. It has been shown that the controlled introduction of cycle elimination constraints is
sometimes a key technique to improve lower bounds within price-directive decomposition
approaches for constrained vehicle routing and scheduling problems where the subproblem
consists of finding negative length (elementary) paths. Increasing k, i.e., specifying the
minimum length k + 1 of the allowed cycles in the subproblem solution, produces tighter
lower bounds and these are expected to lead to smaller branch-and-bound trees. We do not
propose cycle-elimination as a general means to solve all vehicle routing problems faster
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but as a means to solve hard instances (e.g. with wide time windows) that tend to have
many cycles in their LP-relaxation. The computational results have proven that there
is clearly a trade-off between avoiding longer cycles within each branch-and-bound node
and solving more tree nodes. In many VRPTW cases, 3-cycle elimination and/or 4-cycle
elimination are preferable against solving plain SPPRC, SPPRC-2-cyc, and SPPRC-k-cyc
with higher values of k > 4. As a result, more than fifteen previously unsolved instances of
Solomon’s VRPTW benchmark problems with 25, 50 and 100 customers could be solved
to proven optimality.

All practical success of applying SPPRC-k-cyc is based on the appropriate definition
of dominance rules among labels. In contrast to solving plain SPPRC and SPPRC-2-cyc,
the general case requires different and refined dominance rules. It has been pointed out
that dominance based on the comparison of resource vectors is not sufficient to directly
eliminate a resource-dominated label. The new dominance rule among labels is based
on the concept of possible extensions. Special attention has to be given to the case of
labels with identical resource vectors. In order to resolve ambiguity, we have proposed to
refine the dominance relation as well as the lexicographical order relation to make them
non-reflexive and cycle-free.

The worst-case complexity of the new dominance rule increases faster than exponen-
tially with k, but most applications of SPPRC-k-cyc are expected to use small fixed values
of k. In the context of a fixed value of k, the new dominance rule gives rise to pseudo-
polynomial dominance algorithms which are iteratively called within the SPPRC-k-cyc
labeling algorithm. No matter the dominance algorithm that uses this new rule, the re-
sulting SPPRC-k-cyc algorithms have the following remarkable property: The worst-case
complexity of solving SPPRC-k-cyc for a fixed network with different values of k grows
by a factor α(k) only depending on the cycle length k. The reason for this is that the
maximum number of labels after applying the new dominance rules is at most α(k) times
the size of the state space of the corresponding SPPRC. This factor α(k) is independent
of the size of the network measured by |V |, R and the values of the resource consumptions
and bounds. From the opposite point of view, when we compare solving SPPRC-k1-cyc
and solving SPPRC-k2-cyc (k1, k2 ≥ 2) for different networks, then both are of the same
worst-case complexity with respect to the size of the network, i.e. |V |, |S|, and R.
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Figure 1: Example of an SPPRC-k-cyc with k ≥ 2 and R = 2 resources time and cost.
At each node i the resource space is given as the cartesian product of the resource win-
dows [atime

i , btime
i ]× [acost

i , bcost
i ]. Each arc (i, j) shows the minimum resource consumption

(ttime
ij , tcost

ij ). The resource vectors res(·) of all k-cycle free paths are shown in the resource
space. Pareto-optimal paths are depicted by the symbol •, non-pareto-optimal paths by
◦. Note that the non-pareto-optimal path Q = (s, 1) is a subpath of the pareto-optimal
path P1 = (s, 1, 2, t). Therefore, Bellman’s optimality principle based on resource vectors
of paths does not apply for k-cycle elimination.
At node t the path Q′ is not pareto-optimal because paths P1 and P2 have resource vectors
res(P1), res(P2) ≤ res(Q′). Assume that the figure just shows a small portion of a digraph
and that node t is an intermediate node which connects back to node 1, 2, and some other
nodes. In the case of k = 2, the two paths P1 and P2 cover all possible extensions of Q′,
so Q′ can be discarded. In the case of k = 3 neither P1 nor P2 can be extended back to
node 1 or node 2 while Q′ is allowed to be extended to node 2. For k ≥ 4, all paths of
the form (·1), (·2) are additional invalid extensions of P1 and P2 (“·” is a wildcard for any
node v ∈ V ) while Q′ is allowed to be extended to (x2) with x �∈ {1, 2}. Therefore, for
the purpose of computing k-cycle-free pareto-optimal sets at other nodes, Q′ cannot be
discarded if k ≥ 3, although Q′ is not part of the set of pareto-optimal solutions at node t
for any k.
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label L1 with label L2 with set forms in
(pred2(L1), pred2(L1)) (pred2(L2), pred1(L2)) H(L1) ∩H(L2)

(ab) (ab) {(a·), (b·), (·b)}
(ab) (ba) {(a·), (b·)}
(ab) (ac) {(a·), (bc), (cb)}
(ab) (bc) {(ac), (b·), (cb)}
(ab) (cb) {(b·), (·b)}
(ab) (ca) {(a·), (ba), (cb)}
(ab) (cd) {(ad), (bd), (cb), (db)}

Table 1: Intersection of self-hole sets of two labels L1 and L2 in the case of 3-cycle elimi-
nation depending on the predecessors pred(L1) and pred(L2). The nodes a, b, c, d ∈ V are
assumed to be different.

(..)

(.a),(a.)

(.b),(a.),(b.)

(ab),(ba)

(ab),(b.)(ac),(bc),(cb)

(a.),(b.) (ab),(bc),(c.) (ac),(bc),(cb),(db)

(ba)

(ba),(cb)(a.)(ba),(ca)

(ba),(c.) (ac),(ba),(cb)

(ba),(dc)

Figure 2: Intersections of hole sets with self-hole sets in the case of k = 3. The figure shows
that the longest chain of intersections consists of k! = 6 non-empty hole sets.
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(a) (b)

(c)

Figure 3: Lower bounds based on the LP-relaxation of the master program for different
values of k. The value lb1(k) resp. lb2(k) is the lower bound before resp. after adding
2-path cuts to master problem (first bar resp. second bar in each section of the diagram).
(a) Instance R204 with 25-customers, with increasing k = 2, 3, 4 the size of the branch
and bound tree and the CPU times decrease to Tree = 622, Tree = 104, Tree = 35 resp.
T = 3524s, T = 385s, T = 123s CPU seconds, (b) Instance R209 with 50 customers, this
instance has been solved with 3-cycle and 4-cycle elimination with Tree = 59, Tree = 6
resp. T = 703s, T = 142s, (c) Instance RC205 with 100 customers, this instance has only
been solved with 5-cycle elimination.



Les Cahiers du GERAD G–2003–55 28

Instance Distance #vehicle k-cycle Tree Time (in s)
r104.100 971.5 11 3 5396 268106.0
rc104.100 1132.3 10 3 6757 986809.0
rc107.100 1207.8 12 3 1493 42770.7
rc108.100 1114.2 11 3 707 71263.0
c204.100 588.1 3 2 12 54254.4
r203.50 605.3 5 3 19 217.1
r204.25 355.0 2 4 35 123.1
r204.50 506.4 2 4 132 23749.5
r205.50* 690.1 4 4 133 585.7
r206.50 632.4 4 3 1615 22455.3
r208.25* 328.2 1 3 13 321.9
r209.50 600.6 4 4 6 142.4
r210.50 645.6 4 3 960 11551.4
r211.50 535.5 3 3 1972 21323.0
rc202.50 613.6 5 4 29 241.6
rc202.100 1092.3 8 5 239 124018.0
rc203.25* 326.9 2 4 379 1876.9
rc203.50 555.3 4 5 38 54229.2
rc205.50* 630.2 5 4 5 52.6
rc205.100 1154.0 7 5 65 13295.9
rc206.50 610.0 5 4 62 469.1

Table 2: Optimal solutions for previously unsolved VRPTW instances, for instances marked
with ∗ different results have been reported in (Cordeau et al., 2001). The problem c204.100
has been solved with 2-cycle elimination mainly because of extensive partial pricing.


