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Abstract

This paper presents a new branching strategy that is applied on the cost of a
subproblem during the solution of a large-scale linear program by a column generation
technique. This branch and cut strategy has been used to improve the solution time
for the preferential bidding problems encountered in the airline industry. Moreover,
it is shown that this strategy can also be applied to other problems with particular
structures.

Résumé

Nous proposons une stratégie de type branchement et coupe intervenant au niveau
des sous-problèmes dans le cadre de la procédure de génération de colonnes. L’appli-
cation de cette stratégie pour la résolution des problèmes de fabrication des horaires
personnalisés avec priorités chez Air Canada présentant un grand gap d’intégrité a
permis d’améliorer le temps de calcul et de générer de meilleurs horaires pour un
bon nombre de pilotes. La taille et la profondeur de l’arbre de branchement ont été
réduites de façon très significative. Nous avons discuté de l’extension de la stratégie
pour la résolution d’autres classes de problèmes. Plusieurs applications connues dans
la littérature sont présentées.
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1 Introduction

The column generation technique has been commonly used to solve large scale optimization
problems. This decomposition technique consists of solving alternatively a master problem
and one or more subproblems. We consider the case where subproblems generate feasible
paths, called path variables, which may be integrated into the master problem during the
next iteration. This solution approach considers implicitly all the variables of the problem
but generates only a small subset of them. The main role of the master problem consists of
finding the optimal solution of the current restricted problem, i.e. the problem composed of
the variables that have been generated, and also of providing the dual variables associated
with this current optimal solution. Subproblems are used on the one hand to verify if
the current solution of the master problem is optimal and on the other hand to generate
variables that will be candidates for entering into the basis of the master problem when the
solution is not optimal. These subproblems are formulated as shortest path problems on
an acyclic network. This procedure is imbedded in a branch-and-bound algorithm when
integrality constraints are involved on the path variables. At each node of the branch
and cut strategy, the column generation technique is used to find the optimal solution of
the linear relaxation of the problem. The value of this solution is used as a lower or an
upper bound depending on if the master problem is a minimization one or a maximization
one, respectively. In several applications, there are also constraints ensuring that the path
variables of each subproblem form a convex combination. In those cases, a generic relaxed
linear program can be formulated as follow:

min(max) cTx (1)
subject to

Ax = b (2)∑
j∈SPk

xj = 1 ∀k (3)

x ∈ [0, 1]. (4)

where SPk represents the kth subproblem.

The particularity of this formulation is that the value of the solution of the restricted
master problem can be used to accelerate the solution of the subproblems. Sometimes,
it is mandatory to use this value as a bound in the subproblem to obtain an optimal
integer solution. This is the case in the monthly work schedule construction problem for
pilots in the airline industry when preferences are taken into account and priority order
between employees must be respected (see Gamache et al, 1998b). This problem, known
as the PBS (preferential bidding system) problem in the airline industry, will be used to
present a new branch and cut strategy that can be applied to any problem having the
same structure as the generic linear program described by equations (1) to (4). Sections 2
and 3 give a description of the PBS problem and a summary of the solution approach
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proposed by Gamache et al (1998b), respectively. The new branch and cut strategy is
detailed in Section 4. Section 5 presents a comparison of the efficiency of the new branch
and cut strategy versus the previous approach used by Gamache et al (1998b). Finally,
generalization of this method to other applications is presented in Section 6.

2 A first application: The PBS problem in the airline
industry

In the airline industry, the construction of monthly work schedules for crew members
is a difficult problem to address because it involves large-scale problems: thousands of
constraints and millions of variables. Moreover, if one has to consider a set of preferences
expressed by each employee during the schedule construction, the problem becomes more
complicated because the problem consists not only in covering a set of activities but also
in satisfying employees as much as possible. The satisfaction of each employee is measured
by assigning weights to activities in accordance with each employee preferences. For each
schedule, the sum of all weights represents the score of the schedule.

The construction of monthly work schedules while taking into account the preferences
of each crew member is generally done according to two modes. The first mode, called the
rostering problem, consists in constructing schedules that maximize the total satisfaction
of all employees. This type of schedule construction is used by Air France (Giafferri et
al. 1982, Gontier 1985, Gamache et al. 1998a), Alitalia (Nicoletti 1975, Marchettini 1980,
Sarra 1988, Federici et Paschina 1990), Lufthansa (Glanert 1984), SwissAir (Tingley 1979),
Air New-Zealand (Ryan 1992) and El-Al Israel Airline (Mayer 1980).

The second mode of constructing schedules is called the preferential bidding problem
and it is mostly used by North-American airlines. The preferential bidding problem is
similar to the rostering problem except that the preferences must be assigned to employees
according to a priority order. In this problem, the objective function consists of maximizing
the satisfaction of the employees while giving priority to the most senior of them.

In both modes, during the construction of the schedules, planners must respect several
constraints such as those included in the collective agreement between the company and
the employees and those related to the airline security rules. They must also take into
account activities that have been pre-assigned to employees, such as vacations and training
periods. Moreover, the set of feasible schedules must cover all the pairings planned during
the month. A pairing is a sequence of flights that starts from a city, called a base, and
ends at this same city.

In the preferential bidding problem, schedules are constructed in a sequential manner
according to the seniority order; i.e. at each iteration of the solution process, the schedule of
only one employee is constructed. The use of a sequential approach for solving this problem
is essential due to the large number of possible bids for each employee, the necessity of
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reflecting the seniority order between employees, and the large number of employees to
consider. In fact, the differentiation of the preferences of all employees in a unique objective
function would have necessitated numbers so huge that they could not have been used in
a computer.

At each iteration of the sequential approach, the objective function changes to reflect
the preferences of the employee whose schedule is constructed. Moreover, the schedule
currently constructed must be compatible with those already constructed and must permit
the assignment of the residual pairings, i.e. those that are not assigned to an employee yet,
to the set of residual employees, i.e. the most junior employees whose schedules have not
been constructed yet. This approach is used in order to make sure that the assignment of
activities to one employee is not done to the detriment of more senior employees.

The preferential bidding problem is quite new and thus less known than the rostering
problem. Therefore, there are only few papers in the literature that deal with this prob-
lem. Companies such as Quantas (Moore et al., 1978), CP Air (Byrne, 1988), Midwest
Express Airlines, Inc. (Schmidt, 1994), Air Canada (Gamache et al., 1998) have developed
their method to solve the preferential bidding problem. Because of the complexity of the
problem, most of the methods presented in the literature are based on a greedy heuristic.

However, in 1998, Gamache et al. proposed an algorithm having the propriety of being
optimal for each employee considering that schedules have been already assigned to the
most senior employees. Like all the other approaches, this method uses a sequential process
based on seniority. The next section will detail this method.

3 The solution approach for the PBS Problem

3.1 General description of the method

The method proposed by Gamache et al. (1998a) constructs the schedule of employees
one after the other, starting from the most senior employee to the most junior one. At
iteration k of the solution process, the schedules of the k−1 most senior employees have been
already constructed. The method solves the residual problem that consists of an integer
linear program which assigns the set of residual pairings to the set of residual employees.
The objective function consists in maximizing the score of employee k’s schedule.

Given m employees and a set of p pairings, the problem of constructing a monthly work
schedule for one employee at each iteration of the sequential approach can be formulated as
an integer linear program. At the first iteration of the solution process, the integer linear
program includes a set of m constraints requiring one feasible schedule for each employee
and a set of p constraints for the covering of each pairing.
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At iteration k, the problem (IPk) can be written as follows:

max
∑
j∈Sk

k

cjxj (5)

subject to∑
j∈Sk

aijxj = bki , i = 1, . . . , p (6)

∑
j∈Sk

e

xj = 1, e = k, . . . ,m (7)

xj ∈ {0, 1}, ∀j ∈ Sk (8)

where

Sk =
m⋃

e=k

Sk
e and

• Sk
e is the set of all feasible schedules for employee e at iteration k;

• cj is the score of schedule j;
• xj is a binary variable which equals 1 if schedule j is chosen and 0 otherwise;

• aij equals 1 if pairing i is part of schedule j, 0 otherwise;

• bki represents the number of employees still required by pairing i at iteration k.

The optimal solution to this problem gives the best schedule for the employee k while
also ensuring a feasible solution for all the residual employees.

This problem is solved by a column generation technique imbedded in a branch-and-
bound algorithm. The master problem solves the linear relaxation of problem IPk (equa-
tions (5) to (7)), called LPk, on a subset of variables (feasible schedules). Subproblems are
used to produce feasible schedules. A subproblem is associated with each of the residual
employees from k to m. Each subproblem consists of solving a shortest path problem
(longest path problem) with resource constraints on a graph that takes into account the
particularities of each employee.

Given Gk
e = G(Nk

e , A
k
e) the residual graph of employee e at iteration k, Xij(e) the

flow variables on Ak
e and T r

i (e), r ∈ R, the resource variables on Nk
e , the mathematical

formulation of the subproblem is then defined as follows:
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max
∑

(i,j)∈Ak
e

cij(e)Xij(e) (9)

subject to

∑
j∈Nk

e

Xij(e)−
∑

j∈Nk
e

Xji(e) =



+1, i = source
0, ∀i ∈ Nk

e

−1, i = sink
(10)

Xij(e)
(
T r

i (e) + t
r
ij − T r

j (e)
) ≤ 0, ∀(i, j) ∈ Ak

e ,∀r ∈ R (11)

�ri ≤ T r
i (e) ≤ ur

i , ∀i ∈ Nk
e ,∀r ∈ R (12)

Xij(e) ≥ 0, ∀(i, j) ∈ Ak
e (13)

Xij ∈ {0, 1}, ∀(i, j) ∈ Ak
e (14)

In this model,

c̄ij(e) =

{
wij(e)− πij(e), for e = k
−πij(e), for e = k + 1, . . . ,m

(15)

where wij(e) is the weight attributed to the task represented by arc (i, j) of subproblem e
and πij(e) represents the sum of the dual variables that apply on arc (i, j).

The objective function (9) of subproblem k maximizes the marginal score of employee k’s
schedule. Constraints (10) and (13)-(14) are associated with the flow on the network. The
inequalities (12) evaluate at each node i of the graph if the amount of each resource
accumulated along the path between the source node and node i, i.e. T r

i (e), falls between
a lower bound lri and an upper bound ur

i . The resource constraints are used for cumulating
the number of flight credits, the number of consecutive working days, the duration of rest
periods, the fatigue index, etc. Finally, the set of inequalities (11) ensures the compatibility
between the flow and the resources.

At each iteration of the proposed optimization method, an integer program IPk is solved.
Since the objective function only considers the preferences of employee k, the solution of
IPk gives the maximum score schedule to the kth employee and assigns a feasible schedule
for all employees from k+1 to m. In fact, the integer solution found at each iteration has
for its only goal to ensure that the assignment of the best schedule to employee k will lead
to an integer feasible solution.

The solution to each IPk may prove to be very long; when considering that this problem
has to be solved m times, where m is the number of employees, e.g. 300 to 3000 in some
instances. Moreover, in the optimal solution of IPk, the schedules constructed for employ-
ees k+1 to m are useless for the subsequent iterations because of the perpetual change of
the objective function at each iteration. Thus, a new strategy has to be considered.

To reduce the solution time, the following approach was proposed by Gamache et al.
(1998). At each iteration, a MIPk is solved instead of an IPk. From the optimal solution
of the linear relaxation of the generalized set partitioning problem, a branch-and-bound
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algorithm is used to find an integer solution only for the variables associated with em-
ployee k. The choice of this strategy is based on the hypothesis that most of the time the
best schedule of employee k obtained from the optimal solution of the MIPk problem is
also part of the optimal solution of the IPk. Of course, this situation will not always be
true and an infeasible solution to a mixed integer program (MIPk) will sometime be found.
In such a situation, one must backtrack and find an optimal solution to IPk−1, if possible;
otherwise, this backtracking process is repeated until a feasible solution is obtained for IP�

where � < k.

3.2 The use of cuts at the subproblem level

Even when using this strategy, the solution of MIPk using a branch-and-bound algorithm
may be time-consuming because the integrality gap is sometime very large (almost 100% in
some cases). This is usually the case when the solution to LPk is fractional and occurs as a
convex combination of schedules with different scores; i.e. when Zk

LP ∈ [ZINF , ZSUP ] where
ZINF and ZSUP are the lowest and the highest scores among the schedules corresponding
to non zero basic variables (see Figure 1). In order to reduce the solution time in such
situations, Gamache et al. (1998) have proposed to use cuts to improve the upper bound
on the score of employee k, i.e. ZSUP . If Zk

LP is the optimal value of the solution of LPk,
then Zk

LP constitutes an upper bound on the maximum score of employee k’s schedules for
which IPk is feasible. The maximum score Zk

LP is expressed as a convex combination of
several schedules having either similar or different scores. If these scores are different, i.e.
ZINF 
= ZSUP , then some of them are strictly greater than the value of Zk

LP (see Figure 1);
consequently, these schedules cannot be part of any integer solution of IPk and thus can
be removed from the domain of the feasible schedules of employee k without deteriorating
the optimal solution.

This deep cut eliminates not only the fractional solution, but some integer solutions
that are generated by the subproblem but that will never be part of a feasible solution
of the master problem. It eliminates all the schedules whose score is greater than Zk

LP

and reduces consequently the domain of feasible schedules. These cuts are introduced as
soon as needed until the solution of the linear relaxation becomes a convex combination of
schedules having an identical score, i.e. ZINF = ZSUP . Note that the cut applies only to
the schedules of employee k, so that it is applied locally during the solution of subproblem k.
To implement the cut, an additional resource indicating the score of the path is introduced
during the solution of the longest path problem with resource constraints in order to forbid
the generation of columns (schedules) having a score greater than the value of the linear
relaxation. This additional resource is written as follows:

Xij(k) (Wi(k) + wij −Wj(k)) ≤ 0 ∀(i, j) ∈ Ak
k (16)

Wi(k) ≤ �Zk
LP � ∀i ∈ Nk

k . (17)
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Figure 1: Illustration of the cut and the basis of the optimal solution of LPk

At each node of subproblem k’s graph, the current score of the path,Wi(k), is compared
with an upper bound on the resource which is equal to the current value of the linear
relaxation (17). The addition of this resource to the subproblems allows the generation of
feasible schedules during the solution of the preferential bidding problem.

Without the use of this cut for some employees, it was impossible to reduce the inte-
grality gap. In one case, this approach permitted eliminating an integrality gap of 90%
with only 7 cuts. To the knowledge of the authors of this paper, it was the first time such
a cut was proposed in a subproblem of a column generation approach.

4 A new strategy: A branching decision

4.1 Some drawbacks when using cuts

The introduction of a cut in subproblem k necessitates, as explained in Section 3, the
addition of a new resource on the score of the generated paths. However, the addition of
this constraint increases considerably the solution time of the longest path problem with
resource constraints. Indeed, the number of non dominated paths (labels) becomes large
when using the cut since the new resource is positively correlated with some resources
and particularly with the reduced cost. The number of labels generated in subproblem k
increases considerably, which increases the solution time of subproblem k.
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To simplify, let us consider the solution of a longest path with only one resource: the
score. Let us consider two sub-paths of the network of employee k incoming at node i.
Also, let (C1

i ,W
1
i ) and (C2

i ,W
2
i ) be the labels associated with these two sub-paths where

C
j
i represents the value of the reduced cost of the sub-path j at node i and W j

i the value
of its score at node i. The sub-path 1 is dominated by sub-path 2 and can be eliminated
from the sub-problem if C2

i ≥ C1
i and W 2

i ≤ W 1
i . It is clear that if both elements of the

vector are positively correlated, then the reduced cost and the score change in the same
direction and the set of labels at each node forms a slim cluster of points having a positive
slope (see Figure 2). There are several non dominated labels along the upper envelope
(border) because at each node of subproblem k, one tries to maximize the reduced cost
while also maintaining the score below a certain value. Based upon this observation, the
addition of the cut on the score reduces the elimination by dominance of sub-paths during
the solution of the longest path problem.

Reduced
Cost

Score

  label
Non Dominated

Figure 2: Dominance when using the cut

4.2 Description of the new approach

The objective of this paper is to propose a new solution strategy having the same effective-
ness for reducing the integrality gap as the use of the cuts in the subproblem but without
the drawbacks on the solution time.

When using the cuts, the main idea was to reduce the interval [ZINF , ZSUP ] by using
a constraint on the score of the generated columns. Reducing this interval by a half at
each iteration ensures a rapid convergence. The innovation of the new approach is to use
a lower bound on the score instead of an upper bound to reduce this interval. As it will be
shown in the following sections, this new approach considerably reduces the solution time
while also keeping the same number of iterations.
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The new solution approach combines branching decisions and cuts. Branching decisions
remove integer solutions from the domain of feasible solutions of the master problem (see
Figure 3) which was not the case when using cuts. Figure 3 presents a schematization in
2 dimensions of the domain of feasible solutions delimited by the constraints of the master
problem and those of subproblem k. In this figure, regions (1) and (3) show the parts of
the domain that are removed by the branching decision and the cut, respectively.
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  lp

Subproblem

(2)

Score

Constraints

X

Cut on Subproblem

(3)

Master Problem
Constraints

Branching Decision

(1)

Figure 3: Illustration of the new branching decision and the domain of feasible solutions

This branching strategy consists in imposing in subproblem k the generation of columns
whose score is greater than or equal to a given value denoted K�, where K� represents the
minimum score of the schedules to be generated by subproblem k when the �th branching
decision is taken. As in the addition of the cut, the branching decision will be implemented
directly into the solution of the longest path problem by using a new resource. Since the
implementation of the longest path algorithm with resource constraints does not take into
account the lower bound on the resource, the new resource has been implemented as follows:

−Wi(k) ≤ −K� ∀i ∈ Nk
k (18)

This new resource is now negatively correlated with some of the resources and principally
with the reduced cost. Therefore, it permits this time a more aggressive elimination of
labels by dominance in the subproblem (see Figure 4). Thus, the imposition of this resource
reduces considerably the number of sub-paths generated by the subproblem. This will
permit improving the solution time of the longest path problem with resource constraints.
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Reduced
Cost

Score

 Non dominated
  label

Figure 4: Dominance with the new strategy

4.3 Some propositions

In order to detail the application of this new branching strategy, we first present three
propositions.

Proposition 1

Let (LP 1
k ) be the linear relaxation problem obtained from (LP 0

k ) after adding a first branch-
ing decision

Wi(k) ≥ K1 ∀i ∈ Nk
k (19)

where K1 = ZLP 0
k
. Then one of the two following assertions is true.

Either (LP 1
k ) is infeasible and ZLP 0

k
represents an upper bound on the optimal

solution of (IPk);

Or (LP 1
k ) is feasible, and the solution is a convex combination of schedules

with an identical score which is equal to ZLP 1
k
= ZLP 0

k
.

Proof

Since ZLP 0
k
is the optimal value of (LP 0

k ), it represents an upper bound on the value
of the optimal solution of IPk. Since LP 1

k is more constrained than LP 0
k , the relation

ZLP 1
k

≤ ZLP 0
k
is true. Because of the addition of the resource constraint, the optimal
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solution of (LP 1
k ) will be a convex combination of schedules whose scores are greater than

or equal to ZLP 0
k
. Since the value of this convex combination must be less than or equal to

ZLP 0
k
, then all the schedules of the convex combination have the same score which is equal

to ZLP 1
k
= ZLP 0

k
. If such a convex combination does not exist, then (LP 1

k ) is infeasible and
K1 = ZLP 0

k
represents the best possible score that a schedule could have in the feasible

solution of IPk. Thus K1 represents an upper bound on the optimal solution of (IPk). �
Let ZINF 0

k
be the value of the column having the lowest score in the basis of the optimal

solution of the first linear relaxation LP 0
k .

Proposition 2

Let (LP l+1
k ) be the linear relaxation problem obtained from (LP l

k) after adding a new
branching decision Wi(k) ≥ Kl ∀i ∈ Nk

k and ZLP l+1
k

be the value of the optimal solution

of (LP l+1
k ), where �ZINF 0

k
�+ 1 ≤ Kl ≤ ZLP l

k
. Then one of the two following assertions is

true.

1. If (LP l+1
k ) is infeasible, thenKl represents a new upper bound on the optimal solution

of (IPk);

2. If (LP l+1
k ) is feasible, then ZLP l+1

k
represents a new upper bound on the optimal

solution of (IPk).

Proof

If it is impossible to find a convex combination of schedules whose scores are greater
than or equal to Kl, then (LP l+1

k ) is infeasible and Kl = ZLP l
k
represents the best possible

score that a schedule could have in the feasible solution of (IPk). Therefore, Kl represents
an upper bound on the optimal solution of (IPk). On the other hand, if l = 0 and (LP l+1

k )
is feasible, then the following relation K0 ≤ ZLP 1

k
≤ ZLP 0

k
is true, as explained in the proof

of Proposition 1. Since ZLP 1
k
represents the best possible score that a schedule could have

in the feasible solution of IPk, then ZLP 1
k
represents a new upper bound on the optimal

solution of (IPk). Recursively, it can be shown that the relation K1 ≤ ZLP 2
k
≤ ZLP 1

k
is

also true, and finally that the relation Kl ≤ ZLP l+1
k

≤ ZLP l
k
is true. �

Proposition 3

Let (LP l+1
k ) be the relaxed problem obtained from (LP l

k) after adding the constraint

Wi(k) ≥ Kl ∀i ∈ Nk
k . (20)

Let ZINF l+1
k

be the score of the variable having the lowest score in the convex combination
of that solution. To make the search more efficient, the value of Kl+1 in the next branching
decision must fall into the following range:
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�ZINF l+1
k

�+ 1 ≤ Kl+1 ≤ ZLP l+1
k
.

Proof

From Proposition 2, it has been proved that ZLP l+1
k

is an upper bound on the solution of
IPk. Any Kl+1 > ZLP l+1

k
results in an infeasible solution. If the value of Kl+1 ≤ ZINF l+1

k
,

then the optimal solution obtained for LP l+1
k remains feasible for LP l+2

k and thus becomes
an optimal solution; therefore, the branching decision would be of no utility. �

4.4 Developing a branch and cut strategy

The analysis of the solutions obtained by the previous approach using cuts on several
instances reveals that most of the time the optimal solution of the MIPk problem is found
in the interval: [

Z0
INF , ZLP 0

k

]
.

Moreover, it has been noticed in Gamache et al. [8] that most of the time when the gap
between Z0

INF and ZLP 0
k
was very large, the integrality gap was also very large. In these

cases, sometime more than 10 cuts were needed to find the optimal solution to MIPk.

Based upon these observations and the third proposition presented in the previous
subsection, the following strategy has been used when applying the branching decisions:

K0 = �Z0
INF �+ 1 < K1 < K2 < · · · < Kl < Kl+1 < · · · ≤ ZLP 0

k
,

where K1 = �Z1
INF �+ 1, K2 = �Z2

INF �+ 1, etc.

If the value of an optimal solution is less than or equal to Z0
INF , then the solution

of the problem becomes infeasible with the addition of the constraint associated with the
branching decision. In this case, the branch can be truncated and another branch is created
from the parent node. In this new branch, the cut is used with Z0

INF as a new upper bound
on IPk. This upper bound is much better than the one used before since Z0

INF < �Zk
LP �,

which results in faster solution times. In the opposite case, i.e. if a convex combination
of schedules having a score greater than or equal to Z0

INF can be found, then the branch
using the cut can be truncated. This propriety of eliminating one of the two branches at
each level of the branching tree is very efficient and limits the search in the branch and
bound tree to only one possibility.

The next section will present tests and results of the application of this new branching
decision compared with the use of the previous cuts on some real problems.
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5 Tests and results

The new branching strategy has been applied on real instances from Air Canada for the
months of October and December. Six problems were tested. These problems deal with
the construction of monthly work schedules for pilots for different fleets: Airbus A320,
Airbus A340, Boeing 767, and DC9. These problems have been chosen because they were
known for being difficult to solve and requiring the most number of cuts.

Table 1 shows the results obtained from both strategies: the cut and the branching
decision. The first column indicates the name of the problem; the number in parenthesis
indicates the number of pilots (iterations) whose schedule construction necessitates the
use of cuts. Each of these iterations may necessitate more than one cut. The next two
columns present the number of cuts used and the total CPU time needed during the use
of these cuts. The same information is presented for the new branch and cut strategy in
columns 4 and 5. Finally, the last two columns show the improvement of both the value
of the solution (score of employee) and the solution time between the new branch and cut
strategy and the cut. The tests were conducted on a Sun Ultra 10.

Problem Cut Branch and cut Improvement(%)

(Pilots using cuts) Number CPU(s) Number CPU(s) (CPU) Solution

OCT-340-ca(4) 12 63.8 11 27.7 57 17

OCT-767-ca(8) 21 411.45 16 278.7 33 71

OCT-dc9-ca(4) 7 32.4 4 4 88 0

OCT-320-ca(11) 51 1301 39 639 51 101

DEC-767-ca(8) 68 15407 12 2103 87 7

DEC-320-ca(17) 130 15312 26 4743 69 13

Table 1: Comparison between the cut and the branching strategy (October 2000)

One can notice that a clear improvement on the solution time (between 33% and 88%)
has been obtained when using the new branch and cut strategy. In addition to the reduction
of the solution time per iteration, the number of nodes in the branch and cut tree has also
decreased. This improvement is mostly due to the presence of large integrality gaps in some
of these problems and also because the optimal solution is very close, in most of the cases,
to the value Z0

INF . Moreover, the branch and cut strategy results in an improvement
of the solution for some pilots compared to the same solution obtained when using the
cuts. Since the resource used for the cut creates a huge number of non-dominated labels,
a heuristic approach has been used in order to select only a subset of these labels. The
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new approach based upon branch and cut decisions involves the use of a resource that
permits an efficient dominance. Since the number of labels was much smaller when using
the branching decision strategy, all of them were kept during the solution process of the
subproblem which resulted in the generation of schedules having a better score.

However, the improvement of the solution makes the comparison of the solution time
more difficult to interpret. Indeed, a better solution for a pilot may influence the solution
time for the search of a feasible solution for the most junior employees. The score for more
junior employees may differ and a comparison between the two solution processes depends
on a supplementary factor. In order to make the comparison possible, two series of tests
have been conducted using the data for the month of December for the Airbus A320 fleet
because this problem is the one having the biggest number of pilots.

For the first series of tests, 24 problems needing at least 1 cut each were used. In each
of these problems, the solution process was stopped after the construction of the schedule
corresponding to the iteration where previously the cut was needed and both approaches
were compared. Table 2 presents the results of this comparison between the two strategies.
One can notice that the new strategy is more efficient than the strategy using cuts. The
number of branch and cut decisions is smaller than the number of cuts and the time spent
for each branching decision is also smaller that the time spent for each cut. Moreover, it
is also interesting to indicate the percentage of the integrality gap in order to show the
efficiency of the branch and cut strategy in the cases where huge gaps were encountered.
Table 2 presents the mean and also the maximum value of these gaps. One can notice that
the branch and cut strategy is very efficient when huge integrality gaps are observed. In
several cases, a gap greater or equal to 90% has been reduced using only one branching
decision.

Number Cut Branch and cut Improvement Gap (%)

of problems Number CPU(s) Number CPU (s) % (CPU) Mean Max

9 20 2253 10 1196 47 2.5 6.1

5 39 4604 5 458 90 64.9 99.2

5 22 1464 5 378 74 71.2 93.4

5 8 792 5 512 36 62.4 99.1

Table 2: Comparison between the cut and the branching strategy: Airbus 320

Indeed, for some of the problems that have been tested, the number of branching
decisions compared to the number of cuts has been reduced by a factor of almost 8. In
most of these problems, the value of the optimal solution is equal to the value of the column
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having the smallest score in the basis of the optimal solution of the linear relaxation before
the addition of branching decisions.

In the second series of tests, for each iteration k where a cut was used in the old solution
approach, the k− 1 schedules obtained previously were kept. The new approach using the
branch and cut decision started directly at iteration k with k−1 schedules (found with the
other solution approach) already assigned to the k−1 most senior employees. This process
was repeated every time a cut was used, which produced as many problems as there were
cuts. This way, a specific comparison between the two strategies is possible each time a
cut is used. Table 3 shows the results of both strategies (cut and branching) on 9 different
problems where at least 5 pilots needed a cut.

Number Cut Branch and cut Improvement

of problems Number CPU(s) Number CPU(s) % (CPU)

5 39 4604 5 458 90

5 40 4646 5 529 89

5 10 409 5 210 49

5 10 983 6 725 28

5 8 441 5 234 47

5 21 1259 5 521 59

5 8 486 7 316 35

5 8 844 6 429 49

5 39 4489 5 436 90

Table 3: Comparison between the cut and the branching strategy: Airbus 320

Once more, it can be seen that the use of the branching strategy instead of the cut
improves the solution of the longest path problem with resource constraints when the
solution of the relaxation of the linear program is a convex combination of schedules having
different scores.

6 Other applications

The branch and cut strategy described in Section 4 can be applied to several other problems
providing that they can be formulated as the linear program described by equations (1)
to (4) and solved by the column generation technique which is imbedded in a branch-and-
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bound algorithm, and that a bound on some subproblems can be obtained from ZLP of the
master problem. This strategy is very effective in improving the bound given by the linear
program relaxation as long as the solution of this relaxation is a combination of columns
having different costs. Very large improvements may be obtained with few branch and cut
decisions.

6.1 Problems having only one subproblem

The branch and cut strategy can be applied in a column generation context having only
one subproblem. One typical example is the shortest path problem with additional linear
constraints (Minoux and Gondran, 1979). This problem can be solved by column gen-
eration with the additional constraints in the master problem and a single shortest path
subproblem. The branch and cut decision will add a single resource constraint to the
subproblem. Such a problem is easy to solve particularly when the resource is positively
correlated with the cost function to minimize.

In this case, the solution strategy is similar to the one presented for the PBS problem.
Similar solution time reductions are expected.

6.2 Problems having several subproblems

In the PBS context, the branch and cut strategy has been applied efficiently in a column
generation approach having several subproblems. The particularity of this problem is that
at each iteration, the master problem provides a bound for the subproblems. This is due
to the linear relaxation of the integrality constraints of the master problem ZLP (MP ) but
also to its formulation. In such problems, the following relations exist:

Z1
SP ≤ ZMP (21)
Zk

SP = 0 ∀k ≥ 2 (22)

where ZMP is the optimal solution of the restricted master problem and Zk
SP the values of

the columns generated by subproblem k.

This relation allows us to use Z1
SP in branch and cut decisions. Other applications

have the same type of formulation where there is only one subproblem having costs. Other
applications have the same type of formulation. This is the case for the travelling sales-
man problem. Wong (1980), Langevin et al. (1988) and Loulou (1988) have presented
a formulation of this problem which can be separated into a master problem and 2k-1
subproblems, where k represents the number of nodes in the graph. The first subprob-
lem consists of finding for the travelling salesman a route visiting all nodes starting from
node 1 (the depot) and returning to that node. This route is found by solving a shortest
path problem. Two subproblems (SP+

i and SP−
i ) are associated with each node i of the

graph, where i 
= 1. In SP+
i , one unit of commodity flow (C+

i ) is transported from node
1 to node i, while in SP−

i , one unit of commodity flow (C−
i ) leaves node i and returns to
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node 1. Flow conservation constraints at each node are respected in each subproblem. In
this formulation, the objective function of the master problem depends only on the vari-
ables of the first subproblem. The master problem consists of minimizing the route of the
travelling salesman while imposing two conditions: (1) the route must visit all the nodes
of the graph and (2) for each arc of the graph, the values of variables associated with the
commodities C+

i and C−
i , i = 2, .., k, must be less than or equal to that of the variable of

the route.

6.3 Minmax problems

The proposed branch and cut method can also be applied to Min Cmax optimization
problems. A first application is the project management problem with time windows
and resources constraints. This problem is called in the literature “Generalized Resource
Constrained Project Scheduling Problem”. The objective function of this problem can be
formulated as follow:

ZMP = max
k
ZSPk

where ZSPk
is the value of the subproblem k’s solution. This class of problems can be

solved by column generation, where the resource constraints are included into the master
problems, and both the precedence constraints and the time windows are taken into account
in the subproblems.

The technique of cuts on the subproblem has also been used by Milon et al. (1999)
in the context of minimizing the duration of project management problems (Min Cmax).
These authors have used the solution of the linear relaxation as a lower bound in order
to generate columns with a cost greater or equal to Z∗

LP . This is done by tightening
the windows of the last activity of the project in order to generate columns with lower
cost. This lower bound is taken into account by adding a delay on the last task without
affecting the time windows of other activities. Thus, the columns with a cost lower than
Z∗

LP are penalized without being forbidden in the list of generated columns. The new
branch and cut strategy could be used to solve this problem by imposing the constraint
that the subproblem generate columns having a cost less than a given value.

The branch and cut strategy can be used in a second application: the scheduling prob-
lem. The parallel machine problem with Cmax as an objective has been solved by Martello
et al. (1992) by using lower bounds based on the Lagrangian relaxation and on the annex-
ation of these bounds. The relation between Cmax and the bound obtained from relaxation
is used to compute cuts on the objective function. They have been used in an enumera-
tion and elimination approach which was found to be more efficient than all the algorithms
found in the literature. This problem can be solved by column generation where integrality
constraints are relaxed. The new branch and cut strategy can also be used in this context
in order to find an integer solution when the linear relaxation is a convex combination
of columns having different scores. Gélinas (1997) has solved the Job-Shop Scheduling
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Problem with resource constraints by using column generation. In her formulation, the
master problem chooses a convex combination of schedules generated in such manner as
to respect the preceding constraints by minimizing the completion time of the machines.
In such problem, the resource constraints are transferred to the subproblems. For each
machine, there is a subproblem representing a scheduling problem with time windows. We
have the following relation (ZSPj ≤ ZMP ) between the objective of a subproblem and the
objective of the master problem and the branching on ZMP induces constraints on ZSPj

for all subproblems.

7 Conclusion

In this paper, a new branch and cut strategy has been presented. This new strategy,
which is applied on subproblems during the solution of a large-scale linear program by a
column generation technique, has been used to improve the solution time of large-scale
problems having a particular structure. The branch and cut strategy has been applied on
preferential bidding problems that are encountered in the airline industry. These tests have
shown that the new branch and cut strategy provides important improvements compared
to a similar strategy based on cuts (Gamache et al., 1998b). First, it improves the solution
time because the resource used in the branch and cut strategy is positively correlated with
other resources of the subproblem which was not the case when using the cuts. Secondly,
each branch and cut decision is very efficient because it allows either the generation of
an optimal integer solution or the production of an new upper bound on the value of the
optimal solution of MIPk. Thirdly, the new approach has produced better schedules for
many pilots on different instances from Air Canada, which invalidates the upper bound
produced by the old cut due to a non optimal solution of the subproblem.

Moreover, it has been shown that the branch and cut strategy developed for the PBS
problem can also be applied to different problems having the same particular structure.
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