
Les Cahiers du GERAD ISSN: 0711–2440

A Note on Formulations of
Static and Dynamic Berth
Allocation Problems

Pierre Hansen
Ceyda Oğuz

G–2003–30

May 2003
Revised: November 2003

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la
recherche sur la nature et les technologies.

A Note on Formulations of Static and Dynamic

Berth Allocation Problems

Pierre Hansen
GERAD and Department of Quantitative Methods in Management

HEC Montréal, Canada

Ceyda Oğuz
Department of Logistics

The Hong Kong Polytechnic University
Kowloon, Hong Kong SAR

May, 2003
Revised: September, 2003

Les Cahiers du GERAD

G–2003–30

Copyright c© 2003 GERAD

Abstract

The berth allocation problem is to allocate berths (i.e., sections of the quayside)
to ships arriving in a container port in order to minimize the sum of their waiting
and cargo handling times. In the static case, ships are assumed to arrive before the
berths become available; in the dynamic case they can arrive before or after. We dis-
cuss recent models for both problems, correct one formulation, and provide a compact
reformulation for the dynamic case. The computational results for problems that are
moderate in size but realistic, with up to 10 berths and 50 ships, using both formula-
tions and CPLEX, are reported.

Keywords: berth allocation, berthing, total completion time, unrelated parallel
machines, release date.

Résumé

Le problème d’ordonnancement de l’accostage consiste à allouer des sections de
quais aux bateaux arrivants en un port de conteneurs de façon à minimiser la somme des
temps d’attente, de déchargement et de chargement. Pour le cas statique, les bateaux
sont supposés arriver avant que les sections de quais ne deviennent disponibles; dans le
cas dynamique ils peuvent arriver avant ou après. On discute des modèles récents pour
les deux problèmes, corrige une formulation et présente une reformulation compacte
pour le cas dynamique. Des résultats de calculs sont présentés pour des instances de
taille modérée mais néanmoins réaliste, avec jusqu’à 10 sections de quais et 50 bateaux;
on utilise les deux formulations et CPLEX.

Mots clés : ordonnancement, accostage, temps total d’exécution, machines parallèles
non corrélées, date de début.

Les Cahiers du GERAD G–2003–30 – Revised 1

1 Introduction

The berth allocation problem is to allocate berths (i.e., sections of the quayside) to ships
arriving in a container port in order to minimize the sum of their waiting and cargo handling
times. As container transportation grows rapidly, and ships spend a large amount of their
time in port at the cost of several thousand US dollars per hour (Peterkovsky and Daganzo,
1990; Ward, 2002), this problem is of major importance in port operations (Meersmans
and Dekker, 2001). It has recently been studied using mathematical programming and
genetic search by Imai et al. (1997, 2001), Lim (1998), Nishimura et al. (2001), and Park
and Kim (2002). With the exception of the subgradient method of this last paper, applied
to small problems with up to seven ships, only heuristics are available for the dynamic case
in which ships arrive before or after berths become available.

The paper is organized as follows. The model for the static berth allocation problem
of Imai et al. (1997, 2001), where all ships are assumed to have reached the port before
the berths become available, is recalled in the next section. A correction is then made
in the expression of the objective function of Imai et al. (2001). An extension of the
dynamic berth allocation problem (Imai et al., 2001) is discussed in Section 3. A compact
reformulation is proposed in Section 4, together with some further extensions: taking into
account safety constraints due to a ship’s length or draft, the due dates for the departures of
some or all ships and a bounded planning horizon. Computational results for problems that
are moderate in size but realistic, with up to 10 berths and 50 ships, using both formulations
of the dynamic berth allocation problem and CPLEX, are presented in Section 5. Brief
conclusions are given in the last section.

2 The static berth allocation problem

Let us assume that:
(a) A set B of berths, indexed by i = 1, 2, . . . , I, is available in a container port for

receiving ships, from time Si, i = 1, 2, . . . , I, respectively onward;
(b) A set V of ships, indexed by j = 1, 2, . . . , T , gets to the port at arrival times Aj ,

j = 1, 2, . . . , T , respectively, and may have to wait before being handled;
(c) Each berth can handle one ship at a time or remain idle for some time;
(d) Any ship j can be handled at any berth i, with a given handling time cij , i =

1, 2, . . . , I, j = 1, 2, . . . , T , depending on both the ship and the berth;
(e) The total completion time, i.e., waiting and handling time for all ships is to be

minimized;
(f) All ships arrive before any berth becomes available, i.e.,

max
j

Aj ≤ min
i

Si. (1)

Due to this last assumption, all berths will handle ships consecutively; i.e., without idle
time between ships. If this assumption does not hold, the possible idle time must be
taken into account and the dynamic berth allocation problem is obtained. Observe that

Les Cahiers du GERAD G–2003–30 – Revised 2

the model is short-term and deterministic. Moreover, fractional assignments are excluded;
i.e., the uncommon practice of changing a ship’s berth while unloading or loading it is
prohibited.

Consider, then, the reverse order in which ships j are handled at berth i. To that effect,
introduce binary variable xijk, such that

xijk =
{

1 if ship j is the kth last to be handled at berth i,
0 otherwise.

At each berth, let us assign the reverse order at which ships will be handled with an
index k such that k ∈ O = {1, 2, . . . , T}. Notice that this reverse order is unknown. It is
then easy to see that the total completion time of all ships handled at berth i will be∑

j∈V

∑
k∈O

(Si − Aj)xijk +
∑
j∈V

∑
k∈O

kcijxijk (2)

where the first term corresponds to the waiting time for all ships handled there before
berth i becomes available, and the second term is the sum for all such ships of the handling
time and waiting time of the k − 1 ships still to be handled while the kth ship is being
attended to. This is illustrated in Figure 1, where Wj denotes the waiting period and Hj

the handling period for ship j, j = 1, 2, . . . , T , and TCT denotes total completion times.
Note that ships may be indexed in the non-decreasing order of their arrival times, but this
is not mandatory.

A1
=
A3

Si = 0A2A4
5 10 15 Time

W1 H1 Ship 1

W2 H2 Ship 2

W3 H3 Ship 3

W4 H4 Ship 4

4 16 18

Figure 1: Example of ships handled at berth i for SBAP: A1 = −1, A2 = −2, A3 = −1,
A4 = −3, W1 = 1, H1 = 4, W2 = 6, H2 = 6, W3 = 11, H3 = 6, W4 = 19, H4 = 2,
TCT=55.

The static berth allocation problem can be expressed as follows, which is done as part
of a more general model in Imai et al. (1997).

(SBAP) Minimize
∑
i∈B

∑
j∈V

∑
k∈O

(kcij + Si − Aj)xijk (3)

Les Cahiers du GERAD G–2003–30 – Revised 3

subject to
∑
i∈B

∑
k∈O

xijk = 1 ∀j ∈ V, (4)

∑
j∈V

xijk ≤ 1 ∀i ∈ B, k ∈ O, (5)

xijk ∈ {0, 1} ∀i ∈ B, j ∈ V, k ∈ O. (6)

Observe that as the coefficients of the variables xijk in the objective function (3) decrease
when k increases, the ships will be assigned to consecutive positions at each berth. Note
also that ships will be processed at each berth in increasing order of the cij in the optimal
solution. Replacing the pairs of indices i and k by the new indices n = 1, 2, . . . , I × T ,
noting by N the resulting index set and setting

Djn = kcij + Si − Aj ∀j ∈ V, n = (i − 1)T + k ∈ N ∀i ∈ B, k ∈ O (7)

gives the new expression
(SBAP′) Minimize

∑
j∈V

∑
n∈N

Djnxjn (8)

subject to
∑
n∈N

xjn = 1 ∀j ∈ V, (9)

∑
j∈V

xjn ≤ 1 ∀n ∈ N, (10)

xjn ∈ {0, 1} ∀j ∈ V, n ∈ N, (11)

which is a two-dimensional assignment problem and easily solved by for example, the poly-
nomial algorithm of Jonker and Volgenant (1987) or the “auction” algorithm of Bertsekas
(1992).

As already noted by Imai et al. (1997), SBAP is a particular case of a known scheduling
problem; i.e., minimizing the mean completion time for independent tasks on unrelated
parallel machines. A solution similar to the one given above is presented in Bruno et al.
(1974).

In Imai et al. (2001) a variant of the SBAP model is proposed: instead of interpreting
variables xijk equal to 1 as indicating that the ship j is handled at berth i in the kth last
position, they are considered to indicate that this ship is handled as the kth ship at berth i.
We will use x′

ijk in this case.
The following model is presented:

Minimize
∑
i∈B

∑
j∈V

∑
k∈O

{(T − k + 1)cij + Si − Aj}x′
ijk (12)

Les Cahiers du GERAD G–2003–30 – Revised 4

subject to constraints (4) to (6) with x′
ijk instead of xijk. This return to the order in time

instead of the reverse order of handling ships at berths presents two difficulties. First, the
number Ti of ships handled at berth i should be used in (12) instead of T for all i, and is
not known beforehand. It can be determined by using further equations, i.e.,

Ti =
∑
j∈V

∑
k∈O

x′
ijk ∀i ∈ B, (13)

but then the model becomes non-linear in objective.
Second, while in model (3)–(6) the coefficients of variables xijk increase with k for a

fixed i and j, which ensures that a ship cannot be handled at a given berth in the kth last
position unless another ship is handled in the (k − 1)st position at that berth, in model
(12), (4)–(6) the coefficients of variables x′

ijk decrease when k increases. This implies that
constraints (4) to (6) are not sufficient to ensure that a ship will not be handled at a given
berth in the kth first position while no ship is handled in the (k−1)st first position at that
berth in the solution. Additional constraints are then needed and can be written as∑

j∈V

x′
ijk ≤

∑
j∈V

x′
ij,k−1 ∀i ∈ B, k ∈ O \ {1}. (14)

Then if no ship is handled in the (k−1)st position at berth i, the right-hand side is equal
to zero, which implies the left-hand side is also null, and that no ship is handled in the kth
position at that berth. Again, it is possible to reduce the problem to a two-dimensional
one. Let n be defined as above. Then, taking

D′
jk = (T − k + 1)cij + Si − Aj ∀j ∈ V, n = (i − 1)T + k ∈ N (15)

one gets
(SBAP′′) Minimize

∑
j∈V

∑
n∈N

D′
jnx′

jn (16)

subject to
∑
n∈N

x′
jn = 1 ∀j ∈ V, (17)

∑
j∈V

x′
jn ≤ 1 ∀n ∈ N, (18)

∑
j∈V

x′
jn ≤ ∑

j∈V

x′
j,n−1 ∀n ∈ N, n mod (T) �∈ {1}, (19)

x′
jn ∈ {0, 1} ∀j ∈ V, n ∈ N. (20)

where n mod (T) denotes the remainder of n after division by T .
However, the first difficulty remains. It is not innocuous, as it may affect the optimal

solution and not only its value. To illustrate, consider the following three ships and two

Les Cahiers du GERAD G–2003–30 – Revised 5

Table 1: Handling times
Ship

Berth 1 2 3
1 10 10 10
2 11 11 11

berths problem, with Si = 0 for i = 1, 2 and Aj = 0 for j = 1, 2, 3. Handling times are
given in Table 1.

Coefficients Djn of model (8)–(11) are given in Table 2. The optimal solution will be
x∗

111 = x∗
122 = x∗

231 = 1, and the other x∗
ijk = 0 (or equivalently x∗

11 = x∗
22 = x∗

34 = 1, and
the other x∗

jn = 0), with a total completion time of 10 + 2 × 10 + 11 = 41.

Table 2: Coefficients Djn of variables xjn in model (8)–(11)

Berth 1 2
Ship Berth×position (reverse) 1 2 3 4 5 6

1 10 20 30 11 22 33
2 10 20 30 11 22 33
3 10 20 30 11 22 33

Coefficients D′
jn of model (16)–(20) are given in Table 3. With this model, the optimal

solution will be x′∗
111 = x′∗

122 = x′∗
133 = 1, and the other x′∗

ijk = 0 (or equivalently x′∗
11 = x′∗

22 =
x′∗

33 = 1, and the other x′∗
jn = 0). The value of this solution is 3 × 10 + 2 × 10 + 10 = 60,

which is not optimal.

Table 3: Coefficients D′
jn of variables x′

jn in model (16)–(20)

Berth 1 2
Ship Berth×position (direct) 1 2 3 4 5 6

1 30 20 10 33 22 11
2 30 20 10 33 22 11
3 30 20 10 33 22 11

3 The dynamic berth allocation problem

If assumption (f) of the SBAP is relaxed, i.e., some ships may arrive after some or all berths
become available, the dynamic berth allocation problem (DBAP) arises. This problem is
NP-hard even if there is a single berth. Indeed, it then reduces to minimizing the total

Les Cahiers du GERAD G–2003–30 – Revised 6

completion time with release dates on a single machine. This last problem has been shown
to be NP-hard by Lenstra et al. (1977). As a consequence, the first come, first served rule,
which may be adopted for reasons of fairness, i.e., to avoid overpassing between ships, is
not optimal for the criterion of total completion time (contrary to what was stated in a
recent survey on the transshipment of containers, by Vis and de Koster, 2003, p3). This is
easily seen with the following one berth, two ships example: Let A1 = 0, A2 = 1, c11 = 10,
c12 = 1 and S1 = 0. If ship 1 is handled first, from s11 = 0 onwards, ship 2 is handled from
s12 = 10, and the total completion time is 10 + 9 + 1 = 20. If the second ship is handled
first at s11 = 1, and the first one at s12 = 2, the total completion time is 1 + 2 + 10 = 13
(see Figure 2). This example also shows another counter-intuitive fact: even if a ship has
already arrived at the port, it may be better to keep the berth idle for some time in order
to minimize the total completion time, than to handle it immediately (when a small ship
will arrive soon).

0 5 10 Time

I H2 Ship 2

W1 H1 Ship 1 TCT=14

W2 H2 Ship 2

H1 Ship 1 TCT=21

Figure 2: An example of DBAP, where overpassing is beneficial and the berth may be kept
idle even if a ship is waiting (which is noted by I).

If Aj > Si for some ships and berths, the possibility of idle periods at some berths
must be taken into account. This is done in Imai et al. (2001) through the introduction
of additional continuous variables yijk representing the length of the idle period at berth i
before the arrival of ship j, which will be handled in kth position. Constraints for giving
the right values to these variables are also added.

As the same error as in the SBAP model is made in the DBAP model of Imai et al.
(2001) (and also in a recent paper by the same authors, i.e., Imai et al., 2003), we present
this model after due corrections have been made. Therefore, we again use the reverse order
for the position of the ships at a berth in contrast to Imai et al. (2001), who attempted
to use the direct order. The continuous variables yijk then represent the length of the idle
period at berth i before the arrival of ship j, which will be handled in the kth last position.

Les Cahiers du GERAD G–2003–30 – Revised 7

The corrected DBAP model is the following:

(DBAP) Minimize
∑
i∈B

∑
j∈V

∑
k∈O

(kcij + Si − Aj)xijk +
∑
i∈B

∑
j∈V

∑
k∈O

kyijk (21)

subject to
∑
i∈B

∑
k∈O

xijk = 1 ∀j ∈ V, (22)

∑
j∈V

xijk ≤ 1 ∀i ∈ B, k ∈ O, (23)

∑
l∈V

∑
m∈Pk

(cilxilm + yilm) + yijk − (Aj − Si)xijk ≥ 0 ∀i ∈ B, j ∈ Wi, k ∈ O,(24)

xijk ∈ {0, 1} ∀i ∈ B, j ∈ V, k ∈ O, (25)
yijk ≥ 0 ∀i ∈ B, j ∈ V, k ∈ O. (26)

where Pk = {m ∈ O : m > k} and Wi = {j ∈ V : Aj > Si}.
The total completion time of all ships handled at berth i is

∑
j∈V

∑
k∈O

{(kcij + Si − Aj)xijk + kyijk}. (27)

This is illustrated in Figure 3.

A1
Si = 0 A2 A3 A4

5 10 15 Time

W1 H1��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� Ship 1

W2 H2
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� Ship 2

I H3��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� Ship 3

W4 H4
�
�
�

�
�
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
��

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� Ship 4

4 18 20

Figure 3: Example of ship handling at berth i for DBAP: A1 = −1, A2 = 2, A3 = 12,
A4 = 16, W1 = 1, H1 = 4, W2 = 2, H2 = 6, W3 = 0, H3 = 6, W4 = 2, H4 = 2, TCT=23.

When a ship arrives at this berth, it may either (i) have to wait, which is noted by
Wj , as Aj < Si (e.g., for j = 1 in Figure 3) or as the berth is occupied (e.g., for j = 2
in Figure 3) or because a ship with a short handling time will be arriving soon, or (ii) be

Les Cahiers du GERAD G–2003–30 – Revised 8

processed immediately as the berth is unoccupied. In this last case, an idle period for the
berth (which is noted by I and may be equal to 0) immediately precedes the handling of
the ship (e.g., for j = 3 in Figure 3). The total completion time for the ships handled at
berth i, represented by the shaded area in Figure 3, is given by (27) and may be explained
as follows:

Let
j∗i (k) = j ∈ V |xijk = 1 (28)

denote the index of the ship handled in the kth last position at berth i for k = 1, 2, . . . , Ti.
Moreover, let Oi = {1, 2, . . . , Ti} for all i ∈ B. Consider first the sum for all such ships
that arrive before Si of their waiting time until berth i becomes available, where W̄i =
{j ∈ V : Aj > Si}: ∑

k∈Oi

∑
j∗i (k)∈V \W̄i

(Si − Aj∗i (k)). (29)

This sum is represented by the areas of all shaded rectangles to the left of the vertical line
passing through Si in Figure 3. Then, focus on the sum for all ships handled at i of the
difference between their departure time and Si (which includes waiting, handling, idle and
those periods before a ship arrives):

∑
k∈Oi

∑
j∗i (k)∈V

(dj∗i (k) − Si) (30)

where the departure time dj∗i (k) corresponds to the abscissa of the end of a horizontal seg-
ment in the upper staircase line of Figure 3, and (30) corresponds to the area below that line
and to the right of Si in that figure. Partitioning this area into rectangles bounded by the
abscissae axis, the upper staircase line and the vertical lines at the abscissae corresponding
to the successive arrival and departure times shows that (30) is equal to

∑
k∈Oi

k(yij∗i (k)k + cij∗i (k)). (31)

Summing (29) and (31) gives an overestimate of the total completion time, as ships
with j ∈ W̄i arrive after Si. A correction of

∑
k∈Oi

(Aj∗i (k) − Si) (32)

must therefore be subtracted from this sum. It corresponds to the area bounded by the
vertical line through Si, the abscissae axis and a staircase line immediately below and to
the right of each of the shaded rectangles corresponding to handling a ship at berth i in
Figure 3.

Les Cahiers du GERAD G–2003–30 – Revised 9

Summing then gives

∑
k∈Oi

⎧⎨
⎩

∑
j∈V

(Si − Aj∗i (k)) + k(yij∗i (k)k + cij∗i (k))

⎫⎬
⎭ (33)

which is the same as (27) after the decision variables are fixed.
The constraints of the DBAP model will be the same as those of the SBAP model, except

that we have to define idle periods at berth i as a constraint in DBAP. The constraints
(24) that define idle periods at berth i are easier to explain. When the kth last ship to be
handled arrives, the time during which berth i has been available is

Aj∗(k) − Si (34)

and it has been used or idle until the departure of the ship handled at the (k + 1)st last
position, for a time of 0 if k = Ti and

∑
m∈Oi,m>k

(yij∗i (m)m + cij∗i (m)) (35)

otherwise.
Subtracting (35) from (34) corresponds to the constraints (24) on the length yijk of the

idle period before handling the kth last ship, after the decision variables have been fixed.
Unfortunately, the size of problem (21)–(26) rapidly increases with the number of berths

and ships considered. There are IJT = |B||V ||O| binary variables xijk and as many
continuous variables yijk, J constraints (22), IT constraints (23) and IJT constraints (24)
(at most, as some j ∈ V \Wi for some i and then no idle time yijk occurs). For a realistic
example with I = 10 and J = 50, as used in Imai et al. (2001), there are 25,000 0-1
variables, 25,000 continuous ones, 50 constraints (22), 500 constraints (23) and 25,000
constraints (24).

Such numbers are large for a mixed-integer program, even if constraints (22) and (23) are
multiple-choice ones, which can be efficiently exploited in algorithms for mixed-integer pro-
gramming with special ordered sets (Forrest et al., 1974) as implemented in most standard
packages. In the next section we will present an equivalent, more compact, formulation.
In order to take advantage of the assignment-type structure of constraints (22) and (23),
as in the SBAP, Imai et al. (2001) moved constraints (24) into the objective function
using Lagrangian relaxation. Then, for the yijk only the lower bounds of 0 remained in
the constraint set. This implies that these variables will be equal to 0 at the optimum if
their coefficient in the Lagrangian relaxation is positive or to ∞ if it is negative (indicating
infeasibility). Imai et al. (2001) set all yijk at 0. The resulting bounds, obtained with sub-
gradient optimization, are therefore not tight unless there is no idle period at any berth.
This happens in rare cases, in which it is assumed that the vast majority of ships arrive
at the port before some or all of the berths become available. Most of the constraints (24)
then disappear.

Les Cahiers du GERAD G–2003–30 – Revised 10

Some further modifications can be brought to DBAP in order to take additional realistic
restrictions into account.

1. Ship size constraints: Some berths i may not be able to handle some ships j because
of the excessive length or draft of the ships; it suffices to set xijk = 0 for such pairs
(i, j) and all k ∈ O to express that. Alternately, one could use very large cij to
impose xijk = 0.

2. Due dates: It may be unwise to have some ships wait for long periods of time while
others that arrive later are processed, even if this is required by the schedule to
minimize the total completion time. Due dates may also be imposed by contracts.
This can be taken into account by introducing due date constraints, i.e., times Lj

before or at which the ships j must have left or leave the port. Such constraints take
the following form:

Si +
∑
l∈V

∑
m∈Pk

(cilxilm + yilm) + yijk + cijxijk ≤ Lj ∀i ∈ B, j ∈ Wi, k ∈ O. (36)

Indeed, the time at berth i is the time Si when it becomes available, plus the times for
handling ships there, with an index larger than or equal to k in the reverse handling
order, plus the waiting times before handling them, and it should not be larger than
Lj . When it is the case, (36) imposes xijk = 0.

3. Horizon: As new information about arriving ships becomes available over time and
there are some uncertainties, it appears to be realistic not to plan too much in
advance, i.e., to impose a horizon H before or at which all ships considered will have
been handled. It then suffices to take L′

j = min{Lj , H} instead of Lj in (36). Note
that imposing a fairly close horizon will also spread the work load among berths
more equally, which could be a desirable secondary objective. By the same token,
one might wish to roughly equalize the number of ships handled at each berth; e.g.,
limit the maximum number of ships handled at one berth to two or three times the
average. When this is the case, large values of k need not be considered anymore, and
the size of the model is further reduced, both in terms of variables and of equations.

4 A compact reformulation of DBAP

A close look at constraints (24) and Figure 3 suggests a possible way of obtaining an
equivalent formulation of DBAP more compact than (21)–(26). This requires new variables
sik, defined as the starting time for handling the kth ship at berth i, for i ∈ B, k ∈ O; note
that here we use the order of handling ships in time and not the reverse order. As above,
we use variables x′

ijk instead of xijk to indicate this. Binary variables zik are also needed
for i ∈ B, k ∈ O to indicate whether a kth ship will be handled at berth i (zik = 0) or not
(zik = 1). Finally, large constants Mik for i ∈ B, k ∈ O are introduced to allow sik to be
equal to 0 if no kth ship is handled at the ith berth. The model is as follows:

(DBAP′) Minimize
∑
i∈B

∑
j∈V

∑
k∈O

(cij − Aj)x′
ijk +

∑
i∈B

∑
k∈O

sik (37)

Les Cahiers du GERAD G–2003–30 – Revised 11

subject to
∑
i∈B

∑
k∈O

x′
ijk = 1 ∀j ∈ V, (38)

∑
j∈V

x′
ijk + zik = 1 ∀i ∈ B, k ∈ O, (39)

zik ≥ zi,k−1 ∀i ∈ B, k ∈ O \ {1}, (40)

sik ≥
∑
j∈V

Ajx
′
ijk ∀i ∈ B, k ∈ O, (41)

sik ≥ si,k−1 +
∑
j∈V

cijx
′
ij,k−1 − Mikzik ∀i ∈ B, k ∈ O \ {1}, (42)

si1 ≥ Si − Sizi1 ∀i ∈ B, (43)
sik ≥ 0 ∀i ∈ B, k ∈ O \ {1}, (44)

x′
ijk ∈ {0, 1} ∀i ∈ B, j ∈ V, k ∈ O, (45)
zik ∈ {0, 1} ∀i ∈ B, k ∈ O, (46)

where Mik is equal to the sum of the (k − 1) largest cij , plus the largest of the maximum
arrival time of the ships and the time berth i becomes available. Problem DBAP′ has
IJT binary variables x′

ijk as DBAP, but only IT continuous variables sik instead of IJT

variables yijk, and IT additional binary variables zik. Constraints (38) and (39) of DBAP′
are the same as (22) and (23) of DBAP, except that variables x′

ijk and xijk refer to the
direct and reverse handling order of ships at berths, respectively. Constraints (40) express
that one cannot handle a ship in the kth position for k ≥ 2 at a berth i unless there is
a ship handled in the (k − 1)st position there. They are equivalent to constraints (19) of
SBAP′′, but more compact.

There are 2I(T − 1) constraints (41) and (42) in DBAP′, which define variables sik,
instead of the much more numerous constraints (24) of DBAP, which define variables yijk.
Constraints (41) express that a ship cannot be handled, in the kth position, before it arrives
at the port. Constraints (42) specify that if a kth ship is handled at berth i, this cannot
begin at sik, before the time si,k−1 at which the handling of the previous ship began, plus
the time cij required by that operation. For I = 10, |V | = 50, as considered in Imai et
al. (2001) and above, DBAP′ has 25,500 binary variables x′

ijk and zik, 500 continuous
variables sik and 50+500+980=1,530 constraints, so it is much more compact than DBAP
in terms of constraints. Unfortunately, constraints (42) contain “big M” coefficients which
are known to slow down solutions.

As in the DBAP model, additional constraints may be added to express further require-
ments. Ship size constraints are treated in the same way as above, setting some variables
x′

ijk = 0. Alternately, one could use very large cij to impose x′
ijk = 0 (but then one

Les Cahiers du GERAD G–2003–30 – Revised 12

should avoid using such cij in the computation of the Mik’s). Due date constraints can be
expressed in a more compact way than in DBAP. They take the following form:

∑
i∈B

∑
k∈O

(sik + cij)x′
ijk ≤ Lj ∀j ∈ V, (47)

and there are J of them, which is small. Due to constraints (38), only one variable x′
ijk

in (47) will be equal to 1 in the optimal solution. This equation then ensures that the
corresponding departure date sik + cik does not exceed Lj . Finally, the horizon constraints
are treated again in DBAP′ as in DBAP.

5 Computational experience

The systematic testing of models DBAP and DBAP′ has been conducted using CPLEX-
MIP on a 600MHz PC computer. First, problems have been generated as in Imai et al.
(2001). They consist of three series with the following characteristics:

1. Number of berths, |B| = 5, 10.
2. Number of ships, |V | = 10, 15, 20, 25, 30.
3. Arrival times of the ships, Aj , are from a uniform distribution in the range of

[1, (7000/60)(|V |/|B|)].
4. Handling times, cij = (2 ∗ uij + 1.5) ∗ 2000/60, where uij is a random number from

the uniform distribution between 0 and 1.
5. Availability times of the berths, Si = 1/2, 3/5, 5/8, 7/8, of the time interval between

the arrivals of the first and last ships.

We generated three problem instances for each combination of the data above and set,
for the larger instances, a maximum of 1 hour of CPU time to stop the algorithm when
solving both DBAP and DBAP′ during our computational experiments. The results are
presented in Tables 4-7. If the 1 hour CPU time limit was exhausted for all three problem
instances, we denoted that with the entry > 3600 in the tables. Furthermore, if only one
or two out of three problem instances could be solved within the 1 hour CPU limit, we
denoted it with (1) and (2), respectively, next to the CPU times.

It appears that DBAP is capable of solving all moderate-sized problems, with up to 10
berths and 30 ships. Furthermore, DBAP is able to solve most of the larger problems, with
up to 10 berths and 50 ships, within reasonable CPU times. We can observe from Tables 4
and 5 that DBAP obtains the optimum solution in a shorter time when the number of
ships waiting before a berth becomes available increases. We note that this becomes more
apparent for larger problem instances; in a 5-berth case, when the number of ships is
greater than or equal to 40, and in a 10-berth case when the number of ships is greater
than or equal to 35.

Les Cahiers du GERAD G–2003–30 – Revised 13

Imai et al. (2001) reported heuristic solutions for similar problems with times of up to
about 1500 seconds on a SUN S4/2000E workstation. For 10 berths and 50 ships, the gap
of these solutions defined as (feasible solution value – lower bound) / lower bound is in the
range of 0 to 2% for Si = 7/8, but 50 to 200% for Si = 1/2.

Table 4: Minimum, average and maximum CPU times of DBAP for different numbers of
berths and ships.

CPU time (sec)
Berth Ship Si Minimum Average Maximum

5 10 1/2 0.8900 2.4067 5.3200
3/5 0.8900 4.5767 11.1100
5/8 0.1900 2.2633 6.3000
7/8 0.0700 0.0867 0.1200

5 15 1/2 2.3700 7.9433 12.3600
3/5 1.0000 1.9300 2.6200
5/8 1.1100 1.5800 1.8900
7/8 0.5100 0.5200 0.5300

5 20 1/2 14.6700 56.1600 128.1800
3/5 4.2100 14.0200 19.7999
5/8 3.8500 10.5933 17.1500
7/8 1.1800 1.9500 2.3400

5 25 1/2 109.3900 2330.1501 6474.1802
3/5 14.5200 98.2700 224.8999
5/8 11.1600 162.8533 451.4400
7/8 5.3400 8.8500 13.1500

5 30 1/2 4123.6201 25445.6963 60419.5391
3/5 157.3800 427.2233 799.8599
5/8 41.3800 49.5633 55.4199
7/8 103.7699 145.4533 215.4600

5 35 1/2 778.5300 2690.6033 3657.5400
3/5 180.4500 1197.8600 3042.2300
5/8 77.9500 520.3333 1324.1200
7/8 28.5600 33.9633 37.7400

5 40 1/2 >3600 >3600 >3600
3/5 2820.6799 (1) 2820.6799 (1) 2820.6799 (1)
5/8 1201.2300 (2) 1357.8749 (2) 1514.5500 (2)
7/8 31.7200 68.5167 136.1400

5 45 1/2 >3600 >3600 >3600
3/5 1047.3000 (1) 1047.3000 (1) 1047.3000 (1)
5/8 883.6500 (2) 2146.7700 (2) 3409.8899 (2)
7/8 57.5900 117.3500 225.0300

5 50 1/2 >3600 >3600 >3600
3/5 >3600 >3600 >3600
5/8 1633.5100 (1) 1633.5100 (1) 1633.5100 (1)
7/8 182.0000 241.2667 302.3600

Les Cahiers du GERAD G–2003–30 – Revised 14

Table 5: Minimum, average and maximum CPU times of DBAP for different numbers of
berths and ships.

CPU time (sec)
Berth Ship Si Minimum Average Maximum

10 10 1/2 0.8400 1.4600 1.8700
3/5 0.1700 0.5567 1.2400
5/8 0.1800 0.4900 1.0600
7/8 0.1000 0.1133 0.1300

10 15 1/2 1.2300 6654.8632 19955.5996
3/5 0.7400 258.3533 770.7500
5/8 0.7600 140.4467 417.8700
7/8 0.4400 1.0867 2.0900

10 20 1/2 38.3900 79.3033 126.5100
3/5 11.8900 28.2067 54.7100
5/8 8.4100 17.87 31.6000
7/8 2.4700 2.8733 3.6300

10 25 1/2 874.3000 1833.5366 3635.6800
3/5 91.7700 234.2200 504.3100
5/8 74.1900 156.1567 260.4800
7/8 10.4100 13.18 15.2100

10 30 1/2 2517.5901 3061.6934 3650.7500
3/5 172.7100 386.8533 627.0700
5/8 153.9300 241.7600 324.9700
7/8 17.4700 32.0267 53.3300

10 35 1/2 >3600 >3600 >3600
3/5 1068.8800 (1) 1068.8800 (1) 1068.8800 (1)
5/8 572.6600 1114.0867 1979.8001
7/8 35.9300 61.6633 113.0000

10 40 1/2 >3600 >3600 >3600
3/5 587.7000 708.1467 785.7100
5/8 441.7700 748.7533 1008.1600
7/8 154.8900 180.9400 213.5600

10 45 1/2 >3600 >3600 >3600
3/5 927.6300 (1) 927.6300 (1) 927.6300 (1)
5/8 1007.6300 (1) 1007.6300 (1) 1007.6300 (1)
7/8 400.9500 509.8400 711.3000

10 50 1/2 >3600 >3600 >3600
3/5 2206.7500 (2) 2893.0750 (2) 3579.4500 (2)
5/8 1339.5700 (1) 1339.5700 (1) 1339.5700 (1)
7/8 492.4900 740.1467 1224.5900

Les Cahiers du GERAD G–2003–30 – Revised 15

We see from Tables 6 and 7 that DBAP′ obtains the optimum solution within the 1 hour
CPU time limit only for small problems. However, we notice that if there are large waiting
times for the ships, then DBAP′ becomes more powerful in obtaining the optimal solution
in a shorter time compared to DBAP.

Table 6: Minimum, average and maximum CPU times of DBAP′ for different numbers of
berths and ships.

CPU time (sec)
Berth Ship Si Minimum Average Maximum

5 10 1/2 77.3000 366.9133 682.6500
3/5 41.3000 98.4367 190.1100
5/8 36.5800 77.0367 129.1500
7/8 19.9300 142.5300 341.3800

5 15 1/2 3193.1899 (1) 3193.1899 (1) 3193.1899 (1)
3/5 1861.9000 (1) 1861.9000 (1) 1861.9000 (1)
5/8 >3600 >3600 >3600
7/8 387.8000 (1) 387.8000 (1) 387.8000 (1)

5 20 1/2 >3600 >3600 >3600
3/5 >3600 >3600 >3600
5/8 >3600 >3600 >3600
7/8 >3600 >3600 >3600

Table 7: Minimum, average and maximum CPU times of DBAP′ for different numbers of
berths and ships.

CPU time (sec)
Berth Ship Si Minimum Average Maximum

10 10 1/2 3.1700 4.6967 5.3100
3/5 2.8000 3.5500 4.3400
5/8 2.3900 2.5100 2.7000
7/8 0.6900 0.7333 0.7900

10 15 1/2 >3600 >3600 >3600
3/5 >3600 >3600 >3600
5/8 >3600 >3600 >3600
7/8 >3600 >3600 >3600

Then, larger problems were tested, assuming due dates Lj given by max{Aj , Si} + rj ,
where rj is a random number from a uniform distribution in the range of [C(1−RDD/2),
C(1 + RDD/2)], with C being the sum of all handling times (cij) divided by the square of
the number of berths and RDD standing for the relative range of due dates. The values

Les Cahiers du GERAD G–2003–30 – Revised 16

of RDD are taken as 0.2, 0.4, 0.6, 0.8, and 1.0. Preprocessing has first been made to
avoid excessively large values of k in variables and equations. From the computational
experiments, it appears that the due dates do not change computing times. The reason
for this is probably that CPLEX can detect some variables that must be equal to 0 and
fix them in a preprocessing phase.

6 Conclusions

The dynamic berth allocation problem is an important one in operations of container ports.
Imai et al. (2001) recently introduced a model for it. After correcting it, a more compact
equivalent model has been proposed, and extended to accommodate constraints on size,
the due dates of ships and a bounded planning horizon.

Computational experiments with CPLEX on both models show that the first model,
DBAP, is able to solve problems with up to 10 berths and 50 ships. However, the second,
more compact model, DBAP′, is not efficient due to the big M’s in the constraints. Al-
though it appears that this paper is the first to report the exact solution of berth allocation
problems of a realistic size, much work remains to be done, in several directions:

(i) enrich the DBAP model, to take costs into account, instead of times; in particular,
to express differences in cost for waiting and handling, as well as for operations at
different berths;

(ii) develop new heuristics to quickly solve large instances to near optimality, using re-
cent metaheuristics such as Variable Neighborhood Search (Mladenović and Hansen,
1997), and compare them with previously proposed ones;

(iii) explore an exact solution for DBAP and extensions using advanced mixed integer
programming techniques such as stabilized column generation (du Merle et al., 1999)
combined with branch-and-bound and adapted to their particular structure.

Acknowledgments This work was carried out during two visits of the first author at
the Department of Management, the Hong Kong Polytechnic University, whose support is
gratefully acknowledged. The work described in this paper was also partially supported by
a grant from The Hong Kong Polytechnic University (Project No. G-T247). The authors
are grateful to Dragan Uros̆ević for running the computational experiments and to Nenad
Mladenović for stimulating discussions.

References

1. Bertsekas, D.P. (1992) Auction algorithms for network flow problem: a tutorial in-
troduction. Computational Optimization and Applications, 1, 7-66.

2. Bruno, J., Coffman, E.G. and Sethi, R. (1974) Scheduling independent tasks to reduce
mean finishing time. Communications of the ACM, 17 (7), 382-387.

3. du Merle, O., Villeneuve, D., Desrosiers, J. and Hansen, P. (1999) Stabilized column
generation. Discrete Mathematics, 194, 229–237.

Les Cahiers du GERAD G–2003–30 – Revised 17

4. Forrest, J.J.H., Hirst, J.P.H. and Tomlin, J.A. (1974) Practical solution of large
mixed-integer programming problems with Umpire. Management Science, A20, 736-
773.

5. Imai, A., Nagaiwa, K. and Tat, C.W. (1997) Efficient planning of berth allocation
for container terminals in Asia. Journal of Advanced Transportation, 31, 75-94.

6. Imai, A., Nishimura, E. and Papadimitriou, S. (2001) The dynamic berth allocation
problem for a container port. Transportation Research Part B, 35, 401-417.

7. Imai, A., Nishimura, E. and Papadimitriou, S. (2003) Berth allocation with service
priority. Transportation Research B, 37, 437–457.

8. Jonker, R. and Volgenant A. (1987) A shortest augmenting path algorithm for dense
and sparse linear assignment problem. Computing, 38, 325-340.

9. Lenstra, J.K., Rinnooy Kan, A.H.G. and Brucker, P. (1977) Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1, 343-362.

10. Lim, A. (1998) The berth planning problem. Operations Research Letters, 22, 105-
110.

11. Meersmans, P.J.M. and Dekker, R. (2001) Operations Research supports container
handling. Economic Institute Report EI 2001-22, Erasmus University, Rotterdam,
Netherlands.

12. Mladenović, N. and Hansen, P. (1997) Variable neighborhood search. Computers and
Operations Research, 24, 1097–1100.

13. Nishimura, E., Imai, A. and Papadimitriou, S. (2001) Berth allocation planning in
the public berth system by genetic algorithms. European Journal of Operational
Research, 131, 282-292.

14. Park, K.T. and Kim, K.H. (2002) Berth scheduling for container terminals by using
sub-gradient optimization technique. Journal of the Operational Research Society,
53, 1054-1062.

15. Peterkofsky, R.I. and Daganzo, C.F. (1990) A branch-and-bound algorithm for the
crane scheduling problem. Transportation Research Part B, 24B, 159-172.

16. Vis, I.F.A. and de Koster, R. (2003) Transshipment of containers at a container
terminal: An overview. European Journal of Operational Research, 147, 1-16.

17. Ward, T. (2002) Container terminal capacity numbers and policy.
http://www.jwdgroup.com/images/ppp/ctmeasuremant/

