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Abstract

In this paper, we are concerned with the statistical methodology of epidemiological
surveillance; that is, the ongoing procedure of analyzing and interpreting public health
data of infectious disease incidence. In particular, we propose a hierarchical Bayes
approach for the estimation of generalized linear mixed models for time series count
data, and their use in the prediction of counts for future time periods. The estima-
tors are obtained by Gibbs sampling and their performance is compared to those of
other methods on the polio data originally analysed by Zeger (1988), which consist of
the monthly number of U.S. polio cases between 1970 and 1983. Their properties are
also investigated via simulation. Our aim is to illustrate how easily the hierarchical
Bayes methodology lends itself to model checking and model comparisons. The pro-
posed methodology, in particular, hierarchical Bayes prediction, is applied to a series
of Campylobacter infection cases in the Montreal-Center region.

Key Words: Adaptive Rejection Metropolis Sampling, Epidemiological Surveillance,
Gibbs Sampling, Infectious Diseases, Longitudinal Data, Poisson Counts.

Résumé

Dans cet article, nous nous intéressons à la méthodologie statistique de la surveil-
lance épidémiologique, c’est-à-dire, la procédure de l’analyse et l’interprétation des
données de santé publique concernant l’incidence de la maladie infectieuse. Plus
précisément, nous proposons une approche bayésienne hiérarchique pour l’estimation
de modèles linéaires mixtes généralisés pour une série chronologique à valeurs entières,
ainsi que leur utilité pour la prévision des valeurs entières futures de la série. Nous
obtenons les estimateurs par l’échantillonnage de Gibbs et nous comparons leur com-
portement par rapport aux autres méthodes en utilisant les données qui concernent
la polio originalement analysées par Zeger (1988) et qui concernent le nombre de cas
mensuels de polio aux États-Unis entre 1970 et 1983. Nous étudions également leurs
propriétés par des simulations. Notre objectif est de démontrer avec quelle facilité la
méthodologie bayésienne hiérarchique se prête à la vérification et à la comparaison de
modèles. La méthodologie proposée, et plus particulièrement, la prévision bayésienne
hiérarchique, est appliquée à une série de cas d’infection à la Campylobacter dans la
région de Montréal-Centre.
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infectieuses, Régie régionale de la santé et des services-sociaux de Montréal-Centre
for the data used here, and to the referees, whose comments greatly improved this
manuscript. This work was supported through funds from the Natural Sciences and
Engineering Research Council of Canada.
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1 Introduction

Statistical research in modeling and inference for correlated and clustered longitudinal data
of discrete outcomes such as count or binary data owes much of its development to Zeger
and Liang (See Zeger, Liang, and Self 1985; Liang and Zeger 1986; Zeger 1988; Zeger and
Qaqish 1988; Zeger and Karim 1991). If there are no explanatory variables, then integer-
valued autoregressive moving average (INARMA) models previously studied by McKenzie
(1988), Alzard and Al-Osh (1990), Du and Liu (1991), Latour (1997) and Belisle et al.
(1998) could be used. However, in the study of disease incidence rates, nonstationarity
and/or explanatory variables must often be taken into account. A useful model in such
a context is the parameter-driven model defined in Cox (1981). Such a model is one
in which there is an underlying unobservable latent process that influences the observed
process. Estimation in parameter-driven models has previously been studied for discrete
correlated data by many authors including Zeger (1988), Zeger and Qaqish (1988), Chan
and Ledolter (1995), and Davis et al. (1997).

In fact, Zeger (1988) successfully modeled serially correlated count data with covari-
ates by assuming that the observed counts were conditionally independent and Poisson
distributed given the latent process. He assumed that this process was stationary and
autoregressive; however he did not specify its distribution. Zeger (1988) used generalized
estimating equation techniques and illustrated his method on a polio incidence series. Chan
and Ledolter (1995) studied a similar parameter-driven model, assuming an underlying sta-
tionary Gaussian AR(1) latent process, used a Monte Carlo EM algorithm for parameter
estimation and reanalyzed the polio incidence data of Zeger (1988). Kuk and Chen (1997)
showed that the Monte Carlo Newton-Raphson algorithm is a viable alternative to the
Monte Carlo EM algorithm of Chan and Ledolter (1995) for finding maximum likelihood
estimates for this parameter-driven model of Poisson count data. They also reanalyzed the
polio data.

Delampady et al. (1993) obtained Laplacian approximations to hierarchical Bayes es-
timators of a smooth but varying intensity function of a Poisson process by the analysis
of a discrete series of Poisson counts. Jorgensen et al. (1995, 1996) used a state space
non-stationary model for multivariate longitudinal count data driven by a latent gamma
Markov process. They showed by reanalyzing the polio data of Zeger (1988) that an
analysis such as theirs may differ substantially from one based on a stationary model.

Davis, Dunsmuir, and Wang (1997) showed that for a parameter-driven model, the
Poisson maximum likelihood estimator of the regression parameter based on a model with-
out serial correlation is consistent and asymptotically normal with an easily computable
covariance matrix that depends on the covariance structure of the latent process. They
also used an approximation to the likelihood in order to estimate the regression parameters
and those of the latent process, after having tested for the existence of the latent process.
They, as well as Fahrmeir et al. (1994), also reanalyzed the polio data in Zeger (1988).
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Although estimation for a time series of counts has been fairly well studied, the predic-
tion problem has not received the same consideration. There are some notable exceptions;
however, mainly using state space modeling. We cite the work of Jorgensen et al. (1995,
1996, 1999) inspired by earlier work of Smith (1979), Key and Godolphin (1981), Smith and
Miller (1986), West (1986), and West and Harrison (1989), which generalized the Bayesian
forecasting model. Another interesting frequency approach assuming independence can be
found in Li and Heckman (2003). Our approach to the prediction problem described below
is a hierarchical Bayes one, which differs from the state space modeling approach.

In this study, we propose a hierarchical Bayes procedure using the Gibbs sampler for
estimating the parameters in the same model as Chan and Ledolter (1995). We also
extend the methodology so that future values can be predicted. The advantage to the
hierarchical Bayes approach is the ease with which model selection can be performed using
Bayes factors. Our choice of different priors in order to increase robustness has been
influenced by the viewpoint of Berger (1984), and by previous work of Farrell et al. (1994).
With the simple choice of a different prior, different modes can be compared. The proposed
methodology is applied to the polio incidence series of Zeger (1988). Our estimation results
are compared to those of the other authors mentioned above. Our results are also used to
form the basis of a simulation study to investigate the properties of the estimators of the
model parameters under the proposed approach.

We also wish to investigate the ability of the proposed estimation methodology to
forecast for future unobserved time periods. This is an extremely important consideration
in the epidemiological context when interest lies, for example, in the detection of the
outbreak of an epidemic, or of a trend. Again, the Bayesian methodology allows us to
easily obtain prediction estimates and intervals. An example of our method consisting
of an analysis of a time series of infectious disease counts previously studied by Cardinal
(1995) and Cardinal et al. (1999) using INARMA models is also given.

The paper is organized as follows. In Section 2, we describe the model in detail as well
as the calculation of the hierarchical Bayes estimators of the parameters. The properties
of these estimators are studied in Section 3. A simulation study is also included here. The
data example is presented in Section 4, while a conclusion is given in Section 5.

2 The model

Let Yt, t = 1, . . ., T , be a time series of count data and xt an associated covariate vector
augmented by the constant one. We wish to model Yt on xt, as well as on its dependence
on past Y values. Assuming that the Yt are generated from a Poisson distribution with
mean λt, we propose the following model:

Yt ∼ Poisson(λt), log(λt) = x′
tβ + δt, δt = ρδt−1 + εt, where εt ∼ i.i.d. N(0, σ2). (2.1)

Here β is a vector of parameters associated with the covariates in xt and δt is a random
effect to account for the dependence of the count data on its past values. Specifically, we
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assume that δt, t = 1, . . ., T , is a stationary Gaussian AR(1) latent process with correlation
coefficient ρ.

Estimation of the parameters in (2.1) can be accomplished via a hierarchical Bayes
approach. This requires the specification of prior distributions for β, σ2, and ρ. We consider
a fairly diffuse proper version of an inverse gamma distribution for β and the random effect
variance and a uniform prior for ρ. As Hobert and Casella (1996) have shown that the
use of improper priors in hierarchical linear mixed models may lead to improper posteriors
resulting in ill-behaved behaviour in the Gibbs sampler, the priors here have been adjusted
here so that the posteriors are proper. Hence, if Y is a vector containing Yt, then essentially
the joint distribution of Y and the parameters in the prior distributions is proportional to

∏
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where log(λt) = exp(x′
tβ + δt). Thus, with our choice of priors, the posterior can be shown

to be proper by invoking Theorem 2 of Hobert and Casella (1996). Thus, Markov chain
Monte Carlo (MCMC) would be appropriate here.

2.1 Hierarchical Bayes Estimates for the Model Parameters

Although software such as WinBUGS is now readily available, and the model proposed
here could be implemented in it, we include here a short description of our hierarchical
Bayes estimates, and the MCMC procedure we use.

To develop hierarchical Bayes estimates for the parameters in the model given in (2.1)
requires posterior distributions of the model parameters. However, it is only possible to
know these distributions up to a constant of proportionality (see Gilks, Best, and Tan
1995); specifically the posterior distribution for any given parameter is proportional to the
product of all terms in the model that contain it. Therefore, for the model in (2.1), if δ is
a vectors containing δt, then
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where u refers to the u-th covariate, and m is the number of covariates.
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Under Gibbs sampling, an initial set of values would be assumed as the estimates for
β, δ, σ2, and ρ, say β̂{0}, δ̂{0}, σ̂

2
{0}, and ρ̂{0}. An updated estimate for β0, say β̂0{1}, is

obtained by sampling from the full conditional distribution f(β0

∣

∣Y, β̂1{0}, . . . , β̂m{0}, δ̂{0},

σ̂2
{0}, ρ̂{0}). Sampling from the full conditional distribution f(β1

∣

∣Y, β̂0{1}, β̂2{0}, . . . , β̂m{0},

δ̂{0}, σ̂
2
{0}, ρ̂{0}) based on β̂0{1} yields the revised estimate β̂1{1} for β1. The completion of

a first iteration is realized once the revised estimates β̂{1}, δ̂{1}, σ̂
2
{1}, and ρ̂{1} are obtained.

This procedure of sampling from full conditional distributions using the most up-to-date
revised estimates continues until the estimates of each parameter are deemed to have
stabilized from one iteration to the next. See Geman and Geman (1984) and Gelfand and
Smith (1990) for a general discussion on Gibbs sampling, and Gelman and Rubin (1992)
for methods of convergence.

Note that a different full conditional distribution must be sampled every time a new
estimate is obtained, regardless of which parameter is being estimated. Since many it-
erations are usually needed to ensure that estimates for each parameter have stabilized,
efficient methods for constructing full conditional distributions and sampling from them
are required. For log-concave distributions, this can be accomplished through adaptive
rejection sampling (See Gilks and Wild, 1992). For applications where the full condi-
tional distributions are not log-concave, Gilks, Best, and Tan (1995) propose appending a
Hasting-Metropolis algorithm step to the adaptive rejection sampling scheme. They sug-
gest using the resulting adaptive rejection Metropolis sampling scheme within the Gibbs
sampling algorithm. We follow this approach here.

3 Properties of Model Parameter Estimators

In order to study the properties of the estimators of the parameters in the model given
by (2.1), we make use of the data in Zeger (1988), consisting of the monthly number of
cases of poliomyelitis from January 1970 to December 1983. This data has been analyzed
by Zeger (1988), Fahrmeir and Tutz (1994), Chan and Ledolter (1995), Jorgensen et al.
(1995), Davis et al. (1997), and Kuk and Chen (1997).

A central question studied by Zeger (1988) is whether the number of cases decrease over
time. A time series plot of the data in Chan and Ledolter (1995) shows that there appears
to be seasonality present. Similar to Zeger (1988) and Chan and Ledolter (1995), we model
the seasonality with trigonometric components involving the first two harmonics. Thus,
the covariate vector here is given by

x′
t = [1, t∗/1000, cos(2πt∗/12), sin(2πt∗/12), cos(2πt∗/6), sin(2πt∗/6)],

where t∗ = t − 73. Our model is similar to that of Chan and Ledolter (1995). It differs
from Zeger (1988) in that a Gaussian distribution is assumed for the εt. In addition to
considering the central question studied by Zeger (1988), we also wish to investigate the
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ability of the proposed model to forecast for future unobserved time periods. This is
an extremely important consideration in the epidemiological context when interest lies,
for example, in the detection of the outbreak of an epidemic. Therefore, to study the
predictive ability of the proposed methodology, we hold out the final three observations
and only make use of the first 165 observations in the polio data set to fit the model.
Point and interval estimates for the last three observations that are based on the fitted
model can then be determined and compared with their known true values. We explore
this prediction problem later in some detail.

The procedure employed by Gilks, Best, and Tan (1995) was used to fit the model
in (2.1) to the data. Specifically, the Gibbs sampler was run for 15,000 iterations twice,
each with a different set of starting values for the parameter estimates. Initially, the
full conditional distributions for the estimator of each parameter were evaluated at six
different values for the parameter that were based on the 5th, 30th, 45th 55th, 70th, and 95th

percentiles of a piecewise linear function from the previous Gibbs iteration (See Gilks, Best,
and Tan 1995). The method of Gelman and Rubin (1992) was used to assess convergence
of the Gibbs sampler. To ensure proper convergence, only the last 3,000 iterations of
each of the two runs were used to construct posterior distributions. In particular, the
results over these two sets of 3,000 iterations were combined in order to approximate these
distributions.

The results of the model fit using the proposed approach are presented in Table 1(a).
It appears that the sin(2πt∗/6) term may not be needed in the model. To investigate this
further, a Bayes factor (see Congdon 2005) was computed to compare models with and
without this term, assuming a priori that each model was equally likely. A value of 1.06
was obtained for this factor, suggesting that the more parsimonious model is supported.
Parameter estimates determined under this simpler model are provided in Table 1(b). In
addition, note that an analogous Bayes factor of 0.23 was obtained when the cos(2πt∗/12)
term was deleted from the model without the sin(2πt∗/6) term; thus, further removal of
terms was deemed to be inappropriate.

As a result of our interest in robustness influenced by Berger (1984) and Farrell et al.
(1994), we also obtained parameter estimates for the model under the assumption that the
random effects follow a Laplace distribution. Starting with the covariate vector x′

t as given
above, the model fit suggested that the sin(2πt∗/6) term may not be needed. A comparison
of models with and without this term yielded a Bayes factor of 1.21. Parameter estimates
for the model without the sin(2πt∗/6) term are presented in Table 1(c). Further removal
of covariates was not supported by the appropriate Bayes factor.

A comparison of the model estimates in Tables 1(b) and 1(c) suggest that the results
are extremely similar under the two different distributions specified for the random effects.
However, the terms in the model are somewhat more statistically significant when the
random effects are assumed to follow a Laplace distribution. For example, the estimate
of the trend covariate (t∗/1000) is −4.88 with a standard error of 1.05 under a Laplace
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Table 1(a): Hierarchical Bayes model estimates (estimated standard errors in brackets) for the

polio data time series based on a normal distribution for the random effects, where seasonality is

modeled with trigonometric components involving the first two harmonics.

Intercept t∗/1000 cos(2πt∗/12) sin(2πt∗/12) cos(2πt∗/6) sin(2πt∗/6) σ2 ρ

0.37 -4.82 0.15 -0.52 0.45 -0.07 0.50 0.92
(0.12) (1.19) (0.08) (0.10) (0.09) (0.09) (0.19) (0.13)

Table 1(b): Hierarchical Bayes model estimates (estimated standard errors in brackets) for the polio

data time series based on a normal distribution for the random effects, where seasonality is modeled

with trigonometric components involving the first two harmonics, excluding the sin(2πt∗/6) term.

Intercept t∗/1000 cos(2πt∗/12) sin(2πt∗/12) cos(2πt∗/6) σ2 ρ

0.39 -4.76 0.14 -0.58 0.48 0.56 0.89
(0.10) (1.12) (0.08) (0.09) (0.08) (0.21) (0.14)

Table 1(c): Hierarchical Bayes model estimates (estimated standard errors in brackets) for the polio

data time series based on a Laplace distribution for the random effects, where seasonality is modeled

with trigonometric components involving the first two harmonics, excluding the sin(2πt∗/6) term.

Intercept t∗/1000 cos(2πt∗/12) sin(2πt∗/12) cos(2πt∗/6) σ2 ρ

0.42 -4.88 0.15 -0.60 0.49 0.55 0.91
(0.08) (1.05) (0.08) (0.08) (0.07) (0.18) (0.13)

distribution, and −4.76 with a standard error of 1.12 when the random effects are assumed
normal.

Table 2 presents a comparison of our estimates of the parameter for the trend covariate
(t∗/1000) with analogous estimates published in Davis et al. (1997) that were previously
obtained by Zeger (1988), Fahrmeir and Tutz (1994), Chan and Ledolter (1995), Jorgensen
et al. (1995), Davis et al. (1997), and Kuk and Chen (1997). Our results for all parameter
estimates are quite similar to those of Chan and Ledolter (1995); however the standard
errors for the proposed hierarchical Bayes approach used here are uniformly smaller than
those obtained by Chan and Ledolter (1995). We obtain the same negative trend estimate
as Davis et al. (1997), but with a smaller estimated standard error. In addition, as
mentioned above, the standard errors obtained under the Laplace distribution are slightly
smaller than those for the normal.

For statistical inference, a good indicator of the performance of an estimator is its
coverage probability. To study the properties of the estimators of the model parameters
under normal and Laplace distributions for the random effects, we generated 500 simulated
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Table 2: Comparison of the parameter estimates of trend (t*/1000) for the polio data time series.

Study Trend Estimate Standard Error t-ratio

Zeger (1988) -4.35 2.68 -1.62
Fahrmeir and Tutz (1994) -3.33 2.00 -1.67
Chan and Ledolter (1995) -4.62 1.38 -3.35
Jorgensen et al. (1995) -1.64 0.02 -91.1

Davis et al. (1997) -4.80 1.40 -3.43
Kuk and Chen (1997) -3.79 2.95 -1.28

Farrell et al. (2005) Nor -4.76 1.12 -4.25
Farrell et al. (2005) Lap -4.88 1.05 -4.65

data sets analogous to the original polio data for each distribution in the following manner.
For a given distribution, observations were generated for a particular data set by treating
the estimates obtained for σ2, ρ, and the vector β in Table 1 as true parameter values.
Random effects were generated according to an AR(1) process based on the estimate for ρ,
and the estimated prior distribution for the random effects. More specifically, the following
procedure was used:

1) Set δ0 = 0.

2) Generate a value for ε1 from a normal or Laplace distribution with mean zero and
variance given by the estimate of σ2.

3) Compute δ1 using the relation δ1 = ρδ0+ε1, where the value used for ρ is the estimate
of the AR(1) correlation coefficient.

4) Compute λ1 using log(λ1) = x′
1β + δ1, where the values used for the components of

β are the estimates obtained for β under the hierarchical Bayes approach.

5) Generate a value for Y1 from a Poisson distribution with mean λ1.

6) Repeat steps (2) through (5) until observations Y2, . . . , YT have been obtained.

A summary of the results over the 500 simulated data sets for each random effects
distribution is presented in Tables 3(a) and 3(b). Regardless of the distribution assumed
for the random effects, there is little bias in the estimators for β. Nevertheless, the means
of the estimators computed over the 500 simulated data sets are slightly closer to the
true parameter values when a Laplace distribution is used for the random effects. The
average model-based standard errors for the estimators of the fixed effect parameters over
the 500 simulated data sets are also presented in Tables 3(a) and 3(b), along with the
associated empirical root mean square errors. A comparison of these standard errors
with the empirical root mean square errors indicate that the former serve to appropriately
describe the variability in the estimators of β from sample to sample. Also of note is the fact
that, generally speaking, the Laplace prior provides more efficient estimators, in particular
for the trend covariate. To explore these notions further, for both normal and Laplace
priors, 500 normal symmetric confidence intervals were computed for each fixed effect
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Table 3(a): Mean parameter estimates, mean standard errors, empirical root mean square errors

and coverage rates for 90%, 95%, and 99% nominal rates over the 500 simulated data sets. Estimates

are based on a model without sin(2πt∗/6) and a normal distribution for the random effects.

Coverage
Term True Value Mean Mean SE RMSE 90% 95% 99%

Intercept 0.39 0.402 0.114 0.108 88.4 93.0 97.8
t∗/1000 -4.76 -4.64 1.223 1.318 90.6 95.8 99.4

cos(2πt∗/12) 0.14 0.136 0.079 0.092 90.8 95.2 98.8
sin(2πt∗/12) -0.58 -0.601 0.121 0.109 89.4 93.6 98.0
cos(2πt∗/6) 0.48 0.466 0.082 0.094 92.6 97.4 99.6

σ2 0.56 0.627 0.241 0.255 91.4 96.6 99.2
ρ 0.89 0.834 0.166 0.152 89.2 94.4 98.0

Y166 1 1.216 0.385 0.502 92.8 97.4 99.8
Y167 3 2.734 0.617 0.783 93.2 98.0 100.0
Y168 6 5.376 1.079 1.304 93.8 98.2 100.0

Table 3(b): Mean parameter estimates, mean standard errors, empirical root mean square errors

and coverage rates for 90%, 95%, and 99% nominal rates over the 500 simulated data sets. Estimates

are based on a model without sin(2πt∗/6) and a Laplace distribution for the random effects.

Coverage
Term True Value Mean Mean SE RMSE 90% 95% 99%

Intercept 0.42 0.427 0.094 0.089 89.0 93.8 97.8
t∗/1000 -4.88 -4.81 1.110 1.097 90.2 95.4 99.4

cos(2πt∗/12) 0.15 0.142 0.080 0.087 90.6 95.2 98.8
sin(2πt∗/12) -0.60 -0.619 0.122 0.114 89.6 94.0 98.0
cos(2πt∗/6) 0.49 0.469 0.079 0.085 93.0 96.6 99.6

σ2 0.55 0.574 0.232 0.237 91.4 96.2 99.2
ρ 0.91 0.877 0.157 0.149 89.2 94.6 98.0

Y166 1 1.144 0.378 0.448 92.0 96.4 99.6
Y167 3 2.857 0.598 0.702 92.4 96.8 99.6
Y168 6 5.602 1.033 1.184 93.0 97.2 99.8

parameter at three different levels of confidence: 90%, 95%, and 99%. The coverage rates
for these intervals were ascertained; they are also presented in Tables 3(a) and 3(b). The
results for each prior indicate that, regardless of the parameter being estimated or the level
of confidence being considered, the normal symmetric confidence intervals approximately
attain the desired level of coverage. However, it is also worth mentioning that the coverage
rates based on the Laplace prior are noticeably closer to the nominal rates.
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The models based on normal and Laplace distributions were also used to forecast polio
counts for the last three periods, which were held out of the data used for estimation. The
mean predictions computed over the 500 simulated data sets are presented in Tables 3(a)
and 3(b), respectively, along with the true counts. It can be seen from these results that
the Laplace prior fares better with regards to point estimation. Also of note is that the
estimators for the true count values are more efficient under a Laplace prior. In addition,
confidence intervals based on these estimators are seem to better achieve the nominal rate
when compared to those based on a normal prior.

4 Data Example

Epidemiological surveillance is an ongoing procedure that consists of collecting, analyzing,
and interpreting public health data for disease and prevention control programs. Infectious
disease incidence, rendered available through epidemiologic surveillance, may have irregular
values in different geographical areas, time periods, or demographic characteristics. In the
dimension of time, irregular disease incidence values can provide an early indication of
an upcoming epidemic. Hence, the detection of irregular disease incidence values is of
importance for public health programs since government officials would be in a position to
react and intervene promptly.

As shown by Cardinal et al. (1999), integer-valued time series models can play an
important role in the analysis and interpretation of infectious disease incidence data. From
a public health perspective, it is important to be able to detect trends as well as other
more irregular patterns in the data. Specifically, it is extremely important to be able to
identify high incidences that may foretell an upcoming epidemic.

Although the success of the integer-valued time series was shown in Cardinal et al.
(1999), it would also be very useful for epidemiologists in the public health sector to be
able to incorporate covariates into statistical models of disease incidence. The hierarchical
Bayes approach described here allows for the incorporation of such covariates.

We apply the proposed hierarchical Bayes methodology to a time series consisting of the
number of cases of Campylobacter infection in the Montreal-Center region from January
1986 to December 1993. Of interest is the detection of periods of irregular disease incidence
values, in particular unusually high values. According to Cardinal (1995), Campylobacter

infection is an “acute enteric disease characterized by diarrhea, abdominal pain, general
malaise, fever, nausea, and vomiting”. For each year that data are available, the number
of cases were recorded over thirteen periods of approximately twenty eight days. The first
twelve periods for each year consisted of twenty eight days, the last period of the remaining
number of days making up the year.

A time series plot of the Campylobacter infection data is given in Figure 1. There
appears to be a positive linear trend and a seasonal component to the series, where the
number of cases of the disease is higher during the summer months. We therefore apply the
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Figure 1: Time Series Plot of Campylobacter Data

proposed hierarchical Bayes approach to fit the model given by (2.1), with the following
covariate vector

x′
t = [1, t/1000, cos(2πt/13), sin(2πt/13), cos(2πt/6.5), sin(2πt/6.5)]

where t = 1, . . . , 104. Similar to the fit for the polio data, we model the seasonality with
trigonometric components involving the first two harmonics.

The procedure for obtaining estimates of the model parameters was identical to that
described above for the polio data fit. The final three observations were removed so that
predictions could be made for these time periods. Separate fits based on normal and
Laplace priors were considered. In both cases, the use of Bayes factors suggested that
the sin(2πt/6.5) term was not significant. However, once this term was removed all other
covariates were deemed necessary. Tables 4(a) and 4(b) present the estimates for the fixed
effects parameter estimates. Regardless of which prior is considered, the results suggest
that there is a significant linear positive trend to the Campylobacter infection data, as well
as a significant seasonal component. This is illustrated by the fact that the coefficients for
the first two terms in the trigonometric series are highly significant. Also of note is the
fact that standard errors obtained under a Laplace prior are, generally speaking, smaller
than those arrived at when a normal prior is assumed for the random effects.

In order to detect a period with an unusually high disease incidence value, the ratio of
the estimate of the random effect for the period to its standard error can be considered.
We will consider here an unusually high value for a time period as being reflected by a
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Table 4(a): Hierarchical Bayes model estimates (estimated standard errors is brackets) for the

Campylobacter data time series based on a normal distribution for the random effects, where

seasonality is modeled with trigonometric components involving the first two harmonics, excluding

the sin(2πt∗/6.5) term. Point estimates and prediction intervals are presented for the last three

observations in the time series, which were not used in the fit.

Intercept t/1000 cos(2πt/13) sin(2πt/13) cos(2πt/6.5) σ2 ρ

2.89 5.97 -0.24 -0.33 -0.07 0.59 0.88
(0.042) (0.669) (0.029) (0.027) (0.029) (0.15) (0.12)

95% Prediction
Term True Value Estimate Interval

Y102 36 34.30 (27.07, 41.88)
Y103 24 25.63 (20.23, 31.71)
Y104 17 19.78 (11.20, 28.45)

Table 4(b): Hierarchical Bayes model estimates (estimated standard errors is brackets) for the

Campylobacter data time series based on a Laplace distribution for the random effects, where

seasonality is modeled with trigonometric components involving the first two harmonics, excluding

the sin(2πt∗/6.5) term. Point estimates and prediction intervals are presented for the last three

observations in the time series, which were not used in the fit.

Intercept t/1000 cos(2πt/13) sin(2πt/13) cos(2πt/6.5) σ2 ρ

2.95 6.04 -0.24 -0.34 -0.08 0.51 0.89
(0.039) (0.666) (0.028) (0.027) (0.027) (0.14) (0.10)

95% Prediction
Term True Value Estimate Interval

Y102 36 34.77 (28.03, 40.69)
Y103 24 25.12 (20.78, 31.17)
Y104 17 19.32 (12.91, 26.88)

ratio of random effect estimate to associated standard error of +3 or more. According to
this criterion, regardless of whether a normal or Laplace prior is assumed for the random
effects, there were six time periods with unusually high values: 39, 51, 57, 60, 71, and 72.
Of note is the fact that these periods, with one exception, seem to be either in the month
of December or between mid-May and mid-July. In addition, there does not appear to be
any unusually high disease incidence values over the last two-and-a-half years of the series.
Nevertheless, the significant positive trend in the model indicates that, generally speaking,
cases of Campylobacter infection are on the rise.
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Finally, Tables 4(a) and 4(b) also present point estimates and 95% symmetric normal
prediction intervals for the last three observations in the Campylobacter data set. The
Laplace prior appears to fare better in this regard. Point estimates obtained under this
prior are slightly closer to the true count. In addition, even though all prediction intervals
cover the true value for both normal and Laplace priors, those obtained under the latter
are somewhat narrower.

5 Conclusion

We have proposed and illustrated a hierarchical Bayes approach to parameter estimation
in a model to describe time series count data. We have focused on the AR(1) parameter-
driven model as in Chan and Ledolter (1995), although other models of dependence could
be easily implemented. Our method gives similar estimates to those of others for the trend
component in models for the polio data in Zeger (1988). The performance of our estimators,
as measured by the coverage probability of confidence intervals, is very good. Prediction
for future time periods is also possible. Such a property is important in epidemiological
applications where interest may lie in the detection of disease outbreaks. The proposed
methodology was also successfully applied to a time series of Campylobacter disease counts.
Alternative models of the correlation structure, as well as other priors could be pursued as
a topic for future research. In addition, since estimated standard errors for the estimator
of ρ are available, these might ultimately be used to derive a test for the hypothesis of
independence of the random effects. The development of such an inferential approach could
be another interesting possibility for future research.

In conclusion, the Bayesian methodology has been particularly helpful here. We have
shown how easily Bayes factors can be applied to check the significance of model covari-
ates, and how much improvement in performance of estimators and prediction can be
obtained by using a robust Bayesian approach. In addition, the proposed hierarchical
Bayes methodology should have a broad application to other statistical longitudinal data
problems, including multivariate count data.
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