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Pricing Installment Options with an

Application to ASX Installment Warrants

Hatem Ben-Ameur Michèle Breton∗
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Abstract

Installment options are Bermudan-style options where the holder periodically de-
cides whether to exercise or not and then to keep the option alive or not (by paying
the installment). We develop a dynamic programming procedure to price installment
options. We derive the range of installments within which the installment option is
not redundant with the European contract. Simulations analysis shows the method
yields monotonically converging prices, and satisfactory trade-offs between accuracy
and computational time. In addition, we examine the flexibility in installment option
design that yields various hedging properties. Our approach is applied to installment
warrants, which are actively traded on the Australian Stock Exchange. Numerical in-
vestigation shows the various capital dilution effects resulting from different installment
warrant designs.

Résumé

Les options à paiement différé (Installment Options) sont des options bermudiennes
où le détenteur doit décider à dates fixes s’il exerce ou non et s’il conserve ou non son
option (en versant le paiement différé). Nous proposons une méthode de tarification
de telles options par la programmation dynamique. Nous en déduisons l’ensemble des
suites de paiements qui rendent l’option intéressante par rapport à un contrat européen.
Nos essais numériques montrent que les prix obtenus convergent de façon monotone
et que l’arbitrage entre la précision et le temps de calcul est satisfaisant. Par ailleurs,
nous nous intéressons à la flexibilité du design de l’option à paiement différé qui permet
d’obtenir diverses propriétés intéressantes de couverture. Notre approche est ensuite
appliquée aux bons de souscription à paiement différés (Installment Warrants), un titre
activement transigé sur le marché australien. Des essais numériques montrent l’effet
de dilution résultant de différents design des suites de paiements pour ces titres.
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Michèle Breton acknowledges financial support from NSERC. Pascal François acknowl-
edges financial support from SSHRC, IFM2 and HEC Montréal.
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1 Introduction

Installment Options (IO) are akin to Bermudan options except that the holder must regu-
larly pay a premium (the “installment”) to keep the option alive. The pre-specified dates
(thereafter “decision dates”) at which the IO may be striked correspond to the installment
schedule. Therefore, at each decision date, the holder of the IO must choose between the
following

1. to exercise the option, which puts an end to the contract;
2. not to exercise the option and to pay the installment, which keeps the option alive
till the next decision date;

3. not to exercise the option and not to pay the installment, which puts an end to the
contract.

One of the most actively traded installment options throughout the world are currently
the installment warrants on Australian stocks listed on the Australian Stock Exchange
(ASX). Installment options are a recent financial innovation that introduces some flexibil-
ity in the liquidity management of portfolio strategies. Instead of paying a lump sum for
a derivative instrument, the holder of the IO will pay the installments as long as the need
for being long in the option is present. In particular, this considerably reduces the cost of
entering into a hedging strategy.1 In addition, the non-payment of an installment suffices
to close the position at no transaction cost. This reduces the liquidity risk typically asso-
ciated with other over-the-counter derivatives. Specifically for ASX installment warrants,
another advantage is that their holders are entitled to full dividends during the whole life
of the product. Also, investors may lodge their shares in return for installments, thereby
extracting cash to diversify their portfolios without losing exposure to their shares.
The aim of this paper is threefold. First, we tackle the problem of pricing IOs using

Dynamic Programming (DP). Second, we investigate the properties of IOs through theo-
retical and numerical analysis. Finally, we provide an adaptation of our methodology for
ASX installment warrants.
Literature on IOs is scarce. The only research paper we are aware of is that of Davis,

Schachermayer and Tompkins (2001). They derive no-arbitrage bounds for the price of the
IO and study static versus dynamic hedging strategies within a Black-Scholes framework
with stochastic volatility. Their analysis however is restricted to European-style IOs, which
allows for an analogy with compound options.
Algorithms based on finite differences have been widely used for pricing options with

no known closed-form solution (see e.g. Wilmott, Dewynne and Howison (1993) for a
survey). Recently, dynamic programming combined with finite elements has emerged as

1Risk managers may enter the IO contract at a low initial cost and adjust the installment schedule
with respect to their cash forecasts and liquidity constraints. This feature is particularly attractive for
corporations which massively hedge interest rate and currency risks with forwards, futures or swaps because
standard option contracts imply a cost at entry that may be incompatible with a temporary cash shortage.
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an alternative for low dimensional option pricing. By contrast to finite difference meth-
ods, DP does not require time discretization. Ben Ameur, Breton and L’Écuyer (2002)
show this method is particularly well suited for options involving decisions at a limited
number of distant dates during the life of the contract. Examples include Bermudan-style
options, callables, and convertibles. By construction, IOs allow for both early exercise and
installment payment decisions periodically.
The rest of the paper is organized as follows. In section 2, we develop the model in

the Black-Scholes setting. In section 3, we solve the Bellman equation and show how to
go back through the DP induction. Properties of the value function are derived in section
4. We present simulations analysis in section 5. Adaptation of the methodology to ASX
installment warrants is provided in section 6. Section 7 concludes.

2 The model

We consider a Black-Scholes economy. Agents may lend or borrow freely at the constant
riskless rate r. The price of the underlying asset {S} satisfies the following Stochastic
Differential Equation (SDE) under the risk-neutral probability measure

dSt = (r − δ)Stdt+ σStdBt, for 0 ≤ t ≤ T ,

where δ is the dividend rate, σ the volatility of the return on the underlying asset, and
{B} a standard Brownian motion. The solution to this SDE is the well-known geometric
Brownian motion

St′′ = St′ exp
((
r − δ − σ2/2

)
∆t+ σ

√
∆tZ

)
, for 0 ≤ t′ ≤ t′′ ≤ T , (1)

where ∆t = t′′ − t′ and Z is a standard normal random variable independent of the past
of {S} up to time t′.
Let t0 = 0 be the installment option (IO) inception date and t1, t2, ..., tn = T a col-

lection of decision dates scheduled in the contract. For simplicity, assume that these
dates are equally spaced. An installment design is characterized by the vector of premia
π = (π1, ..., πn−1) that are to be paid by the holder at dates t1, ..., tn−1 to keep the IO
alive.2 The price of the IO is the upfront payment v0 required at t0 to enter the contract.
The exercise value of the IO at the decision date tm, for m = 1, . . . , n, is explicit in the

contract and given by

ve
m (s) =

{
max (0, s−K) , for an installment call option
max (0,K − s) , for an installment put option

, (2)

where s = Stm is the price of the underlying asset at tm. By the risk-neutral principle, the
holding value of the option at tm is

vh
m(s) = E[e−r∆tvm+1(Stm+1) | Stm = s], for m = 0, . . . , n− 1, (3)

2Note that the design π = 0 corresponds to the case of a Bermudan option.
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where

vm (s) =




vh
0 (s) for m = 0
max

(
ve
m (s) , v

h
m (s)− πm

)
for m = 1, . . . , n− 1

ve
0 (s) for m = n

(4)

The function of vh
m (s) − πm is called thereafter the net holding value at tm, for m =

1, . . . , n− 1.
One way of pricing this IO is via backward iteration: from the known function vn = ve

n

and using (2)-(4), compute vn−1, then from vn−1 compute vn−2, and so on, down to
v0. However, the value function vm, for m = 0, . . . , n − 1, is not known and must be
approximated in some way. We propose an approximation method in Section 3 which
allows to solve the DP equation (3) in a closed-form for all s and m.

3 Solving the DP equation

In this section, we compute the expectation in (3). The idea is to partition the positive real
axis into a collection of intervals and then to approximate the option value by a piecewise
linear interpolation. This yields a closed-form solution to the DP equation (3).
Let a0 = 0 < a1 < . . . < ap < ap+1 = +∞ be a set of points and R0, . . . , Rp be a

partition of R into (p+ 1) intervals

Ri = (ai, ai+1] for i = 0, . . . , p.

Given an approximation ṽm of the option value vm at the points ai and step m, this
function is interpolated piecewise linearly, which yields

v̂m (s) =
p∑

i=0

(αm
i + βm

i s) I (ai < s ≤ ai+1) , (5)

where I is an indicator function. The local coefficients of this interpolation at step m, that
is the αm

i ’s and the β
m
i ’s, are obtained by solving the linear equations

ṽm (ai) = v̂m (ai) , for i = 0, . . . , p− 1.
For i = p, we take

αm
p = αm

p−1 and β
m
p = βm

p−1.

Assume now that v̂m+1 is known. Given (1), the expectation in (3) at step m becomes

ṽh
m (ak) (6)

= E
[
e−r∆tv̂m+1

(
Stm+1

) | Stm = ak

]
= e−r∆t

p∑
i=0

αm+1
i E

[
I

(
ai

ak
< eµ∆t+σ

√
∆tZ ≤ ai+1

ak

)]
+

βm+1
i akE

[
eµ∆t+σ

√
∆tZI

(
ai

ak
< eµ∆t+σ

√
∆tZ ≤ ai+1

ak

)]
,
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where µ = r − δ − σ2/2, and ṽh
m denotes the approximate holding value of the IO.

For k = 1, . . . , p and i = 0, . . . , p, the first integrals

Ak,i = E

[
I

(
ai

ak
< eµ∆t+σ

√
∆tZ ≤ ai+1

ak

)]

can be expressed as 

Φ (xk,1) for i = 0
Φ (xk,i+1)− Φ (xk,i) for 1 ≤ i ≤ p− 1
1− Φ (xk,p) for i = p

and the second ones

Bk,i = E

[
ake

µ∆t+σ
√

∆tZI

(
ai

ak
< eµ∆t+σ

√
∆tZ ≤ ai+1

ak

)]

as 


akΦ
(
xk,1 − σ

√
∆t

)
er∆t for i = 0

ak

[
Φ

(
xk,i+1 − σ

√
∆t

)
− Φ

(
xk,i − σ

√
∆t

)]
er∆t for 1 ≤ i ≤ p− 1

ak

[
1− Φ

(
xk,p − σ

√
∆t

)]
er∆t for i = p

,

where xk,i = [ln (ai/ak)− µ∆t] /
(
σ
√
∆t

)
, and Φ stands for the cumulative density func-

tion of Z.
We generate the ak’s as the quantiles of ST , the distribution of the underlying asset

price at maturity. The transition parameters, the Ak,i’s and Bk,i’s, are then precomputed
before doing the first iteration.
The algorithm may be summarized as follows:

1. Compute v̂n (s) for all s using (5);
2. Compute ṽh

n−1 (ak) for all k in a closed-form using (6);
3. Compute ṽn−1 (ak) for all k using (4);
4. Compute v̂n−1 (s) for all s > 0 using (5);
5. Repeat backward from step n− 1 to step 0.
Notice that the optimal decisions (exercise and exit strategies) are derived at steps 2

and 3.

4 Theoretical properties

In this section, we derive some theoretical properties related to the design of installment
call options. Symmetric results hold for installment put options.
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Proposition 1 The net holding value of the IO call at tm, vh
m (s)− πm, as a function of

s > 0, is continuous, differentiable, convex, and monotone with a positive rate less than
1. The value function is null on the exit region (0, am), equal to the net holding value on
the holding region [am, bm], and equal to the exercise value on the exercise region (bm,∞)
where am and bm are two thresholds that depend on the IO parameters.

Proof. The proof proceeds by induction on m = n − 1, . . . , 0. At tn−1, the holding
value at s > 0 is

vh
n−1 (s) = E

[
e−r∆tvn (Stn) | Stn−1 = s

]
=

∫ +∞

−∞
e−r∆t

(
seµ∆t+σ

√
∆tz −K

)+
φ (z) dz,

where φ is the density function of the standard normal distribution. Obviously, this
function is always strictly positive. By the Lebesgue’s dominated convergence theorem
(Billingsley, 1995), the holding value appears to be continuous, differentiable for all s > 0,
and

lim
s−→0

vh
n−1 (s) = 0.

This function is a convex function of s > 0 as a convex combination of convex (piecewise
linear) functions of s > 0. It is monotone as an integral of an increasing function indexed
by s > 0. For s2 > s1 > 0, one has

vh
n−1 (s2)− vh

n−1 (s1)

= e−r∆t

∫ +∞

−∞

((
s2e

µ∆t+σ
√

∆tz −K
)+ −

(
s1e

µ∆t+σ
√

∆tz −K
)+

)
φ (z) dz

≤ (s2 − s1) e−σ2∆t/2

∫ +∞

−∞
eσ

√
∆tzφ (z) dz

= s2 − s1.

The increasing rate of the holding value at tn−1 is thus less than 1. Consequently, the
net holding value reaches 0 at a unique threshold an−1, and below the exercise value at a
unique threshold bn−1, where an−1 and bn−1 depend on the IO parameters. Properties of
the net holding value and the value functions follow (see figure 1). Now, if one assumes
that these properties hold at step m + 1, the same arguments may be used to proof that
they hold at step m (we omit the details). This ends the proof.

Lemma 2 Let s and σ be the price and the volatility of the underlying asset, r the interest
rate, K, T = tn = n∆t, and tn∗ = t1 = ∆t the strike, the maturity, and the first exercise
date of the installment call option with an installment vector π = (π1, . . . , πn−1) to be paid
at t1, . . . , tn−1. For k = 1, . . . , n − 1, assume that πm ≥ c (K,σ,K,∆t, r), for all m ≥ k.
One has

vk (s) = ve
k (s) , for all s > 0,
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Net holding value

vm
h(s) - πm

Sm
K

0
- πm

am bm

Exit
region

Holding
region

Exercise
region

Figure 1

Figure 1 plots the curve representing the net holding value of the installment call option vh
m (s)−πm

for any decision date m. This curve intersects the x-axis at am which separates the exit region
from the holding region. Since its slope is less than 1, it necessarily intersects the curve of the call
intrinsic value at bm, which separates the holding region from the exercise region.

where c (s, σ,K,∆t, r) is the Black-Scholes price of the European call option with parame-
ters s, σ, K, ∆t, and r.

Proof. The proof is established by induction on m = n − 1, . . . , 1. At time tn−1, one
has

vh
n−1 (K) = E

[
e−r∆tvn (Stn) | Stn−1 = K

]
= E

[
e−r∆tve

n (Stn) | Stn−1 = K
]

= c (K,σ,K,∆t, r) .

Recall that the holding value is a monotone function of s > 0 with a positive rate less
than 1 for the call (see Proposition 1). For πn−1 ≥ c (K,σ,K,∆t, r), the net holding value
at tn−1, vh

n−1 (s) − πn−1, is always lower than the exercise value, ve
n−1 (s), as shown in

Figure 2.
At step k + 1, assume that πm ≥ c (K,σ,K,∆t, r) and vm (s) = ve

m (s), for all s > 0 and
m ≥ k + 1. One has

vh
k (K) = E

[
e−r∆tvk+1

(
Stk+1

) | Stk = s
]

= E
[
e−r∆tve

k+1

(
Stk+1

) | Stk = s
]

= c (K,σ,K,∆t, r) .
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The same argument used at step n− 1 may be used again at step k to show that
vk (s) = ve

k (s) , for all s > 0,

if πk ≥ c (K,σ,K,∆t, r).

Holding value
and net holding value
below intrinsic value

vn-1
h(s) – πn-1

Sn-1
K

0

c(K,σ,K,∆t,r)

vn-1
h(s)

Figure 2

Figure 2 plots the case where the installment is equal to c (K,σ,K,∆t, r), which places the net
holding value below the intrinsic value. Thus, for all installments greater than c (K,σ,K,∆t, r),
the holding region vanishes, and the remaining possibilities are exit or exercise at the next decision
date.

Proposition 3 Let s and σ be the price and the volatility of the underlying asset, r the
risk-free rate, K, T = tn = n∆t, and tn∗ = t1 = ∆t the strike, the maturity, and the first
exercise date of the installment call option with an installment vector π = (π1, . . . , πn−1)
to be paid at t1, . . . , tn−1. If the πm’s are all greater than c (K,σ,K,∆t, r), one has

v0 (s) = c (s, σ,K,∆t, r) , for all s > 0.

Proof. By Lemma 2, we get

v0 (s) = vh
0 (s)

= E
[
e−r∆tv1 (St1) | S0 = s

]
= E

[
e−r∆tve

1 (St1) | S0 = s
]

= c (s, σ,K,∆t, r) .

This ends the proof.
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5 Simulation analysis

5.1 Convergence speed and accuracy

Table 1 displays the main pricing properties of our approach. First, convergence to the
“true” price is rather fast. A fairly good approximation of the IO price can be obtained
almost instantaneously with a 125-point grid. A two-digit accuracy is achieved with a
250-point grid, which involves a computational time of a tenth of a second (CPU times
are reported with a 933 MHz Windows PC). A four-digit accuracy can be obtained with
a 1000-point grid, which implies a computational time that does not exceed two seconds.
Second, note that the number of installments in the contract increase computational time
only slightly. For a given grid size, computational time is divided in two components, a
fixed cost to pre-compute the transition matrices, and a variable cost roughly linear in the
number of installments. In particular, computational time increases by around 20% as the
number of installments goes from 0 to 4. Thus, complex IOs can still be priced with a satis-
factory trade-off between accuracy and computational time. Third and most importantly,
convergence to the “true” price is monotonic. This allows for extrapolation methods that
can significantly reduce computational time for a desired accuracy. In addition, note that
our approach, like any other numerical method, may be implemented in conjunction with
variance-reducing techniques, such as control variate methods for example.

Number of Number of grid points
installments 125 250 500 1000 2000

0 13.34809 13.34664 13.34658 13.34650 13.34648
(0.02) (0.09) (0.39) (1.53) (6.14)

1 11.49561 11.49268 11.49236 11.49221 11.49218
(0.02) (0.11) (0.41) (1.61) (6.45)

2 9.86059 9.85653 9.85595 9.85575 9.85571
(0.03) (0.11) (0.42) (1.69) (6.78)

3 8.65862 8.65312 8.65243 8.65217 8.65211
(0.03) (0.11) (0.44) (1.77) (7.08)

4 7.80531 7.79948 7.79856 7.79828 7.79822
(0.03) (0.11) (0.47) (1.84) (7.39)

Table 1: IO prices and computational time

Table 1 reports IO upfront payments for various grid sizes with the corresponding CPU time in
seconds (in parentheses). The code line is written in C and compiled with GCC. CPU times are
obtained with a 933 MHz Windows PC. The IO is a call with equal installments (π = 2) and the
following characteristics: S = 100, K = 95, σ = 0.2, r = 0.05, δ = 0, and T = 1. The number
of installments varies from 0 to 4. In the case of zero installment, the call is European and its
theoretical price is 13.34647.
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5.2 Non-redundant IO contracts

Table 2 reports prices of installment calls for various levels of constant installments.
Clearly, these prices are decreasing with the level of installment. They reach the min-
imum c (s, σ,K,∆t, r) for installments greater than π = c (K,σ,K,∆t, r), as shown in
Proposition 3. For example, when K = 110, we have c (100, 0.2, 110, 0.25, 0.05) = 1.191
and c (110, 0.2, 110, 0.25, 0.05) = 5.076. For any installment greater than 5.076, the holding
region vanishes, and the installment call is worth the European call expiring at the next
decision date.

Installment K = 90 K = 100 K = 110
0 16.699 10.451 6.040
0.5 15.262 9.072 4.785
1 13.857 7.787 3.738
1.5 12.779 6.660 2.886
2 12.206 5.840 2.266
2.5 11.910 5.286 1.833
3 11.763 4.943 1.547
3.5 11.695 4.748 1.368
4 11.671 4.650 1.264
4.5 11.670 4.616 1.210
5 11.670 4.615 1.191
5.5 11.670 4.615 1.191

Table 2: IO prices and installment level

Table 2 reports installment call upfront payments for various levels of installment and strikes.
Parameters are the following: S = 100, σ = 0.2, r = 0.05, δ = 0, and T = 1. Exercise rights are
quarterly and the IO has three installments.

A direct implication for IO design is that contracts with installments that eliminate the
holding region are simply redundant with European options. Within the range of possible
installment levels, various hedging properties may be designed. We now investigate these
properties.

5.3 IO Greeks

In this subsection, we examine the hedging properties of the installment call option with
respect to the level of installments, the installment schedule, and the option moneyness.
Figures 3 and 4 report our findings. Unless otherwise indicated, parameters are the fol-
lowing

S r δ σ T n
100 0.05 0 0.2 1 4
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Figures 3a, 3b, and 3c respectively report the installment call delta, gamma and vega as
a function of the constant installment π1. For each figure, out-of-the-money installment
calls are plotted with triangles (K = 110), at-the-money installment calls are plotted with
squares, and in-the-money installment calls are plotted with crosses (K = 90).
Figure 3a reports that installment call delta decreases (increases) with π1 for out-of-

the-money (in-the-money) options. Indeed, if the constant installment increases, it gets
more and more likely that the IO will be exercised or forsaken at the first date. Thus, if
the IO is currently in the money, its price becomes even more sensitive to price variations
of the underlying. By contrast, a currently out-of-the-money IO with a high π1 has little
chance of future exercise, so its delta remains low. A direct implication of this property is
that the higher π1, the more volatile delta is with respect to S. In other words, IOs with
high installments are more difficult to hedge.
Figure 3b confirms this latter finding as IO gammas are increasing with π1. Hedging

IOs with high installments requires more frequent rebalancing of the replicating portfolio.
This effect is more pronounced for at-the-money IOs. For these options indeed, moneyness
is uncertain so that delta could rapidly shift to very low or very high values. That is
why Figure 3b indicates that, as π1 increases, gamma becomes a more humped function
of moneyness.

A similar effect applies for vega as illustrated by Figure 3c. Since a high installment
reduces the likelihood of future exercise and therefore lowers the IO speculative value,
vega decreases with π1. Interestingly, this cutoff in speculative value is less pronounced for
at-the-money installment calls. Thus, as π1 increases, vega also becomes a more humped
function of moneyness.
Figures 4a, 4b, and 4c respectively report the installment call delta, gamma and vega

as a function of the first installment π1. In this case however, the installment schedule may
be increasing or decreasing. Specifically, installment calls with installments decreasing at
rate 0.8 are plotted with triangles, installment calls with constant installments are plotted
with squares, and installment calls with installments increasing at rate 1.2 are plotted with
crosses. Simulations are reported for at-the-money calls.
As illustrated by Figures 4a to 4c, non-constant installments introduce an additional

degree of freedom in the IO design. Specifically, if installments are increasing, then, all else
being equal, call delta and vega are reduced. As shown in Proposition 3, higher installments
tighten up the holding region and reduces the option speculative value. Therefore the
installment call value is less sensitive to underlying price or volatility variations (see Figures
4a and 4c). By contrast, since the net holding value tends to mimic the intrinsic value, the
installment call with high installments exhibits a high gamma and requires a more frequent
hedging (see Figure 4b).
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1 2 3 4 5
p1

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Dc

(a)

1 2 3 4 5
p1

0.015

0.02

0.025

0.03

0.035

Gc

(b)

1 2 3 4 5
p1

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Vc

(c)

Figure 3: IO Greeks, installment level, and moneyness
Figures 3a, 3b, and 3c respectively report the installment call delta, gamma and vega as a function
of the constant installment π1. Parameters are the following: S = 100, r = 0.05, δ = 0, σ = 0.2,
and T = 1. Exercise rights are quarterly and the IO has three installments. For each figure, out-
of-the-money installment calls are plotted with triangles (K = 110), at-the-money installment calls
are plotted with squares, and in-the-money installment calls are plotted with crosses (K = 90).
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0.2
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Figure 4: IO Greeks, installment schedule, and moneyness
Figures 4a, 4b, and 4c respectively report the installment call delta, gamma and vega as a function of
the first installment π1. Parameters are the following: S = 100, K = 100, r = 0.05, δ = 0, σ = 0.2,
and T = 1. Exercise rights are quarterly and the IO has three installments. For each figure,
installment calls with installments decreasing at rate 0.8 are plotted with triangles, installment
calls with constant installments are plotted with squares, and installment calls with installments
increasing at rate 1.2 are plotted with crosses.
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6 Application to ASX installment warrants

One of the most actively traded installment options throughout the world are currently the
installment warrants on Australian stocks. These warrants were launched on the Australian
Stock Exchange (ASX) in January 1997. Since then, both the number of listed installment
warrants and the trading volume have grown exponentially, as documented by Figure 5
(obtained from the ASX website).

Figure 5: Installment warrants listings and volume

Some of the ASX installment warrants (called rolling installment warrants) have several
installments and their expiry date may be up to 10 years. However, most ASX warrants
have only one installment with maturities ranging from 1 to 3 years. The single installment
is usually set equal to the upfront payment. This clearly puts a restriction on the strike
price of the warrant.
In this section, we apply our model to the pricing of installment warrants. By contrast

to call options, warrants have a dilution effect on the issuer’s stocks. Black and Scholes
(1973) suggest to price warrants as an option on the issuer’s equity (i.e. stocks plus
warrants). For so doing, the valuation formula must be adjusted for dilution.3 Specifically,
let M , N , and γ respectively denote the number of outstanding warrants, the number of
outstanding shares, and the conversion ratio. Extending the approach by Lauterbach and
Schultz (1990), the installment warrant in this context is interpreted as – a fraction of –
an IO issued by the firm. Its payoff process is

Yt =
Nγ

N +Mγ

(
Vt

N
−K

)+

, for t ∈ {t0 = 0, . . . , tm = T} ,

3Another possibility, first explored by Galai and Schneller (1978), is to price warrants as an option on
the issuer’s underlying stock. Handley (2002) points out that if the warrant is priced after its announcement
date, then the efficient market hypothesis implies that the dilution effect is already reflected in the stock
price. Consequently, no adjustment for dilution is required. However, to be consistent with the assumption
of a geometric Brownian motion for the firm’s equity, this approach requires a time-varying volatility for
the underlying stock returns.
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where {V } = {NS +MW} is the value of the firm’s equity, {V/N} = {S +MW/N} is
the asset underlying the warrant, {S} is the stock price of the firm within the warrant life,
and {W} is the value of the installment warrant.
The DP algorithm described in Section 3 may be easily modified to the pricing of

warrants in the context of IOs. The exercise value in (2) is now the payoff of the warrant
if exercised optimally

ve
t (x) =

Nγ

N +Mγ
(x−K)+ .

To compute W0, one should solve

v0 (S0 +MW0/N) =W0.

This is easy to implement as the procedure gives4

v0 (x) , for all x > 0.

Table 3 reports installment warrant prices for degrees of dilution and numbers of in-
stallments.

Number of Number of outstanding warrants
installments M = 0 M = 10 M = 50 M = 100 M = 200

0 13.346 13.006 11.988 11.184 10.322
(13.346) (13.006) (11.989) (11.185) (10.324)

1 11.492 11.011 9.567 8.557 7.726
2 9.855 9.364 8.054 7.289 6.790
3 8.652 8.215 7.177 6.658 6.315
4 7.798 7.445 6.666 6.296 6.030

Table 3: Installment warrant prices and the dilution effect

Table 3 reports installment warrant upfront payments for various degrees of dilution. The install-
ment warrant has equal installments (π = 2) and the following characteristics: S = 100, K = 95,
σ = 0.2, r = 0.05, δ = 0, N = 100, γ = 1, and T = 1. Grid size is 500 points. The number of
outstanding warrants varies from 0 to 200, and the number of installments varies from 0 to 4. In the
case of zero installment, the warrant is European and its theoretical price (below in parentheses)
is given by Lauterbach and Schultz (1990). In the case of M = 0, the installment warrant is fully
diluted and its price equals that of the installment call option (see Table 1).

4As a special case, we get the procedure by Lauterbach and Schultz (1990) for pricing European warrants,
namely the price w of the European warrant is obtained using the Black-Scholes formula where: (1) The
underlying S is replaced with S+ M

N
w, (2) Volatility σ is that of equity returns, and (3) The whole formula

is multiplied by the dilution factor Nγ
N+Mγ

. These adjustments result in an equation of the type w = f (w)
which must be solved numerically.
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As can be seen from Table 3, installment warrants prices decrease with the installment
and are therefore lower than prices of otherwise identical European warrants. Thus, in-
stallment warrants have a weaker dilution effect than European warrants, i.e. the wealth
transfer from stockholders to warrantholders is less pronounced. The reason for this is that
the presence of installments implies that warrants may be abandoned and simply not exer-
cised. As a consequence, the design of installment warrants gives the firm some flexibility
in controlling capital dilution when raising funds.

7 Conclusion

In this paper, we have developed a pricing methodology for installment options using
dynamic programming. This numerical procedure is particularly well suited for IOs because
these options are Bermudan-style and involve a limited number of distant exercise dates.
Simulations indicate that prices converge monotonically and quickly reach good levels of
accuracy. In addition, we have shown that IOs installment schedule may be designed with
a great flexibility. Various hedging properties can thus be tailored.
We have adapted our model to the pricing of installment warrants that are actively

traded on the Australian Stock Exchange. Numerical investigation shows the various
capital dilution effects resulting from different installment warrant designs.
Our approach is flexible enough to be extended to many other pricing issues. For

instance, levered equity may be seen as a compound call on asset value when debt bears
discrete coupons (see Geske (1977)). Consider now the coupon-bearing debt is callable.
At each coupon date, shareholders decide whether or not to call the debt. If they do not
call, they decide whether or not to pay the coupon to keep their claim on firm asset value.
Consequently, levered equity may be priced as an installment call on firm asset value.
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