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Abstract

Pseudorandom sequences are one of commonly used test signals in system iden-
tification [1, 2]. In this report, we first extend the concept of binary pseudorandom
sequences to GF(q = pm) valued pseudorandom sequences, define maximal length se-
quences, characterize their generator polynomials, and describe a computationally fast
randomized technique for generating such polynomials. The main problem studied in
this report is the construction of a time invariant mapping from MPRS(GF(pm), n)
onto MPRS(GF(p),mn). It is also shown that this is an m to 1 surjection, and its ef-
fect is characterized in frequency domain as well. The problems studied in this report
are of more technical nature, and motivated by the problems discussed in [3].

Résumé

Les séquences pseudo-aléatoires sont souvent utilisées dans des signaux tests en
identification [1, 2]. Dans ce rapport, nous étendons le concept de séquence pseudo-
aléatoire binaire à GF(q = pm), définissons la longueur maximal des séquences,
caractérisons leurs polynômes générateurs, et décrivons une technique rapide pour
la génération de ces polynômes. Le problème étudié dans ce rapport se résume à la
construction d’un opérateur de MPRS(GF(pm), n) dans MPRS(GF(p),mn). Certaines
propriétés sont aussi démontrées.

Acknowledgments: The author would like to acknowledge the support from KFUPM,
and would like to thank Dr. H. E. Emara-Shabaik for various discussions.
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1 Introduction

Pseudorandom sequences are one of commonly used test signals in system identification
[1, 2]. They can be generated by purely integer operations, more precisely by GF(2) or
GF(q) type modular or modular-like arithmetic operations. Furthermore, by assigning real
values to each element of the corresponding finite field, GF(2) or GF(q), one can generate
real valued sequences which has statistical properties similar to that of white gaussian
noise.

In this report, we study mathematical properties of GF(q = pm) valued pseudoran-
dom sequences. As in the binary case, we first study bounds on the periods of GF(q)
valued sequences, then define maximality as being of period qn − 1. We then characterize
maximality in terms of certain conditions on the generator polynomial, and define such
polynomials as maximal generator. Following this, we show that there are indeed several
such maximal generators, derive both general and asymptotic lower bounds on the number
of such polynomials. Finally, we describe a computationally fast randomized technique for
generating such polynomials.

The main problem studied in this report is the construction of a time invariant mapping
from MPRS(GF(pm), n) onto MPRS(GF(p),mn). It is also shown that this is an m to 1
surjection, and its effect is characterized in frequency domain as well. Based on these, one
may argue that MPRS(GF(pm), n) has a richer structure compared to MPRS(GF(p),mn).
Furthermore, sequences in MPRS(GF(pm), n) are takes one of the pm possible values,
whereas the sequences in MPRS(GF(p),mn) take one of the possible p values, yet they
have the same length pmn − 1.

The rest of the report is organized as follows. In Section 2, we review some preliminaries
related to finite fields, and Galois theory. In Section 3, we discuss extensions of many
theorems known for binary pseudorandom sequences to GF(q = pm) values pseudorandom
sequences. Section 4 is devoted to the study of relationship between MPRS(GF(pm), n)
and MPRS(GF(p),mn). Finally, in Section 5, we make some concluding remarks.

2 Preliminaries

In this section, we will introduce our notation, and review some preliminaries related to
finite fields, and Galois theory. For detailed discussion, we refer to [4].

The set of integers, and the set of positive integers are denoted by Z, and Z
+ respectively.

A positive integer p is called a prime number if its is greater than one, and its positive
integer divisors are only 1 and p. If p is a prime number, then the finite field with p
elements is denoted by GF(p), which can be viewed as the set {0, 1, 2, · · · , p − 1} with
the usual modulo p arithmetic. Given any m ∈ Z

+, there exist at least one irreducible
polynomial, g(z), in GF(p)[z] of degree m. Indeed, the number of irreducible polynomials
of degree m in GF(p)[z], is equal to

N(p,m) =
1
m

∑
k|m

pkµ
(m
k

)
,
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where µ is the Möbius function [4]. Furthermore, we have the following lower and upper
bounds,

pm

m
≥ N(p,m) ≥ pm − (pm/2+1 − 1)/(p − 1)

m
,

Asymptotically, namely for large p or m values, approximate density of irreducible polyno-
mials is 1/m. One can view GF(q = pm) as the quotient, GF(p)[z]/(g(z)), where g(z) is an
irreducible polynomial of degree m, and (g(z)) is the ideal generated by this polynomial.

The character of a finite field, F , is defined as the smallest positive integer, c, satisfying
c.1F = 0 equation. In this case, we write char(F ) = c, and it can be shown that c must
be a prime number. The number of elements in a finite field is always equal to (char(F ))m

for some m ∈ Z. If E and F are two finite fields and E ⊇ F , then we say E/F is a field
extension. In this case, the number of elements of F must divide the number of elements of
E exactly, in particular they must have the same character. The set of all automorphisms
of E fixing the elements of F is denoted by Aut(E/F ), and the corresponding Galois
group is denoted by Gal(E/F ), which is isomorphic to a cyclic group or order equal to the
dimension of E as a vector space over F . In particular, this Galois group is generated by
the automorphism

ψ0 : E → E
x 	→ xq

where q is the number of elements in F .
The set of all non-zero elements of a finite field, E, is denoted by E×. As a multiplicative

group, E× is cyclic, namely there exists an a ∈ E such that E× =< a >:= {ak : k ∈ Z}.
If E/F is a field extension, then we will also have E = F (a), namely every finite field
extension is simple. Finite fields are also said to be perfect, meaning that irreducible
polynomials in finite fields do not have repeated roots.

Let F be a finite field, F , then the set of all maximal F valued pseudorandom sequences
generated by an nth order polynomial is denoted by MPRS(F, n). The formal definition of
pseudorandom sequence and maximality will be given in the next section.

3 Extension of GF(2) type results for GF(pm)

3.1 Maximal Pseudorandom Sequences

Let p be a prime number, m a positive integer, and q = pm. Consider the difference
equation

u[t] = a1u[t− 1] + · · · + anu[t− n], (1)

where a1, · · · , an ∈ GF(q), with an not equal to zero, and with initial conditions u[0] =
u0, · · · , u[−n + 1] = u−n+1, where u0, · · · , u−n+1 ∈ GF(q). The vector [u0, · · · , u−n+1]

T is
called the initial condition vector, and the equation (1) is called a pseudorandom sequence
generator equation over GF(q), and the polynomial g(z) = zn − a1z

n−1 · · · − an ∈ GF(q)[z]
is called the generator polynomial.
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Theorem 1 Let L be the period of the solution of the difference equation (1), and g(z) =
zn − a1z

n−1 · · · − an ∈ GF(q)[z]. Then

(a) L is less than or equal to (qn − 1),
(b) If the polynomial g(z) has no repeated roots, then L divides (qn − 1) exactly,
(c) L always divides (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) exactly.

Proof. First consider the difference equation (1) in state space format

U [t+ 1] = AU [t], (2)

where

A =
[
a1 a2 · · · an−1 an

In−1 0(n−1)×1

]

and the state vector, U [t], is equal to [u[t], u[t− 1], · · · , u[t− n+ 1]]T . If L ∈ Z, and we
have u[t + L] = u[t] for all t ∈ Z, then U [t + L] = U [t] for all t ∈ Z. The converse is also
true, therefore u[t] and U [t] must have the same period.

The matrix A is non-singular, because det(A) = ±an �= 0. Furthermore, all roots of
g(z) are non-zero because of an �= 0. Consider the set inclusion,

{
AtU [0] : t ∈ Z

} ⊆ GF(q)n \ {0}.
The left hand side can have at most qn − 1 elements, therefore there exists t1, t2 ∈ Z

+

satisfying qn − 1 ≥ t1 > t2 ≥ 0 with U [t1] = U [t2]. Multiplying both sides by At−t2 results

At+t1−t2U [0] = AtU [0],

which implies that the sequence U [t] is periodic with period at most qn − 1. This proves
(a).

Every polynomial in GF(q)[z] of degree n, splits completely in the extension field
GF(qn). If g(z) has no repeated roots, then by invoking standard results on solution
of difference equations,

u[t] = c1λ
t
1 + · · ·+ cnλ

t
n, t ∈ Z,

where ci’s and λi’s are in GF(qn). Every non-zero element of GF(qn) satisfies the polyno-
mial equation zqn−1 − 1 = 0, and λi’s are all non-zero, therefore u[t+ qn − 1] = u[t] for all
t ∈ Z. The period, L, is indeed the generator of the Z module

M = {d ∈ Z : u[t+ d] = u[t], ∀t ∈ Z} ,
and qn − 1 being in this module implies that L|(qn − 1) and hence proves (b).

Whether g(z) has repeated roots or not, the general linear group GL(GF(q), n) has
finitely many elements. Indeed, by a simple column counting argument, one can show that

|GL(GF(q), n)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).
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By Lagrange’s theorem on finite groups, the order of the A matrix, LA, must divide
(qn−1)(qn−q)(qn−q2) · · · (qn−qn−1). Since At+LA = At, we should have U [t+LA] = U [t],
which implies that the period of U [t] must divide LA. Namely L|LA|(qn − 1)(qn − q)(qn −
q2) · · · (qn − qn−1), and hence part (c) is proved.

Motivated by this theorem, we will call a sequence u[t] defined by the difference equation
(1), as maximal, if it has period equal to qn − 1 for some non-zero initial condition vector.
Indeed, if for some non-zero initial condition vector, it has period qn − 1, then it will
have period equal to qn − 1 for all non-zero initial condition vectors. Because, if U [0] is a
non-zero initial condition vector, and U [t] has period qn − 1, then the inclusion

{U [0], · · · , U [qn − 2]} ⊆ GF(q)n \ {0},
must be an equality. The right hand side has qn − 1 elements and this is clear. On the left
hand side, if we have U [i] = U [j] with 0 ≤ i < j ≤ qn − 2, then multiplying both sides by
At−i, we will have U [t] = U [t + j − i], which contradicts with U [t] having period qn − 1.
Therefore, the left hand side must also have qn − 1 elements, and inclusion must be indeed
an equality. Therefore, all non-zero vectors in GF(q)n \ {0} can be generated from this
fixed non-zero initial condition vector, U [0], by repeated multiplications with the matrix
A. This means that, changing the initial condition is basically equivalent to a time shift,
and hence does not change the period.

Corollary 1 If the sequence u[t] defined by the difference equation (1), has period equal
to qn − 1 for some non-zero initial condition vector, then it has the same period for all
non-zero initial condition vectors.

3.2 Maximal Generator Polynomials

Let u[t] be a sequence defined by the difference equation (1). Then the polynomial g(z) =
zn − a1z

n−1 · · · − an ∈ GF(q)[z] is called its generator polynomial. Furthermore, if u[t] is
maximal, then g(z) is called a maximal generator polynomial.

The following theorem characterizes maximal generator polynomials.

Theorem 2 The polynomial g(z) = zn−a1z
n−1 · · ·−an is a maximal generator polynomial

iff

(I) It is irreducible in GF(q)[z], and
(II) It is a factor of zqn−1 − 1, but is not a factor of zr − 1 for r < qn − 1.

Proof. Necessity of (I): If g(z) is reducible, then let g1(z) be one of its irreducible factors.
Let n1 be the degree of g1(z), then n1 < n. Let α ∈ GF(qn1) be a root of g1(z), possibly
not in GF(qn). Consider the sequence

u[t] = αt + αqt + αq2t + · · · + αqn1−1t.

First of all, u[t] is fixed by all elements of Aut(GF(qn1)/GF(q)), and hence must be in GF(q).
It has period at most qn1 − 1 as αqn1−1 = 1. Finally, u[t] is a non-zero sequence, because
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α,αq, αq2
, · · ·αqn1−1

are the complete set of roots of g1(z), and the list has no repetitions.
By using the standard results from the theory of difference equations, it follows that the
above u[t] is generated by the difference equation (1) with some non-zero initial condition
vector. Having period at most qn1 − 1 contradicts with the maximality of g(z), and this
contradiction proves the necessity of irreducibility.

Necessity of (II): Because of the necessity of (I), we can assume that g(z) is irreducible
in GF(q)[z], and hence, all of its roots, g1, · · · , gn, are distinct. Let [u0, · · · , u−n+1]T be a
non-zero initial condition vector, then

u[t] =
n∑

i=1

Cig
t
i ,

for some constants Ci’s in GF(qn). The polynomial g(z) cannot be a factor of zr − 1 for
r < qn − 1, otherwise we will have gr

i = 1, which will imply that u[t] has period at most r.
The polynomial g(z) is a factor of zqn−1 − 1, because any irreducible polynomial of degree
n, divides of zqn−1 − 1, if it is non-zero at zero. Since by definition g(0) �= 0, the condition
(II) is also necessary.

Sufficiency of (I) and (II):Let g(z) be a polynomial satisfying (I) and (II). Furthermore,
let [u0, · · · , u−n+1]T be a non-zero initial condition vector. Because of irreducibility, g(z)
has distinct roots g1, · · · , gn ∈ GF(qn), and

u[t] =
n∑

i=1

Cig
t
i ,

for some constants Ci’s in GF(pn). Since g(z) divides zqn−1 − 1, we have

gqn−1
i = 1,

and hence
u[t+ qn − 1] = u[t].

Therefore, the period of u[t] is at most qn − 1. The period of u[t] cannot be smaller than
qn − 1, because an identity of the form

u[t+ r] = u[t],

for some r > 0 would imply that
n∑

i=1

(Cig
r
i )g

t
i =

n∑
i=1

Cig
t
i ,

for all t. Consider this equality for t = 0, · · · , n−1. Since gi’s are distinct, the Vandermode
matrix associated with gi’s is non-singular, and hence

Cig
r
i = Ci,
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for all i = 1, · · · , n. Since by definition a pseudorandom sequence is non-zero, at least one
Ci must be non-zero, and hence there exists an i ∈ {1, · · · , n} such that gr

i = 1. This means
that the irreducible polynomial g(z) has a common root with the polynomial zr − 1, and
hence divides it. This contradiction shows that, u[t] cannot have a period smaller than
qn − 1.

The condition (II) in Theorem 2 can be checked in a simpler way. Because, if g0 is a
root of the irreducible polynomial g(z), then roots of g(z) will be equal to g0, g

q
0 , · · · , gqn−1

0 .
The smallest r such that g(z)|zr − 1 is equal to the multiplicative order of g0, which is
a factor of qn − 1. Therefore, to check the condition (II), it is enough to consider only
divisors of qn −1 as possible r values. This is expressed formally in the following corollary.

Corollary 2 The polynomial g(z) = zn−a1z
n−1 · · ·−an is a maximal generator polynomial

iff

(I) It is irreducible in GF(q)[z], and
(II) It is a factor of zqn−1 − 1,
(III) For any r < qn − 1 and r|qn − 1, the polynomial g(z) � |zr − 1.

An alternative characterization which we will use later is the following:

Theorem 3 The polynomial g(z) = zn−a1z
n−1 · · ·−an is a maximal generator polynomial

iff it is equal to (z − g0)(z − gq
0)(z − gq2

0 ) · · · (z − gqn−1

0 ) for some generator g0 of the
multiplicative group GF(qn)×.
Proof. If g0 is a generator of GF(qn)×, then its minimal polynomial over GF(q) will have
degree n. Therefore, (z−g0)(z−gq

0)(z−gq2

0 ) · · · (z−gqn−1

0 ) must be the minimal polynomial
and hence is irreducible. It is clear that the minimal polynomial divides zqn−1−1, because
g

qi(qn−1)
0 = 1 for i = 0, · · · , n− 1. However, the same minimal polynomial does not divide
zr−1 for any r < qn−1. This is because the multiplicative order of g0 is exactly qn−1 and
not smaller. Therefore, the minimal polynomial is indeed a maximal generator polynomial
by Theorem 2.

If g(z) is a maximal generator polynomial, then by Theorem 2 it must be irreducible.
Let g0 be one of its roots, since g(z) does not divide zr −1 for any r < qn−1, g0 must have
order exactly equal to qn − 1. Namely g0 must be a generator of the multiplicative group
GF(qn)×. Since g(z) is irreducible it will be equal to (z−g0)(z−gq

0)(z−gq2

0 ) · · · (z−gqn−1

0 ),
where g0 being a generator of GF(qn)×.

3.3 Distributional Properties of Maximal Pseudorandom Sequences

The following theorem gives some information about distribution of values in maximal
pseudorandom sequences.

Theorem 4 Let u[t] be a maximal pseudorandom sequence over GF(q). Then the state
vector U [t] takes all possible non-zero vectors in GF(q)n. Furthermore, in a period of u[t],



Les Cahiers du GERAD G–2003–38 7

it takes each value in GF(q) \ {0} exactly qn−1 times, and the value 0 exactly qn−1 − 1
times.

Proof. The first statement is already proved. Consider the non-zero vectors in GF(qm).
When we count their first coordinates, clearly every value except 0 will appear exactly
qn−1 times, and 0 will appear exactly qn−1 − 1 times.

3.4 How to find a Maximal Generator Polynomial ?

In this section, we will discuss a randomized method to find a maximal generator. First, we
will derive general and asymptotic lower bounds for the number of maximal generators in
GF(q)[z]. Then, we will present a computational quite efficient procedure to check whether
a generator polynomial is a maximal one.

The multiplicative group, GF(qn)×, has qn − 1 elements and hence has φ(qn − 1) gen-
erators. By Theorem 3, it is clear that all generator polynomials must be of the form

(z − g0)(z − gq
0)(z − gq2

0 ) · · · (z − gqn−1

0 ).

Therefore, there are total φ(qn − 1)/n such polynomials.
A positive integer x can have at most log2(x) distinct prime factors. Therefore,

φ(x) ≥ 1
2

(
2
3

)log2(x)−1

x ≥ 0.75x0.415.

Therefore, the number of maximal generator polynomials will be at least 0.75(qn−1)0.415/n,
namely the number grows at least exponentially by n. Clearly, the number of such poly-
nomials is bounded by qn − 1, therefore the number of maximal generator polynomials is
bounded from below and above by exponentially growing functions of n.

By using the asymptotic growth results of the Euler function [5], it follows that

φ(qn − 1)
n(qn − 1)

≥ 1
2

qn − 1
log(n log(q))n(qn − 1)

=
1

2n(log(n) + log(log(q)))
, q or n→ ∞.

Corollary 3 If q or n are large enough, than in 2n(log(n)+ log(log(q)) log(1/ε) randomly
generated non-zero polynomials in GF(q)[z], with probability 1 − ε, there will be at least
one maximal generator polynomial. In particular, in 461n(log(n) + log(log(q)) randomly
generated non-zero polynomials in GF(q)[z], with probability 1 − 10−100, there will be at
least one maximal generator polynomial.

Based on the previous corollary, one can try to generate several random nth order
polynomials in GF(q)[z] and check whether they are maximal or not. However, for this
to be a computational fast method, one needs a quick maximality test. The following
Theorem answers this question.

Theorem 5 A sequence u[t] is maximal iff the corresponding A matrix multiplicative has
order qn − 1.
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Proof. If u[t] is maximal, then

Aqn−1AtU [0] = AtU [0].

By using the distributional properties, it follows that, as t varies over Z, AtU [0] takes all
possible values in GF (q)m \ {0}. Therefore, Aqn−1 = I. If Ad = I, then u[t+ d] = u[t] for
all t ∈ Z, and hence d ≥ qn − 1. These results imply that the order of A must be qn − 1.

If the A matrix has multiplicative order qn−1, then it satisfies the polynomial equation
zqn−1 − 1 = 0. Note that this polynomial has no repeated roots, therefore the minimal
polynomial of A has no repeated roots. Consider the Jordan decomposition of A. At least
one eigenvalue, λ, must have multiplicative order qn − 1. Furthermore, all other roots of
the minimal polynomial must be of the form λqk

, for some k ∈ Z
+, and hence must be of

multiplicative order qn − 1. Therefore, all eigenvalues of A has order qn − 1. This strong
result implies that

det(Ad − I) �= 0, 0 < d < qn − 1,

and hence U [t + d] �= U [t], if 0 < d < qn − 1, no matter which non-zero initial condition
vector is chosen.

To check whether a given matrix over GF(q) has multiplicative order qn − 1, one can
find all prime factors, p1, · · · , pf , of qn − 1, and check whether

A(qn−1)/pi �= I, i = 1, · · · , f.

Furthermore, the matrix exponentiation can be computed in O(n log(q)) matrix squaring
and multiplication operations, by using the binary representation of the exponent (qn −
1)/pi. For example,

A37 = A(100101)2 = A25
A22

A,

so by 5 matrix squaring and 2 matrix multiplication operations, result can be computed,
see [6] for details.

4 Mapping MPRS(GF(pm), n) onto MPRS(GF(p), mn)

In this section, we will construct a time invariant mapping from MPRS(GF(pm), n) onto
MPRS(GF(p),mn). We will prove that this is an m to 1 surjection, and describe its action
both in time and frequency domains.

We start with a structural lemma.

Lemma 1 Let α be a fixed generator of the multiplicative group, GF(qn)×. Then all
maximal pseudorandom sequences must be of the form u[t] = u0[ct+ d], where

u0[t] := αt + αqt + αq2t + · · ·+ αqn−1t,

c, d ∈ Z and c is relatively prime to qn − 1.
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Proof. If u[t] = u0[ct+ d], then

u[t] := αdαct+ αqdαqct + αq2dαq2ct + · · · + αqn−1dαqn−1ct.

Note that, αc is also a generator of the multiplicative group, GF(qn)×. Furthermore, u[t]
is non-zero (by a simple Vandermode matrix type argument), is in GF(q), and is generated
by the polynomial

(z − αc)(z − αqc)(z − αq2c) · · · (z − αqn−1c).

Therefore, according to Theorem 3, u[t] is a maximal pseudorandom sequence.
Now consider a maximal pseudorandom sequence, u[t], and let g(z) be its generator

polynomial. Let g0 be a root of g(z). Then by Theorem 3, g0 generates GF(qn)×, and the
set of all roots of g(z) are g0, g

q
0, · · · , gqn−1

0 . Therefore,

u[t] =
n−1∑
k=0

Ckg
qkt
0 ,

for some Ck’s in GF(qn). Since u[t] ∈ GF(q), it is fixed under ψ0 : x 	→ xq, i.e.

n−1∑
k=0

ψ0(Ck)g
qk+1t
0 =

n−1∑
k=0

Ckg
pkt
0 .

By using the nonsingularity of the Vandermode matrix, it easily follows that ψ0(Ck) =
C(k+1) mod n, and therefore, C1 = Cq

0 , C2 = Cq
1 = Cq2

0 , · · · , Cn−1 = Cqn−1

0 .
Since u[t] is non-zero, C0 must also be non-zero. It is given that GF(qn)× =< α >

which implies that C0 = αd for some integer d. Similarly, g0 must be equal to αc for some
c ∈ Z, and c must be relatively prime to qn − 1. Therefore,

u[t] =
n−1∑
k=0

αqkdαcqkt =
n−1∑
k=0

αqk(ct+d) = u0[ct+ d].

Now, we are ready to prove the main theorem.
Theorem 6 There is an m to 1 surjection from MPRS(GF(pm), n) to MPRS(GF(p),mn)
defined by the transformation:

T : MPRS(GF(pm), n) → MPRS(GF(p),mn)
u[t] 	→ ∑m−1

i=0 u[pit]

In the frequency domain, T can be described by its effect on maximal generator polynomials:

Tf : GF(pm)[z] → GF(p)[z]
g(z) 	→ ∏m−1

i=0 ψi
0g(z)

where ψ0 is the generator of Aut(GF(qn)/GF(q)) defined by ψ0(x) = xq.
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Proof. Now, we have a clear description of maximal pseudorandom sequences. At this
point it is natural to ask whether

n−1∑
k=0

αqk(c1t+d1) =
n−1∑
k=0

αqk(c2t+d2), ∀t ∈ Z,

if and only if c1 = c2q
i (Mod qn − 1) and d1 = d2q

i (Mod qn − 1). Sufficiency part is clear.
Now if we have the above equality, then by using a Vandermode matrix type argument,
we can conclude that on both sides we should the same exponential functions, i.e.

{
αqkc1 : k ∈ Z

}
=

{
αqkc2 : k ∈ Z

}
.

This implies that αc1 = αqic2 for some i ∈ Z
+, namely c1 = c2q

i (Mod qn − 1). By simple
substitution and change of indices, we can get

n−1∑
k=0

αqk(c1t+d1) =
n−1∑
k=0

αqk(c1t+qid2), ∀t ∈ Z,

This implies that αd1 = αqid2 , i.e. d1 = d2q
i (Mod qn − 1).

Let u1[t] ∈ MPRS(GF(pm), n) be equal to

u1[t] =
n−1∑
k=0

αqk(c1t+d1),

and u2[t] ∈ MPRS(GF(p),mn) be equal to

u2[t] =
mn−1∑
k=0

αpk(c1t+d1).

Clearly, T (u1) = u2. The structure lemma, and what is proved in the previous paragraph,
it is clear that T is a time invariant surjection, and is m to 1. Finally, by Theorem 3, the
action at the generator polynomial level will be given by Tf .

Now the following corollary is immediate.

Corollary 4 There are basically φ(qn − 1)/n different GF(q) valued maximal pseudoran-
dom sequences, when shifted versions of the same sequence are not counted as “different”
sequences. If all of them are counted as “different”, then there are total qnφ(qn − 1)/n
different GF(q) valued maximal pseudorandom sequences.
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5 Conclusion

In this report, we basically extended the concept of binary pseudorandom sequences to
GF(q = pm) valued pseudorandom sequences, defined maximal length sequences, char-
acterizes their generator polynomials, and described a computationally fast randomized
technique for generating such polynomials. The main goal was the construction of a time
invariant mapping from MPRS(GF(pm), n) onto MPRS(GF(p),mn). It is shown that this
is an m to 1 surjection, and its effect is characterized both in time and frequency domains.
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