
Les Cahiers du GERAD ISSN: 0711–2440

BIPA – (BI level Programming with
Approximation Methods)

Software Guide and Test Problems

Benôıt Colson

G-2002-37

July 2002

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.



BIPA

(BI level Programming with Approximation Methods)

Software Guide and Test Problems

Benôıt Colson
Département de Mathématique

Facultés Universitaires Notre-Dame de la Paix

Rempart de la Vierge, 8

B-5000 Namur, Belgique

bc@math.fundp.ac.be

July, 2002

Les Cahiers du GERAD

G–2002–37

Copyright c© 2002 GERAD



Abstract

This paper describes BIPA, a software for solving nonlinear bilevel programming
problems. At each iteration, the underlying algorithm computes a linear-quadratic
approximation of the original problem around the current iterate. The whole process
is embedded in a trust-region framework. We first describe the algorithm before giving
details about the implementation and the resulting software and explain how to use
it. Finally, a series of test problems is given as well as a complete example with input
and output files.

Keywords: bilevel programming, nonlinear programming, trust-region methods, soft-
ware, test problems.

Résumé

Ce document a pour but de décrire BIPA, un logiciel permettant de résoudre
les problèmes de programmation bi-niveau non-linéaires. Lors de chaque itération,
l’algorithme calcule une approximation linéaire-quadratique du problème original, et
ce autour du point courant. L’ensemble du processus est intégré dans une méthode
de type région de confiance. Nous décrivons d’abord l’algorithme avant de donner les
détails de son implémentation, puis de présenter le logiciel qui en résulte ainsi que la
manière de l’utiliser. Enfin, une série de problèmes tests est fournie, de même qu’un
exemple complet avec les fichiers d’entrée et de sortie.

Mots-clés: programmation bi-niveau, programmation non-linéaire, méthodes de
région de confiance, logiciel, problèmes tests.



Les Cahiers du GERAD G–2002–37 1

1 Introduction

BIPA (BIlevel Programming with Approximation methods) is a C ANSI code for solving
nonlinear bilevel programming problems of the following type:

min
x1

F (x1, x2) (1a)

s.t. G(x1) ≤ 0 (1b)

minx2
f(x1, x2) (1c)

s.t. g(x1, x2) ≤ 0, (1d)

where F : IRn1×n2 → IR, G : IRn1 → IRm1 , f : IRn1×n2 → IR, and g : IRn1×n2 → IRm2 are
twice continuously differentiable functions. We further require f to be convex in x2 (for a
fixed value of x1).

BIPA is a trust-region type method (see e.g. Conn, Gould and Toint [7]), where the
subproblem consists in solving a sequence of mixed-integer programs (MIPs) and nonlinear

optimization problems. The latter programs are solved using CPLEX [10] routines and
DONLP2 [19, 20, 21] respectively.

The current version of BIPA contains the original code, some examples of input files,
the complete and adapted version of DONLP2 and an example of makefile for testing and
running BIPA on a UNIX platform.

The structure of this paper is as follows. We first describe the algorithm underlying
BIPA (see Section 2). Section 3 then provides much details about the software, its input
files containing parameters and the problem description, the interaction with CLEX and
DONLP2 for solving subproblems and the output file with the results of the optimization
process. Section 4 gives a complete description of our current set of test problems, one
of them being chosen as an example in Section 5 for a step-by-step description of how to
solve it with BIPA.

2 Description of the algorithm

This section describes the different steps of the algorithm. More details as well as com-
putational results and a theoretical analysis may be found in [5, 6]. In the sequel, we use
(x̄1, x̄2) to denote the current point.

1. Initialization. The trust-region parameters are initialized, as well as some variables
related to stopping criteria (see below):

• initial trust-region radius: ∆0,

• parameters for checking improvement after computation of a new point: η1, η2

(with 0 < η1 ≤ η2 < 1),

• parameters for updating the trust-region radius: γ1, γ2 (with 0 < γ1 < 1 < γ2),

• parameter for checking closeness of consecutive iterates: ε,



Les Cahiers du GERAD G–2002–37 2

• maximum allowed number of consecutive unsuccessful iterations: mxnuns,

• minimum value for trust-region radius: ∆min,

• maximum number of allowed iterations: kmax.

We also set the iteration counter k to 0 and suppose we are given a first feasible point

(x
(0)
1 , x

(0)
2 ).

2. Computation of the models. We build a linear-quadratic model of problem (1)
around the current iterate (x̄1, x̄2). More precisely we compute linear approximations
of F , G and g, and a quadratic approximation of the lower-level objective f :

Fm(x1, x2) = F (x̄1, x̄2) +∇x1
F (x̄1, x̄2)

T (x1 − x̄1) +∇x2
F (x̄1, x̄2)

T (x2 − x̄2), (2)

Gm(x1) = G(x̄1) + Jx1
G(x̄1)(x1 − x̄1), (3)

fm(x1, x2) = f(x̄1, x̄2) +∇x1
f(x̄1, x̄2)

T (x1 − x̄1) +∇x2
f(x̄1, x̄2)

T (x2 − x̄2)

+
1

2
(x1 − x̄1)

T∇2
x1x1

f(x̄1, x̄2)(x1 − x̄1)

+ (x1 − x̄1)
T∇2

x1x2
f(x̄1, x̄2)(x2 − x̄2)

+
1

2
(x2 − x̄2)

T∇2
x2x2

f(x̄1, x̄2)(x2 − x̄2),

(4)

gm(x1, x2) = g(x̄1, x̄2) + Jx1
g(x̄1, x̄2)(x1 − x̄1) + Jx2

g(x̄1, x̄2)(x2 − x̄2). (5)

These models yield the following linear-quadratic bilevel problem:

min
x1

Fm(x1, x2) (6a)

s.t. Gm(x1) ≤ 0 (6b)

minx2
fm(x1, x2) (6c)

s.t. gm(x1, x2) ≤ 0. (6d)

We then introduce the following notations:

c1 = ∇x1
F (x̄1, x̄2) ∈ IRn1 , c2 = ∇x2

F (x̄1, x̄2) ∈ IRn2 , (7)

d1 = ∇x1
f(x̄1, x̄2) ∈ IRn1 , d2 = ∇x2

f(x̄1, x̄2) ∈ IRn2 , (8)

A1 = Jx1
G(x̄1, x̄2) ∈ IRm1×n1 , (9)

H1 = Jx1
g(x̄1, x̄2) ∈ IRm2×n1 , H2 = Jx2

g(x̄1, x̄2) ∈ IRm2×n2 , (10)

Q11 = ∇2
x1x1

f(x̄1, x̄2) ∈ IRn1×n1 , Q12 = ∇2
x1x2

f(x̄1, x̄2) ∈ IRn1×n2 , (11)

Q21 = ∇2
x2x1

f(x̄1, x̄2) ∈ IRn2×n1 , Q22 = ∇2
x2x2

f(x̄1, x̄2) ∈ IRn2×n2 , (12)

r1 = d1 −QT
21x̄2 −QT

11x̄1 ∈ IRn1 , r2 = d2 −QT
12x̄1 −QT

22x̄2 ∈ IRn2 .

This allows to modify problem (6) in the following way:



Les Cahiers du GERAD G–2002–37 3

• we first regroup constant terms of (2), (3), (4), and (5) in F̄ , Ḡ, f̄ , and ḡ

respectively:
F̄ = F (x̄1, x̄2)− cT

1 x̄1 − cT
2 x̄2,

Ḡ = G(x̄1)−A1x̄1,

f̄ = f(x̄1, x̄2)− dT
1 x̄1 − dT

2 x̄2 +
1

2
(x̄T

1 x̄T
2 )

(

Q11 Q12

Q21 Q22

)(

x̄1

x̄2

)

,

ḡ = g(x̄1, x̄2)−H1x̄1 −H2x̄2;

• we then introduce new upper- and lower-level objective and constraint functions
as follows:

Fm′(x1, x2) = cT
1 x1 + cT

2 x2,

Gm′(x1) = A1x1,

fm′(x1, x2) = rT
1 x1 + rT

2 x2 +
1

2
(xT

1 xT
2 )

(

Q11 Q12

Q21 Q22

)(

x1

x2

)

,

gm′(x1, x2) = H1x1 +H2x2.

Problem (6) may then be rewritten in the following way:

min
x1

Fm′(x1, x2) (13a)

s.t. Gm′(x1) ≤ −Ḡ (13b)

minx2
fm′(x1, x2) (13c)

s.t. gm′(x1, x2) ≤ −ḡ. (13d)

3. Formulation of the mixed-integer programming (MIP) problem. Starting
from problem (13), we now formulate the equivalent mixed-integer programming
(MIP) problem to which we add a trust-region type constraint as follows:

min cT
1 x1 + cT

2 x2 (14a)

s.t. ‖x1 − x̄1‖ ≤ ∆k, (14b)

A1x1 ≤ −Ḡ, (14c)

H1x1 +H2x2 ≤ −ḡ, (14d)

λ ≥ 0 ∈ IRm2 , (14e)

λi ≤Mzi, i = 1, . . . ,m2, (14f)

[−ḡ −H1x1 −H2x2]i ≤M(1− zi), i = 1, . . . ,m2, (14g)

zi ∈ {0, 1}, i = 1, . . . ,m2, (14h)
1
2(Q

T
12 +Q21)x1 +Q22x2 +HT

2 λ+ r2 = 0 ∈ IRn2 . (14i)



Les Cahiers du GERAD G–2002–37 4

Constraint (14b) is the added trust-region constraint and (14c) is primal feasibility of
the upper-level problem. Primal feasibility of the lower-level is ensured with (14d)-
(14e) together with the complementarity constraint

λi[−ḡ −H1x1 −H2x2]i = 0, i = 1, . . . ,m2,

the latter being replaced by (14f), (14g) and (14h). Finally, (14i) is the dual feasibility
of the lower-level problem.

4. Solving MIP. The CPXmipopt routine from the CPLEX Callable Library [10] is
used to solve problem (14), whose solution we denote by (xm

1 , xm
2 ).

5. Solving the lower-level problem. Replacing the upper-level solution xm
1 in the

original lower-level problem (1c)-(1d) leads to the following program:

minx2
f(xm

1 , x2)
s.t. g(xm

1 , x2) ≤ 0.
(15)

We may solve this problem and compute the reaction x∗2 = x2(x
m
1 ) with any code for

general nonlinear constrained optimization problems. Actually, we solve it using the
C ANSI version of Spellucci’s DONLP2 code (see [20] and [21] for the description of
the underlying algorithm and [19] for the user’s guide).

6. Updating radius and iterate. We first compute the ratio of achieved reduction
versus predicted reduction

ρk =
F (x̄1, x̄2)− F (xm

1 , x∗2)

Fm(x̄1, x̄2)− Fm(xm
1 , xm

2 )
.

If ρk < η1, the model is inaccurate so we let (x̄1, x̄2) unchanged and set ∆ := γ1∆.
Otherwise we set x̃1 := x̄1 (to store the previous iterate) and (x̄1, x̄2) := (xm

1 , x∗2)
since the model allowed a sufficient reduction, while the trust-region radius is set to
∆ := γ2∆ if ρk > η2 (unchanged otherwise).

7. Stopping criteria. The optimization process is stopped when ‖x̄1− x̃1‖ < ε after a
successful iteration, or the actual reduction equals the predicted one and the latter is
small, or the past mxnuns iterations are all unsuccessful. The algorithm may also stop
if the trust-region radius becomes too small (i.e. ∆k+1 < ∆min) or the number of
iterations is too large (i.e. k+1 > kmax). Other reasons for stopping may occur, e.g.
the algorithm may fail to solve a subproblem (the complete list of possible reasons for
termination is given in Table 1). If none of these conditions is satisfied, set k := k+1
and go to step 2.

3 Software

We now provide details about the implementation of the algorithm described above. This
part may be seen as a user’s guide since it includes the complete description of all input files



Les Cahiers du GERAD G–2002–37 5

Code Reason for termination

1 Convergence: no significant progress is made
2 Too many consecutive unsuccessful iterations
3 Trust-region radius is too short
4 Maximum allowed number of iterations is reached
5 CPLEX fails to build problem data arrays
6 CPLEX can not open CPLEX environment
7 CPLEX can not turn on screen indicator
8 CPLEX fails to create MIP
9 CPLEX fails to copy problem data
10 CPLEX fails to copy ctype
11 CPLEX fails to write MIP on disk
12 CPLEX fails to optimize MIP
13 CPLEX: MIP objective value is not available
14 CPLEX fails to get optimal integer x
15 CPLEX fails to get optimal slack values
16 Predicted reduction is too small
17 Actual reduction is equal to predicted reduction and is small
18 Predicted reduction is negative (theoretically impossible)

Table 1: Complete list of stopping criteria for BIPA.

required to run BIPA (see Section 3.1). We also explain how the MIP (14) is solved using
CPLEX (Section 3.2) and how DONLP2 is used to compute the reaction while solving (15)
for a fixed value of x1 (Section 3.3). Finally, we describe the output file produced by BIPA
(Section 3.4).

Throughout this section, the sequence *** is used to denote any numerical value. Also
note that the user is expected to write input files taking all typesetting details (tabs,
variable names, ...) into account.

3.1 Input files

3.1.1 Parameters for the algorithm The file SETUP.DAT contains values for algorith-
mic parameters. Any SETUP.DAT file must contain 9 lines where parameters are arranged
in the following sequence:

DELTA0 10.0

DELMIN 1.0e-6

ETA1 0.01

ETA2 0.90

ITMAX 50

GAMMA1 0.6



Les Cahiers du GERAD G–2002–37 6

GAMMA2 1.4

EPSILON 1.0e-6

BIGM 1.0e+2

MXNUNS 5

The values shown hereabove correspond to standard values used for the numerical ex-
periments reported in [5]. The user may therefore let this file unchanged for basic tests
unless he/she wants to analyze the effects of some of these parameters.

• DELTA0 is the initial trust-region radius (denoted by ∆0 in Step 1 of the algorithm),

• DELMIN is the minimum allowed value for the trust-region radius (denoted by ∆min

in Step 1 of the algorithm),

• ETA1 and ETA2 correspond to the parameters η1 and η2 respectively,

• ITMAX is the maximum number of allowed iterations (denoted by kmax in Step 1 of
the algorithm),

• GAMMA1 and GAMMA2 correspond to the parameters γ1 and γ2 for updating the trust-
region radius,

• EPSILON is the parameter ε for checking closeness of two consecutive iterates,

• BIGM is the parameter M appearing in equations (14f) and (14g) above,

• MXNUNS is the parameter corresponding to the maximum number of allowed unsuc-
cessful iterations.

ITMAX and MXNUNS are integer variables; all other parameters are read as float and then
converted to double.

3.1.2 Problem parameters The file PROBLEM.DAT must have the following structure:

problem_name

N1 ***

N2 ***

M1 ***

M2 ***

X_11 ***

X_12 ***

... ...

X_21 ***

X_22 ***

... ...

• The string problem_name contains at most 25 characters (including the final \0),

• N1 and N2 are integers representing the number of upper-level and lower-level variables
respectively (see n1 and n2 in Section 1),



Les Cahiers du GERAD G–2002–37 7

• M1 and M2 are integers representing the number of upper-level and lower-level con-
straints respectively (see m1 and m2 in Section 1),

• X_11, X_12, ... are initial values for the n1 upper-level variables (double),

• X_21, X_22, ... are initial values for the n2 lower-level variables (double).

3.1.3 Problem functions The file prob_eval.c contains C code corresponding to func-
tions for computing values (gradients, Jacobians, Hessians, ...) related to the functions F ,
G, f and g appearing in a problem formulated in the same way as (1). In what follows,
the vector x has N1+ N2 components (corresponding to those of x1 and x2) and these are
stored in x[0], x[1], ..., x[N1+N2-1]. All functions described below take such a vector x
as input.

1. double evalFu( double *x )

evaluates the upper-level objective function value

F (x1, x2);

2. void evalGu( double *Gu, double *x )

evaluates the upper-level constraint values

G(x1, x2) ∈ IRm1

and stores the result in Gu[0], ..., Gu[M1-1].

3. double evalfl( double *x )

evaluates the lower-level objective function value

f(x1, x2).

4. void evalgl( double *gl, double *x )

evaluates the lower-level constraint values

g(x1, x2) ∈ IRm2

and stores the result in gl[0], ..., gl[M2-1].

5. void evalFugrad1( double *Fugrad1, double *x )

evaluates the n1 components of the gradient

c1 = ∇x1
F (x1, x2) ∈ IRn1

and stores the result in Fugrad1[0], ..., Fugrad1[N1-1].

6. void evalFugrad2( double *Fugrad2, double *x )

evaluates the n2 components of the gradient

c2 = ∇x2
F (x1, x2) ∈ IRn2

and stores the result in Fugrad2[0], ..., Fugrad2[N2-1].



Les Cahiers du GERAD G–2002–37 8

7. void evalGujac1( double **Gujac1, double *x )

evaluates the m1 × n1 components of the Jacobian

A1 = Jx1
G(x̄1, x̄2) ∈ IRm1×n1

and stores the result in

Gujac1[0][0] . . . Gujac1[0][N1− 1]
...

. . .
...

Gujac1[M1− 1][0] . . . Gujac1[M1− 1][N1− 1].

8. void evalGujac2( double **Gujac2, double *x )

evaluates the m1 × n2 components of the Jacobian

A2 = Jx2
G(x̄1, x̄2) ∈ IRm1×n2

and stores the result in

Gujac2[0][0] . . . Gujac2[0][N2− 1]
...

. . .
...

Gujac2[M1− 1][0] . . . Gujac2[M1− 1][N2− 1].

Note that this function is not necessary in our framework since we do not consider
the case of joint upper-level constraints, that is constraints depending on both x1

and x2 at the upper-level. However, we implemented the function evalGujac2 for
making BIPA ready for a possible future version considering such constraints. With
the current version of the algorithm and software, all components of Jx2

G(x̄1, x̄2)
should be set to 0.

9. void evalflgrad1( double *flgrad1, double *x )

evaluates the n1 components of the gradient

d1 = ∇x1
f(x1, x2) ∈ IRn1

and stores the result in flgrad1[0], ..., flgrad1[N1-1].

10. void evalflgrad2( double *flgrad2, double *x )

evaluates the n2 components of the gradient

d2 = ∇x2
f(x1, x2) ∈ IRn2

and stores the result in flgrad2[0], ..., flgrad2[N2-1].

11. void evalgljac1( double **gljac1, double *x )

evaluates the m2 × n1 components of the Jacobian

H1 = Jx1
g(x̄1, x̄2) ∈ IRm2×n1



Les Cahiers du GERAD G–2002–37 9

and stores the result in

gljac1[0][0] . . . gljac1[0][N1− 1]
...

. . .
...

gljac1[M2− 1][0] . . . gljac1[M2− 1][N1− 1].

12. void evalgljac2( double **gljac2, double *x )

evaluates the m2 × n2 components of the Jacobian

H2 = Jx2
g(x̄1, x̄2) ∈ IRm2×n2

and stores the result in

gljac2[0][0] . . . gljac2[0][N2− 1]
...

. . .
...

gljac2[M2− 1][0] . . . gljac2[M2− 1][N2− 1].

13. void evalflhess11( double **flhess11, double *x )

evaluates the n1 × n1 components of the Hessian

Q11 = ∇2
x1x1

f(x̄1, x̄2) ∈ IRn1×n1

and stores the result in

flhess11[0][0] . . . flhess11[0][N1− 1]
...

. . .
...

flhess11N1− 1][0] . . . flhess11[N1− 1][N1− 1].

14. void evalflhess12( double **flhess12, double *x )

evaluates the n1 × n2 components of the Hessian

Q12 = ∇2
x1x2

f(x̄1, x̄2) ∈ IRn1×n2

and stores the result in

flhess12[0][0] . . . flhess12[0][N2− 1]
...

. . .
...

flhess12[N1− 1][0] . . . flhess12[N1− 1][N2− 1].

15. void evalflhess21( double **flhess21, double *x )

evaluates the n2 × n1 components of the Hessian

Q21 = ∇2
x2x1

f(x̄1, x̄2) ∈ IRn2×n1

and stores the result in

flhess21[0][0] . . . flhess21[0][N1− 1]
...

. . .
...

flhess21[N2− 1][0] . . . flhess21[N2− 1][N1− 1].



Les Cahiers du GERAD G–2002–37 10

16. void evalflhess22( double **flhess22, double *x )

evaluates the n2 × n2 components of the Hessian

Q22 = ∇2
x2x2

f(x̄1, x̄2) ∈ IRn2×n2

and stores the result in

flhess22[0][0] . . . flhess22[0][N2− 1]
...

. . .
...

flhess22[N2− 1][0] . . . flhess22[N2− 1][N2− 1].

3.1.4 DONLP2 files The last input file needed to run BIPA is donlp2_eval.c. Re-
call that DONLP2 is used as a subprogram to compute the reaction once the MIP is
solved. Roughly speaking, donlp2_eval.c contains the same type of information as the
file prob_eval.c, except that it is adapted to solve the lower-level problem only, assuming
that the upper-level variables are fixed. This file is detailed in Section 3.3 further in this
text.

3.2 Solving the MIP with CPLEX

As was said earlier, we use the routine cpxmipopt from CPLEX to solve the mixed-
integer program (14). The file bipmip.c contains the implementation of the function
setproblemdata whose aim is to use the elements of the linear-quadratic model (6) to
build the necessary data before running CPLEX.

Function setproblemdata takes variables and arrays c1, c2, A1, H1, H2, Q21, Q22, ∆,
Ḡ, ḡ, M and r2 as inputs and uses them to produce the arrays described in Table 2, where

numcols = n1 + n2 + 2m2,

numrows = 2n1 +m1 + 3m2 + n2,

numnz = n1(2 +m1 + 2m2 + n2) + n2(m1 + 2m2 + n2) +m2(1 + n2) + 2m2.

The number of variables of the MIP corresponds to numcols = n1 + n2 + 2m2 since
in addition to the components of x1 and x2 we must also consider the multipliers λi

(i = 1, . . . ,m2) and the binary variables zj (j = 1, . . . ,m2). The structure of the constraints
is reproduced in Table 3.2. Basically, function setproblemdata follows this scheme to fill
in the arrays matval, sense and rhs (empty cells correspond to zeros). More details about
the variables mentioned here may be found in the CPLEX documentation [10]. We also
refer the interested reader to the example files available with each distribution of CPLEX,
and more precisely to the files mipex1.c, mipex2.c and mipex3.c.

3.3 Computing the reaction with DONLP2

As we said in Section 3.1 above, the user must also provide a donlp2_eval.c file before
running BIPA. Recall that the latter uses DONLP2 for computing a solution x∗2 = x2(x

m
1 )

of the lower-level problem (15) once a solution (xm
1 , xm

2 ) of the MIP is known. The file



Les Cahiers du GERAD G–2002–37 11

Name Length Use

double *obj numcols coefficients of the objective function
double *rhs numrows right-hand sides
char *sense numrows constraint type (≤, ≥ or =)
int *matbeg numcols index array for constraints
int *matcnt numcols index array for constraints
int *matind numnz index array for constraints
double *matval numnz coefficients of the constraints
double *lb numcols lower bounds on variables
double *ub numcols upper bounds on variables
char *ctype numcols constraint type

Table 2: Output arrays for function setproblemdata.

Number Coefficients Sense Right-hand
of rows x1 x2 λi zi side

n1







1
. . .

1






≤ ∆− x̄1

n1







−1
. . .

−1






≤ ∆− x̄1

m1 A1 ≤ −Ḡ

m2 H1 H2 ≤ −ḡ

m2







1
. . .

1













−M
. . .

−M






≤ 0

m2 −H1 −H2







M

. . .

M






≤ ḡ +M

n2 −Q21 −Q22 −HT

2
≤ −r2

Table 3: Structure of the MIP constraints as built by bipmip.c.



Les Cahiers du GERAD G–2002–37 12

donlp2_eval.c simply contains functions for evaluating the objective, constraints and
derivative information of problem (15).

We use the C ANSI version of DONLP2, which was automatically translated from
its original Fortran F77 version. Therefore there remain typical Fortran structures and
features which must be taken into account when writing donlp2_eval.c, together with
the fact that one now focusses on the last n2 components of the vector (x1, x2). These
topics are listed hereunder.

• In this section, x denotes the variable for which DONLP2 computes an optimal value
solution to the lower-level problem; in other words, x corresponds to x2 and has
therefore n2 components; note that these components are stored in x[1], ..., x[n2]
(instead of x[0], ..., x[n2-1], which would have been a more conventional storage
in C);

• xnew[0], ..., xnew[n1-1] are external variables containing the values of the (upper-
level) solution variables of the MIP (xm

11, ..., xm
1n1

) as returned by CPLEX; these
values are considered by DONLP2 as constant terms in the lower-level objective and
constraints.

Also note that DONLP2 assumes that constraints are given under the form

g(x) ≥ 0,

while BIPA is built for constraints of the type

g(x) ≤ 0.

The first task of donlp2_eval.c is to initialize some parameters:

• n denotes the dimension of the problem – in our case n = N2,

• nh denotes the number of equality constraints – in the framework of BIPA, it must
be set to 0;

• ng denotes the number of inequality constraints – in our case, it must be equal to M2;

• the initial solution x[1], ..., x[n] should be initialized with the values of xm
2 , that is

x[1] = xnew[n1];

x[2] = xnew[n1+1];

...

x[n] = xnew[n1+n2-1];

• we also suggest to copy the following other instructions (they set other parameters
to default values recommended in DONLP2 users guide [19]):

del0 = 1.00e-1;

tau0 = 0.5e0;

tau = .1e0;

analyt = TRUE;

epsdif = 0.e0;

nreset = 4;

silent = FALSE;



Les Cahiers du GERAD G–2002–37 13

• a final comment is that DONLP2 treats bound constraints in a special way - in
short, an array called gunit contains details about all inequality constraints and
stores coefficients for bound constraints (see [19], page 4, for more details, or our
example in Section 5).

The objective function is returned in a pointer *fx and its gradient is computed and
stored in gradf[1], ..., gradf[n2]. The constraints are evaluated in a pointer *gxi and
the gradients are stored in gradgi[1], ..., gradgi[n2]. The use of the switch command
allows to choose a particular constraint amongst the m2 possible ones. These computations
are performed in the following four functions:

void ef(x[],*fx) evaluates the objective function
void egradf(x[], gradf[]) computes the gradient of the objective
void eg(i, x[], *gxi) evaluates the i-th constraint
void egradg(i, x[], gradgi[]) computes the gradient of the i-th constraint

All other functions required for DONLP2 to work are empty:

void setup(void)

void solchk(void)

void eh(i, x[], *hxi)

void egradh(i, x[], gradhi[])

Again, we refer the reader to [19] and our example in Section 5 for more details.

Before concluding this section, we would like to mention the fact that we had to slightly
modify the file donlp2.c so as to be able to use DONLP2 as a subprogram within BIPA.
To be precise, the following two modifications had to be done in the original file donlp2.c:

• on line 51, the statement

void donlp2(void) {

must be replaced with

double *donlp2(void) {

• on line 180, the statement

return;

must be replaced with

return x;

The version of DONLP2 that comes with BIPA is modified accordingly.



Les Cahiers du GERAD G–2002–37 14

3.4 Output

While running, BIPA produces standard (screen) output with detailed information about
the specifications of the problems (name, values of n1, n2, m1 and m2, ...), the starting
values (and their modification after running DONLP2) and each step of the algorithm.
Each time CPLEX or DONLP2 is called, the computed solution is printed. Moreover BIPA
prints information related to the evaluation of ρ, the ratio of achieved versus predicted
reduction.

BIPA also produces a file called RESULTS.DAT whose structure is reproduced hereunder.
In addition to the information related to the initialization (as above), each iteration has a
1-line summary displaying the iteration number (k), the values of F and f at the current
point, the ratio ρ, the trust-region radius ∆k, a binary variable m indicating whether the
step was successful (m = 0) or not (m = 1), the CPU time necessary for computing the
reaction with DONLP2 and the total elapsed time since the first iteration. The values of
x1, x2, F and f at the solution complete the file.

Problem name : ...

Dimension : n1 = ...

n2 = ...

Initial point : x11 = ...

x12 = ...

... ...

x21 = ...

x22 = ...

... ...

=> objectives : F = ...

f = ...

After donlp2 : x11 = ...

x12 = ...

... ...

x21 = ...

x22 = ...

... ...

=> objectives : F = ...

f = ...

------------------------------------------------------

It. F f Rho Delta m Donlp2 Total

... ... ... ...

1 ... ... ... ... . ... ...

2 ... ... ... ... . ... ...

------------------------------------------------------

Solution

x11 = ...

x12 = ...



Les Cahiers du GERAD G–2002–37 15

... ...

x21 = ...

x22 = ...

... ...

F = ...

f = ...

Total CPU time : ...

4 Test problems

Table 4 gives an overview of the test problems we used for evaluating the performance
of BIPA (see [5]). Some of them are well-known in the literature and involve linear or
quadratic functions, others were created by e.g. introducing nonlinearities in the former
instances, a third class of problems is based on two typical applications of bilevel program-
ming in transportation modelling and planning, namely the network design problem and
the toll-setting problem, while the last problem was originally introduced by Outrata [14]
in a paper dedicated to mathematical programs with equilibrium constraints or MPECs.

All these problems are coded and they are part of the current version of BIPA. Their
complete formulation is given in the next pages. Note that we included two linear-linear
problems and one linear-quadratic problem. The latter are not interesting to consider for
an assessment of our algorithm (since we compute a linear-quadratic approximation of the
bilevel program) but they were used for validating BIPA during the early phases of its
development so we included them in our collection for completeness.

For problems NDP and TOLL, we found interesting to provide so-called conversion tables.
The latter state the relationship between the variables of these problems and their names
in the various frameworks used, i.e. the general formulation of the bilevel problems (1), the
specific formulation of the NDP and TOLL problems (see (16) and (17) later), the variables
used by BIPA and the variables used by DONLP2. Hopefully this may help the user testing
these problems when he/she wants to get a better understanding of the results.

4.1 Linear-linear problems

• ShimIshiBard97: example 16.1.1 in Shimizu et al [17].

minx1
F (x1, x2) = x1 − 4x2

s.t. −x1 ≤ 0,
minx2

f(x1, x2) = x2

s.t. −x1 − x2 + 3 ≤ 0,
−2x1 + x2 ≤ 0,
2x1 + x2 − 12 ≤ 0,
−3x1 + 2x2 + 4 ≤ 0,
−x2 ≤ 0.

Starting point: (x0
1, x

0
2) = (3, 6).



Les Cahiers du GERAD G–2002–37 16

Problem type Problem name n1 n2 m1 m2 Reference

Linear-linear ShimIshiBard97 1 1 1 5 Shimizu et al [17]
Savard89 2 3 3 6 Savard [15]

Linear-quadratic AiyoShim84P2 2 2 5 6 Aiyoshi and Shimizu [1]
Quadratic-quadratic Bard88Ex1 1 1 1 4 Bard [2]

Bard88Ex2 4 4 9 12 Bard [2]
Bard88Ex3 2 2 3 4 Bard [2]
Dempe92 1 1 0 1 Dempe [8]
De Silva78 2 2 0 4 DeSilva [18]
FalkLiu95 2 2 0 4 Falk and Liu [9]
ShimAiyo81P1 1 1 3 3 Shimizu and Aiyoshi [16]

Nonlinear BIPA1 1 1 3 3 new problem
BIPA2 1 1 1 4 new problem
BIPA3 1 1 2 2 new problem
BIPA4 1 1 2 2 new problem
BIPA5 1 2 1 6 new problem

Network design NDP1 5 5 5 8 see appendix
NDP2 5 5 5 8 see appendix

Toll-setting TOLL1 3 8 3 13 Labbé et al [11]
TOLL2 3 18 3 28 new problem
TOLL4 2 4 0 6 Brotcorne [4]
TOLL5 1 4 0 6 Brotcorne [4]

MPEC Outrata94P1 1 2 2 4 Outrata [14]

Table 4: Test problems: data and references.

• Savard89: example in Savard [15].

minx1
F (x1, x2) = −8x11 − 4x12 + 4x21 − 40x22 − 4x23

s.t. x11 + 2x12 −x23 − 1.3 ≤ 0,
−x11 ≤ 0,
−x12 ≤ 0,
minx2

f(x1, x2) = 2x21 + x22 + 2x23

s.t. −x21 + x22 + x23 − 1 ≤ 0,
4x11 − 2x21 + 4x22 − x23 − 2 ≤ 0,
4x12 + 4x21 − 2x22 − x23 − 2 ≤ 0,
−x21 ≤ 0,
−x22 ≤ 0,
−x23 ≤ 0.

Starting point: (x0
11, x

0
12, x

0
21, x

0
22) = (0.75, 0.75, 0.0, 0.0, 1.0).



Les Cahiers du GERAD G–2002–37 17

4.2 Linear-quadratic problem

• AiyoShim84P2: problem 2 in Aiyoshi and Shimizu [1].

minx1
F (x1, x2) = 2x11 +2x12 − 3x21 − 3x22 − 60

s.t. x11 + x12 + x21 −2x22 − 40 ≤ 0,
x11 − 50 ≤ 0,
−x11 ≤ 0,
x12 − 50 ≤ 0,
−x12 ≤ 0,
minx2

f(x1, x2) = (x21 − x11 + 20)2 + (x22 − x12 + 20)2

s.t. −x11 + 2x21 + 10 ≤ 0,
−x12 + 2x22 + 10 ≤ 0,
x21 − 20 ≤ 0,
−x21 − 10 ≤ 0,
x22 − 20 ≤ 0,
−x22 − 10 ≤ 0.

Starting point: (x11, x12, x21, x22) = (10.0, 10.0,−10.0,−10.0).

4.3 Quadratic-quadratic programs

• Bard88Ex1: example 1 in Bard [2].

minx1
F (x1, x2) = (x1 − 5)2 + (2x2 + 1)2

s.t. −x1 ≤ 0,
minx2

f(x1, x2) = (x2 − 1)2 − 1.5x1x2

s.t. −3x1 + x2 + 3 ≤ 0,
x1 − 0.5x2 − 4 ≤ 0,
x1 + x2 − 7 ≤ 0,
−x2 ≤ 0.

Starting point: (x1, x2) = (4, 0).

• Bard88Ex2: example 2 in Bard [2].
The original formulation of this problem involved two independent lower-level prob-
lems. We regrouped those two problems so as to form a unique lower-level problem.



Les Cahiers du GERAD G–2002–37 18

minx1
F (x1, x2) = −(200− x21 − x23)(x21 + x23)− (160− x22 − x24)(x22 + x24)

s.t. x11 + x12 +x13 + x14 ≤ 40,
0 ≤ x11 ≤ 10,
0 ≤ x12 ≤ 5,
0 ≤ x13 ≤ 15,
0 ≤ x14 ≤ 20,
minx2

f(x1, x2) = (x21 − 4)2 + (x22 − 13)2 + (x23 − 35)2 + (x24 − 2)2

s.t. 0.4x21 + 0.7x22 − x11 ≤ 0,
0.6x21 + 0.3x22 − x12 ≤ 0,
0.4x23 + 0.7x24 − x13 ≤ 0,
0.6x23 + 0.3x24 − x14 ≤ 0,
0 ≤ x21 ≤ 20,
0 ≤ x22 ≤ 20,
0 ≤ x23 ≤ 40,
0 ≤ x24 ≤ 40.

Starting point: (x11, x12, x13, x14, x21, x22, x23, x24) = (5, 5, 15, 15, 0, 0, 0, 0).

• Bard88Ex3: example 3 in Bard [2].

minx1
F (x1, x2) = −x2

11 − 3x12 − 4x21 + x2
22

s.t. x2
11 + 2x12 − 4 ≤ 0,
−x11 ≤ 0,
−x12 ≤ 0,
minx2

f(x1, x2) = 2x2
11 + x2

21 − 5x22

s.t. −x2
11 + 2x11 − x2

12 + 2x21 − x22 − 3 ≤ 0,
−x12 − 3x21 + 4x22 + 4 ≤ 0,
−x21 ≤ 0,
−x22 ≤ 0.

Starting point: (x11, x12, x21, x22) = (0, 2, 4, 1).

• Dempe92: a problem from Dempe [8].

minx1
F (x1, x2) = (x1 − 3.5)2 + (x2 + 4)2

s.t. minx2
f(x1, x2) = (x2 − 3)2

s.t. x2
2 − x1 ≤ 0.

Starting point: (x1, x2) = (1, 1).



Les Cahiers du GERAD G–2002–37 19

• DeSilva78: a problem from De Silva’s PhD thesis [18].

minx1
F (x1, x2) = x2

11 − 2x11 + x2
12 − 2x12 + x2

21 + x2
22

s.t. minx2
f(x1, x2) = (x21 − x11)2 + (x22 − x12)2

s.t. 0.5 ≤ x21 ≤ 1.5
0.5 ≤ x22 ≤ 1.5

No starting point is given. Ours are (x11, x12, x21, x22) = (0, 0, 1, 1) and (1, 1, 1, 1).

• FalkLiu95: second example of Falk and Liu [9]. Same problem as DeSilva78, except
the upper-level objective which is given by

F (x1, x2) = x2
11 − 3x11 + x2

12 − 3x12 + x2
21 + x2

22.

We use the same starting points as those of DeSilva78 above.

• ShimAiyo81P1: a problem from Shimizu and Aiyoshi [16].

minx1
F (x1, x2) = x2

1 + (x2 − 10)2

s.t. x1 ≤ 15,
−x1 + x2 ≤ 0,
−x1 ≤ 0,
minx2

f(x1, x2) = (x1 + 2x2 − 30)2

s.t. x1 + x2 ≤ 20,
x2 ≤ 20,
−x2 ≤ 0.

Starting point: (x1, x2) = (5, 5).

4.4 More general nonlinear problems

• BIPA1: new problem

minx1
F (x1, x2) = (10− x1)

3 + (10− x2)
3

s.t. x1 ≤ 15,
−x1 + x2 ≤ 0,
−x1 ≤ 0,
minx2

f(x1, x2) = (x1 + 2x2 − 15)4

s.t. x1 + x2 ≤ 20,
x2 ≤ 20,
−x2 ≤ 0.

Starting point (high point): (x1, x2) = (10, 10).



Les Cahiers du GERAD G–2002–37 20

• BIPA2: new problem

minx1
F (x1, x2) = (x1 − 5)2 + (2x2 + 1)2

s.t. −x1 ≤ 0,
minx2

f(x1, x2) = (x2 − 1)2 − 1.5x1x2 + x3
1

s.t. −3x1 + x2 + 3 ≤ 0,
x1 − 0.5x2 − 4 ≤ 0,
x1 + x2 − 7 ≤ 0,
−x2 ≤ 0.

Starting point (high point): (x1, x2) = (4, 0).

• BIPA3: new problem

minx1
F (x1, x2) = (x1 − 5)4 + (2x2 + 1)4

s.t. x1 + x2 − 4 ≤ 0,
−x1 ≤ 0,
minx2

f(x1, x2) = e−x1+x2 + x2
1 + 2x1x2 + x2

2 + 2x1 + 6x2

s.t. −x1 + x2 − 2 ≤ 0,
−x2 ≤ 0.

Starting point (high point): (x1, x2) = (4, 0).

• BIPA4: new problem

minx1
F (x1, x2) = = x2

1 + (x2 − 10)2

s.t. x1 + 2x2 − 6 ≤ 0,
−x1 ≤ 0,
minx2

f(x1, x2) = x3
1 + 2x3

2 + x1 − 2x2 − x2
1

s.t. −x1 + 2x2 − 3 ≤ 0,
−x2 ≤ 0.

Starting point (high point): (x1, x2) = (1.5, 2.25).

• BIPA5: new problem

minx1
F (x1, x2) = (x11 − x22)

4 + (x21 − 1)2 + (x21 − x22)
2

s.t. −x11 ≤ 0
minx2

f(x1, x2) = 2x11 + ex21 + x2
21 + 4x21 + 2x2

22 − 6x22

s.t. 6x11 + x2
21 + ex22 − 15 ≤ 0,

5x11 + x4
21 − x22 − 25 ≤ 0,

−x21 ≤ 0,
x21 − 4 ≤ 0,
−x22 ≤ 0,
x22 − 2 ≤ 0.

Starting point (high point): (x11, x21, x22) = (1, 1, 1).



Les Cahiers du GERAD G–2002–37 21

4.5 Network design problem

The network design problem (see e.g. Marcotte [12] or Section 2.2 in Migdalas [13]) consists
in modifying a transportation infrastructure with the objective of maximizing social welfare
or minimizing design and other system costs.
In this paper, we restrict our attention to the fixed-demand network design problem and
more precisely we consider the situation where the capacity of the existing links is modified.
Assuming that the network has only one origin-destination pair, this problem may be
formulated as follows:

min
z,x

∑

a∈A [xata(xa, za) + ga(za)] (16a)

s.t. za > −1 ∀a ∈ A (16b)

minx

∑

a∈A

∫ xa

0
ta(u, za) du (16c)

s.t. xa ≥ 0 ∀a ∈ A (16d)
∑

p∈P

fp = d (16e)

xa =
∑

p∈P

δa,pfp ∀a ∈ A (16f)

where we use the notation of Table 5 and

δa,p =

{

1 if link a belongs to route p,

0 otherwise.

A : set of links;
za : capacity enhancement of link a (a ∈ A);
xa : traffic flow on link a (a ∈ A);
ta : travel time function for link a (a ∈ A);
ga : capacity function for link a (a ∈ A);
P : set of routes;
fp : traffic flow on route p (p ∈ P);
d : traffic demand from origin to destination.

Table 5: Notation for the network design problem.

We focused our study on the network of Figure 1, which is well-known in the traffic
modelling literature and was originally presented by Braess [3]. The total traffic flow
demand is assumed to be d = 6. We also suppose that the link travel time functions are



Les Cahiers du GERAD G–2002–37 22

link 2

link 4

link 5
link 3

link 1

34

+62 1

-6

Figure 1: The Braess network considered for problems NDP1 and NDP2.

given as follows:

t1(x1, z1) = 50 +
x1

1 + z1
, t2(x2, z2) = 10

x2

1 + z2
, t3(x3, z3) = 10 +

x3

1 + z3
,

t4(x4, z4) = 10
x4

1 + z4
, t5(x5, z5) = 50 +

x5

1 + z5
,

while the capacity functions are assumed to take the form

ga(za) = laza (a ∈ A)

for fixed parameters la (a ∈ A). There are three possible routes in the network of Figure 1,
namely

route 1: link 1 → link 4,
route 2: link 2 → link 5,
route 3: link 2 → link 3 → link 4,

and we have the following relationships between route and link flows:

x1 = f1,

x2 = f2 + f3,

x3 = f3,

x4 = f1 + f3,

x5 = f2.

This allows to rewrite constraints (16e) and (16f) in terms of the xi’s only:

x1 + x3 + x5 = 6,
x2 − x5 − x3 = 0,
x4 − x1 − x3 = 0.

We tested BIPA on the following two problems:



Les Cahiers du GERAD G–2002–37 23

• Problem NDP1 (n1 = 5, n2 = 5, m1 = 5, m2 = 8):
we choose li = 100 (i = 0, . . . , 5) and the initial values corresponding to the high

point are
z1 = −0.7, z2 = 0.0, z3 = −0.999, z4 = 0.0, z5 = −0.7,

x1 = 3, x2 = 3, x3 = 0, x4 = 3, x5 = 3.

• Problem NDP2: same as NDP1 except that li = 1 (i = 0, . . . , 5). The high point

provides the following starting values:

z1 = −0.999, z2 = 18.0, z3 = 5.0, z4 = 18.0, z5 = −0.999,

x1 = 0, x2 = 6, x3 = 6, x4 = 6, x5 = 0.

Table 6 gives the conversion for variables of problems NDP1 and NDP2.

Upper/lower Names BIPA DONLP2
variables in (1) in (16)

x11 z1 x[0] xnew[0]

x12 z2 x[1] xnew[1]

x13 z3 x[2] xnew[2]

x14 z4 x[3] xnew[3]

x15 z5 x[4] xnew[4]

x21 x1 x[5] x[1]

x22 x2 x[6] x[2]

x23 x3 x[7] x[3]

x24 x4 x[8] x[4]

x25 x5 x[9] x[5]

Table 6: Conversion table for the variables of problems NDP1 and NDP2.

4.6 Toll-setting problems

Toll-setting problems are another class of models that are frequently formulated as bilevel
programs. They represent a situation where an authority or the owners of a highway
system are allowed to set tolls on a subset of the links of the network while the network
users wish to minimize their travel costs. An optimal toll setting is such that toll levels are
not too high – otherwise the users may be detered from using the infrastructure – though
still generating profits.
The upper-level variables are the tolls, which we denote by Ta (where a belongs to the
subset of tolled links A1 ⊂ A), and the lower-level variables are the link traffic flows, which
we still denote by xa (a ∈ A) as in the previous example.



Les Cahiers du GERAD G–2002–37 24

The formulation of the toll-setting problem may be written as follows (see problem (TOP)
in Labbé, Marcotte and Savard [11]):

max
T,x

∑

a∈A1
Taxa (17a)

s.t. Ta ≥ la ∀a ∈ A1, (17b)

minx

∑

a∈A1

(ca + Ta)xa +
∑

a∈A2

caxa (17c)

s.t.
∑

a∈i+

xkl
a −

∑

a∈i−

xkl
a = 1 if i = k, −1 if i = l, and 0 otherwise (17d)

∀i ∈ N , ∀(k, l) ∈ O ×D

xa =
∑

(k,l)∈O×D

dklxkl
a ∀a ∈ A (17e)

xkl
a ≥ 0 ∀a ∈ A, ∀(k, l) ∈ O ×D (17f)

where, in addition to the notation introduced in Table 5 above, we use the symbols de-
scribed in Table 7. The five problem instances we solved with BIPA are built as follows

ca : (fixed) travel cost for link a (a ∈ A), exclusive of toll;
A2 : A\A1;
N : set of nodes;
i+ : set of links exiting from node i ∈ N ;
i− : set of links ending at node i ∈ N ;
O : set of origin nodes;
D : set of destination nodes;
xkl

a : traffic flow from origin k to destination l on link a

((k, l) ∈ O ×D, a ∈ A);
dkl : proportion of traffic flow demand between origin k and destination l

((k, l) ∈ O ×D);
la : lower bound on toll for link a (a ∈ A1).

Table 7: Additional notation for the toll-setting problem.

(note that the tolled links are represented with dashed lines on the accompanying figures):

• Problem Toll1 (n1 = 3, n2 = 8, m1 = 3, m2 = 13 – see also Table 8):
We consider the network and the costs ca (a ∈ A) represented on Figure 2. Nodes
1 and 5 constitute its unique origin-destination pair. Other data values include the
following items

– d(1,5) = 1;

– A1 = {3, 4, 8},



Les Cahiers du GERAD G–2002–37 25

– A2 = {1, 2, 5, 6, 7},

– upper-level variables: T3, T4 and T8,

– lower-level variables: xi, i = 1, . . . , 8,

– starting point: (T3, T4, T8, x1, . . . , x8) = (0, 5, 5, 0, 1, 0, 0, 0, 1, 0, 0).

This problem was originally presented in Labbé et al [11].

1

2

3

4

5

link 8

link 7

link 4

link 5

link 6

link 1

link 2

link 3

c  = 2

8

7

6

5

4

3

2

1

c  = 6

c  = 5

c  = 0

c  = 4

c  = 2

c  = 6

c  = 0

+1

-1

Figure 2: Network for problem Toll1.

• Problem Toll2 (n1 = 3, n2 = 18, m1 = 3, m2 = 28 – see also Table 9):
The reference network is depicted on Figure 3. There are two origin-destination pairs,
namely (O1, D1) and (O2, D2), with further inputs given as follows:

– d(O1,D1) = d(O2,D2) = 1;

– A1 = {1, 2, 3},

– A2 = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},

– upper-level variables: T1, T2 and T3,

– lower-level variables: x1
i , x

2
i (i = 1, 2, 3) and xj (j = 4, . . . , 15), where xk

i de-
notes the proportion of flow on link i related to the demand of the k-th origin-
destination pair,

– starting point: (T1, T2, T3) = (0, 0, 0) and (x1
1, x

2
1, x

1
2, x

2
2, x

1
3, x

2
3, x4, . . . , x15) =

(0, 0, 0, 10, 1, 0, 1, 0, 0, 0, 10, 0, 0, 0, 1, 0, 0, 10).



Les Cahiers du GERAD G–2002–37 26

Upper/lower Names BIPA DONLP2
variables in (1) in (17)

x11 T3 x[0] xnew[0]

x12 T4 x[1] xnew[1]

x13 T8 x[2] xnew[2]

x21 x1 x[3] x[1]

x22 x2 x[4] x[2]

x23 x3 x[5] x[3]

x24 x4 x[6] x[4]

x25 x5 x[7] x[5]

x26 x6 x[8] x[6]

x27 x7 x[9] x[7]

x28 x8 x[10] x[8]

Table 8: Conversion table for the variables of problem TOLL1.

+1

−1+1 1

−1
3

2

link 4

link 1

link 2

link 11

link 12

link 15

link 9

link 8

link 6

link 5

link 10

link 13

link 14

O1

O2

D1

D2

4

13

5

6

1

10

11

12

15

14

2

8

9

link 3

c   = T

c   = T

c   = T

c   = 5

c   = 7

c   = 14

link 7
7c   = 7

c   = 2

c   = 4

c    = 29

c    = 12

c    = 20

c    = 8

c    = 5

c    = 2

1

2

33

Figure 3: Network for problem Toll2.



Les Cahiers du GERAD G–2002–37 27

• Problem TOLL3: same as TOLL2 except that the demand for O-D pair (O2, D2) is
10 instead of 1.
The starting point is (T1, T2, T3) = (0, 0, 0) and (x1

1, x
2
1, x

1
2, x

2
2, x

1
3, x

2
3, x4, . . . , x15) =

(0, 0, 0, 10, 1, 0, 1, 0, 0, 0, 10, 0, 0, 0, 1, 0, 0, 10).

Upper/lower Names BIPA DONLP2
variables in (1) in (17)

x11 T1 x[0] xnew[0]

x12 T2 x[1] xnew[1]

x13 T3 x[2] xnew[2]

x21 x1
1 x[3] x[1]

x22 x2
1 x[4] x[2]

x23 x1
2 x[5] x[3]

x24 x2
2 x[6] x[4]

x25 x1
3 x[7] x[5]

x26 x2
3 x[8] x[6]

x27 x4 x[9] x[7]

x28 x5 x[10] x[8]

x28 x6 x[11] x[9]

x28 x7 x[12] x[10]

x28 x8 x[13] x[11]

x28 x9 x[14] x[12]

x28 x10 x[15] x[13]

x28 x11 x[16] x[14]

x28 x12 x[17] x[15]

x28 x13 x[18] x[16]

x28 x14 x[19] x[17]

x28 x15 x[20] x[18]

Table 9: Conversion table for the variables of problems TOLL2 and TOLL3.

• Problem Toll4 (n1 = 2, n2 = 4, m1 = 0, m2 = 6 – see also Table 10):
This corresponds to an example (Figure 4.3, page 123) in Brotcorne [4], whose net-
work is depicted on Figure 4 and contains two O-D pairs, (1, 2) and (3, 4).

– d(1,2) = d(5,6) = 1;

– A1 = {4, 6},

– A2 = {1, 2, 3, 5, 7},

– upper-level variables: T4 and T6,

– lower-level variables: x1, x7, x2 = x1
4 = x3 and x5 = x2

4 = x6,

– starting point: (T4, T6, x1, x2, x5, x7) = (0, 0, 0, 0, 0, 0).



Les Cahiers du GERAD G–2002–37 28

Note that this problem does not involve lower-bound constraints of the type (17b),
therefore allowing for negative tolls.

1 2

3 4

5 6

link 1

link 2 link 3

link 4

link 7

c   = 1 + T

c   = 1 c   = 1

c   = 1 + T

c   = 1
link 5 link 6

c   = 6

1

32

4

65 

7

c   = 8

4

6

+1 -1

+1 -1

Figure 4: Network for problem Toll4.

Upper/lower Names BIPA DONLP2
variables in (1) in (17)

x11 T4 x[0] xnew[0]

x12 T6 x[1] xnew[1]

x21 x1 x[2] x[1]

x22 x2 = x1
4 = x3 x[3] x[2]

x23 x5 = x2
4 = x6 x[4] x[3]

x24 x7 x[5] x[4]

Table 10: Conversion table for the variables of problem TOLL4.

• Problem Toll5 (n1 = 1, n2 = 4, m1 = 0, m2 = 6 – see also Table 11):
This is another example from Brotcorne [4] (Figure 4.4, page 125), corresponding to
the network of Figure 5, with O-D pairs (1, 2) and (3, 4).

– d(1,2) = d(5,6) = 1;

– A1 = {4},

– A2 = {1, 2, 3, 5, 6, 7},

– upper-level variable: T4,

– lower-level variables: x1, x7, x2 = x1
4 = x3 and x5 = x2

4 = x6,

– starting point: (T4, x1, x2, x5, x7) = (0, 0, 0, 0, 0).

Again, constraints (17b) are omitted for this problem.



Les Cahiers du GERAD G–2002–37 29

1 2

3 4

5 6

link 1

link 2 link 3

link 4

link 7

c   = 1

c   = 2 c   = 1

c   = 0 + T

c   = 3
link 5 link 6

c   = 6

1

32

4

65 

7

c   = 8

4

+1 -1

+1 -1

Figure 5: Network for problem Toll5.

Upper/lower Names BIPA DONLP2
variables in (1) in (17)

x11 T4 x[0] xnew[0]

x21 x1 x[1] x[1]

x22 x2 = x1
4 = x3 x[2] x[2]

x23 x5 = x2
4 = x6 x[3] x[3]

x24 x7 x[4] x[4]

Table 11: Conversion table for the variables of problem TOLL5.

4.7 MPEC

The following problem (named Outrata94P1) was introduced by Outrata [14].

minx1
F (x1, x2)

s.t. 0 ≤ x1 ≤ 10
minx2

f(x1, x2)
s.t. −0.333x21 + x22 − 1 + 0.1x1 ≤ 0,

x2
21 + x2

22 − 9− 0.1x1 ≤ 0,
−x21 ≤ 0,
−x22 ≤ 0,

where
f(x1, x2) =

1

2

(

(1 + 0.2x1)x
2
21 + (1 + 0.1x1)x

2
22

)

− (3 + 1.333x1)x21 − x1x22,

and
F (x1, x2) =

1

2
(x21 − 3)2 +

1

2
(x22 − 4.0)2

Two initial values for x1 are proposed in [14]: x1 = 0 and x1 = 10.



Les Cahiers du GERAD G–2002–37 30

5 Example

We conclude this paper with a complete example, for which we provide all input files and
results. We choose to consider problem Bard88Ex2, whose formulation is repeated here for
convenience:

minx1
F (x1, x2) = −(200− x21 − x23)(x21 + x23)− (160− x22 − x24)(x22 + x24)

s.t. x11 + x12 +x13 + x14 ≤ 40,
0 ≤ x11 ≤ 10,
0 ≤ x12 ≤ 5,
0 ≤ x13 ≤ 15,
0 ≤ x14 ≤ 20,
minx2

f(x1, x2) = (x21 − 4)2 + (x22 − 13)2 + (x23 − 35)2 + (x24 − 2)2

s.t. 0.4x21 + 0.7x22 − x11 ≤ 0,
0.6x21 + 0.3x22 − x12 ≤ 0,
0.4x23 + 0.7x24 − x13 ≤ 0,
0.6x23 + 0.3x24 − x14 ≤ 0,
0 ≤ x21 ≤ 20,
0 ≤ x22 ≤ 20,
0 ≤ x23 ≤ 40,
0 ≤ x24 ≤ 40.

For a better understanding of the C files reproduced hereafter and containing functions
related to this problem, we provide a conversion table similar to those of problems Toll1-
Toll5 with all the notations we use in the various frameworks. This is represented in
Table 12 below.

Upper/lower BIPA functions DONLP2 functions
variables (prob_eval.c) (donlp2_eval.c)

x11 x[0] xnew[0]

x12 x[1] xnew[1]

x13 x[2] xnew[2]

x14 x[3] xnew[3]

x21 x[4] x[1]

x22 x[5] x[2]

x23 x[6] x[3]

x24 x[7] x[4]

Table 12: Conversion table for the variables of problem Bard88Ex2.



Les Cahiers du GERAD G–2002–37 31

5.1 Parameters related to the problem: PROBLEM.DAT

Problem Bard88Ex2 involves n1 = 4 upper-level variables, n2 = 4 lower-level variables, 9
constraints at the upper level and 12 constraints at the lower level.
The starting point is (x11, x12, x13, x14, x21, x22, x23, x24) = (5, 5, 15, 15, 0, 0, 0, 0).
These data and the problem name are stored in the file PROBLEM.DAT as follows:

bard88ex2

N1 4

N2 4

M1 9

M2 12

X_11 5

X_12 5

X_13 15

X_14 15

X_21 0

X_22 0

X_23 0

X_24 0

Algorithmic parameters are stored in the file SETUP.DAT, and we use the same values as
those given in Section 3.1.1.

5.2 Problem functions

From the formulation of the problem we may deduce that

F (x1, x2) = −(200− x21 − x23)(x21 + x23)− (160− x22 − x24)(x22 + x24),

G(x1) =





























x11 + x12 + x13 + x14 − 40
− x11

− x12

− x13

− x14

x11 − 10
x12 − 5
x13 − 15
x14 − 20





























,

f(x1, x2) = (x21 − 4)2 + (x22 − 13)2 + (x23 − 35)2 + (x24 − 2)2,



Les Cahiers du GERAD G–2002–37 32

g(x1, x2) =











































0.4x21 + 0.7x22 − x11

0.6x21 + 0.3x22 − x12

0.4x23 + 0.7x24 − x13

0.6x23 + 0.3x24 − x14

− x21

− x22

− x23

− x24

x21 − 20
x22 − 20
x23 − 40
x24 − 40











































.

We may compute the gradients, Jacobians and Hessian matrices introduced in (7), (8), (9),
(10), (11) and (12) respectively (see page 2):

c1 =









0
0
0
0









, c2 =









−200 + 2x21 + 2x23

−160 + 2x22 + 2x24

−200 + 2x23 + 2x21

−160 + 2x24 + 2x22









,

d1 =









0
0
0
0









, d2 =









2x21 − 8
2x22 − 26
2x23 − 70
2x24 − 4









,

A1 =





























1 1 1 1
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





























,



Les Cahiers du GERAD G–2002–37 33

H1 =











































−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











































, H2 =











































0.4 0.7 0 0
0.6 0.3 0 0
0 0 0.4 0
0 0 0.6 0.3

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











































,

Q11 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, Q12 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,

Q21 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, Q22 =









2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2









.

These functions are written in the file prob_eval.c, which is reproduced below.

/*========================================================================

User-specified functions for problem "bard88ex2".

Contains functions for evaluating upper- and lower-level functions as

well as their gradients, Jacobians or Hessians.

Programming: Benoit Colson (May 2002).

========================================================================*/

#include <stdio.h>

#include <math.h>

#include "bipa.h"

double evalFu( double *x )

{

double eval;

eval = - ( 200 - x[4] - x[6] ) * ( x[4] + x[6] )



Les Cahiers du GERAD G–2002–37 34

- ( 160 - x[5] - x[7] ) * ( x[5] + x[7] );

return eval;

}

void evalGu( double *Gu, double *x )

{

Gu[0] = x[0] + x[1] + x[2] + x[3] - 40;

Gu[1] = - x[0];

Gu[2] = - x[1];

Gu[3] = - x[2];

Gu[4] = - x[3];

Gu[5] = x[0] - 10;

Gu[6] = x[1] - 5;

Gu[7] = x[2] - 15;

Gu[8] = x[3] - 20;

return;

}

double evalfl( double *x )

{

double eval;

eval = pow( ( x[4] - 4 ), 2 ) + pow( ( x[5] - 13 ), 2 )

+ pow( ( x[6] - 35 ), 2 ) + pow( ( x[7] - 2 ), 2 );

return eval;

}

void evalgl( double *gl, double *x )

{

gl[0] = 0.4 * x[4] + 0.7 * x[5] - x[0];

gl[1] = 0.6 * x[4] + 0.3 * x[5] - x[1];

gl[2] = 0.4 * x[6] + 0.7 * x[7] - x[2];

gl[3] = 0.6 * x[6] + 0.3 * x[7] - x[3];

gl[4] = - x[4];

gl[5] = - x[5];

gl[6] = - x[6];

gl[7] = - x[7];

gl[8] = x[4] - 20;

gl[9] = x[5] - 20;

gl[10] = x[6] - 40;

gl[11] = x[7] - 40;

return;

}

void evalFugrad1( double *Fugrad1, double *x )

{



Les Cahiers du GERAD G–2002–37 35

int i;

for( i = 0; i < 4; i++ ){

Fugrad1[i] = 0;

}

return;

}

void evalFugrad2( double *Fugrad2, double *x )

{

Fugrad2[0] = - 200 + 2 * x[4] + 2 * x[6];

Fugrad2[1] = - 160 + 2 * x[5] + 2 * x[7];

Fugrad2[2] = - 200 + 2 * x[6] + 2 * x[4];

Fugrad2[3] = - 160 + 2 * x[7] + 2 * x[5];

return;

}

void evalGujac1( double **Gujac1, double *x )

{

Gujac1[0][0] = 1;

Gujac1[0][1] = 1;

Gujac1[0][2] = 1;

Gujac1[0][3] = 1;

Gujac1[1][0] = -1;

Gujac1[1][1] = 0;

Gujac1[1][2] = 0;

Gujac1[1][3] = 0;

Gujac1[2][0] = 0;

Gujac1[2][1] = -1;

Gujac1[2][2] = 0;

Gujac1[2][3] = 0;

Gujac1[3][0] = 0;

Gujac1[3][1] = 0;

Gujac1[3][2] = -1;

Gujac1[3][3] = 0;

Gujac1[4][0] = 0;

Gujac1[4][1] = 0;

Gujac1[4][2] = 0;

Gujac1[4][3] = -1;

Gujac1[5][0] = 1;

Gujac1[5][1] = 0;

Gujac1[5][2] = 0;

Gujac1[5][3] = 0;



Les Cahiers du GERAD G–2002–37 36

Gujac1[6][0] = 0;

Gujac1[6][1] = 1;

Gujac1[6][2] = 0;

Gujac1[6][3] = 0;

Gujac1[7][0] = 0;

Gujac1[7][1] = 0;

Gujac1[7][2] = 1;

Gujac1[7][3] = 0;

Gujac1[8][0] = 0;

Gujac1[8][1] = 0;

Gujac1[8][2] = 0;

Gujac1[8][3] = 1;

return;

}

void evalGujac2( double **Gujac2, double *x )

{

int i, j;

for( i = 0; i < 9; i++ ){

for( j = 0; j < 4; j++ ){

Gujac2[i][j] = 0;

}

}

return;

}

void evalflgrad1( double *flgrad1, double *x )

{

int i;

for( i = 0; i < 4; i++ ){

flgrad1[i] = 0;

}

return;

}

void evalflgrad2( double *flgrad2, double *x )

{

flgrad2[0] = 2 * x[4] - 8;

flgrad2[1] = 2 * x[5] - 26;

flgrad2[2] = 2 * x[6] - 70;

flgrad2[3] = 2 * x[7] - 4;

return;

}



Les Cahiers du GERAD G–2002–37 37

void evalgljac1( double **gljac1, double *x )

{

int i, j;

for( i = 0; i < 12; i++ ){

for( j = 0; j < 4; j++ ){

gljac1[i][j] = 0;

}

}

gljac1[0][0] = -1;

gljac1[1][1] = -1;

gljac1[2][2] = -1;

gljac1[3][3] = -1;

return;

}

void evalgljac2( double **gljac2, double *x )

{

int i, j;

for( i = 0; i < 12; i++ ){

for( j = 0; j < 4; j++ ){

gljac2[i][j] = 0;

}

}

gljac2[0][0] = 0.4;

gljac2[0][1] = 0.7;

gljac2[1][0] = 0.6;

gljac2[1][1] = 0.3;

gljac2[2][2] = 0.4;

gljac2[2][3] = 0.7;

gljac2[3][2] = 0.6;

gljac2[3][3] = 0.3;

gljac2[4][0] = -1;

gljac2[5][1] = -1;

gljac2[6][2] = -1;

gljac2[7][3] = -1;

gljac2[8][0] = 1;

gljac2[9][1] = 1;

gljac2[10][2] = 1;

gljac2[11][3] = 1;

return;

}

void evalflhess11( double **flhess11, double *x )

{

int i, j;

for( i = 0; i < 4; i++ ){



Les Cahiers du GERAD G–2002–37 38

for( j = 0; j < 4; j++ ){

flhess11[i][j] = 0;

}

}

return;

}

void evalflhess12( double **flhess12, double *x )

{

int i, j;

for( i = 0; i < 4; i++ ){

for( j = 0; j < 4; j++ ){

flhess12[i][j] = 0;

}

}

return;

}

void evalflhess21( double **flhess21, double *x )

{

int i, j;

for( i = 0; i < 4; i++ ){

for( j = 0; j < 4; j++ ){

flhess21[i][j] = 0;

}

}

return;

}

void evalflhess22( double **flhess22, double *x )

{

int i, j;

for( i = 0; i < 4; i++ ){

for( j = 0; j < 4; j++ ){

flhess22[i][j] = 0;

}

}

flhess22[0][0] = 2;

flhess22[1][1] = 2;

flhess22[2][2] = 2;

flhess22[3][3] = 2;

return;

}



Les Cahiers du GERAD G–2002–37 39

5.3 Function evaluations for DONLP2

These functions are part of the file donlp2_eval.c. Recall that DONLP2 is used to com-
pute the reaction (15) of the lower-level problem for a given vector xm

1 . In the framework
of problem Bard88Ex2, this corresponds to solving the following problem:

minx2
f(xm

1 , x2) = (x21 − 4)2 + (x22 − 13)2 + (x23 − 35)2 + (x24 − 2)2

s.t. 0.4x21 + 0.7x22 − xm
11 ≤ 0,

0.6x21 + 0.3x22 − xm
12 ≤ 0,

0.4x23 + 0.7x24 − xm
13 ≤ 0,

0.6x23 + 0.3x24 − xm
14 ≤ 0,

0 ≤ x21 ≤ 20,
0 ≤ x22 ≤ 20,
0 ≤ x23 ≤ 40,
0 ≤ x24 ≤ 40,

where xm
1 is a fixed vector stored in xnew[0], . . . , xnew[3] (see Table 12). This results in

the following file:

/*=========================================================================

User-specified functions for using DONLP2 for problem "bard88ex2".

Contains functions for evaluating lower-level objective, constraints and

and their gradients.

Programming: Benoit Colson (May 2002).

========================================================================*/

/* IMPORTANT: using xnew as variable name for getting upper-level solution

is compulsory. */

/* ************************************************************************* */

/* user functions for donlp2 */

/* ************************************************************************* */

#include "o8para.h"

/* ************************************************************************* */

/* donlp2 standard setup */

/* ************************************************************************* */

void setup0(void) {

#define X extern

#include "o8comm.h"

#undef X

extern double *xnew;

static INTEGER j;



Les Cahiers du GERAD G–2002–37 40

strcpy(name,"lowlevel");

x[1] = xnew[4];

x[2] = xnew[5];

x[3] = xnew[6];

x[4] = xnew[7];

n = 4;

nh = 0;

ng = 12;

del0 = 1.00e-1;

tau0 = 0.5e0;

tau = .1e0;

for (j = 0 ; j <= 4 ; j++) {

gunit[1][j] = -1;

gunit[2][j] = 0;

gunit[3][j] = 0;

}

/* Special setup for bound constraints (constraints #5, #6, #7, #8 ) */

/* x21 >= 0 */

gunit[1][5] = 1;

gunit[2][5] = 1;

gunit[3][5] = 1;

/* x22 >= 0 */

gunit[1][6] = 1;

gunit[2][6] = 2;

gunit[3][6] = 1;

/* x23 >= 0 */

gunit[1][7] = 1;

gunit[2][7] = 3;

gunit[3][7] = 1;

/* x24 >= 0 */

gunit[1][8] = 1;

gunit[2][8] = 4;

gunit[3][8] = 1;

/* x21 <= 20 */

gunit[1][9] = 1;

gunit[2][9] = 1;

gunit[3][9] = -1;

/* x22 <= 20 */

gunit[1][10] = 1;

gunit[2][10] = 2;



Les Cahiers du GERAD G–2002–37 41

gunit[3][10] = -1;

/* x23 <= 40 */

gunit[1][11] = 1;

gunit[2][11] = 3;

gunit[3][11] = -1;

/* x24 <= 40 */

gunit[1][12] = 1;

gunit[2][12] = 4;

gunit[3][12] = -1;

analyt = TRUE;

epsdif = 0.e0;

nreset = 4;

silent = FALSE;

return;

}

/* ************************************************************************* */

/* special setup */

/* ************************************************************************* */

void setup(void) {

#define X extern

#include "o8comm.h"

#undef X

return;

}

/* ************************************************************************* */

/* the user may add additional computations using the computed solution here */

/* ************************************************************************* */

void solchk(void) {

#define X extern

#include "o8comm.h"

#undef X

#include "o8cons.h"

return;

}

/* ************************************************************************* */

/* objective function */

/* ************************************************************************* */

void ef(DOUBLE x[],DOUBLE *fx) {

#define X extern

#include "o8fuco.h"

#undef X



Les Cahiers du GERAD G–2002–37 42

extern double *xnew;

icf = icf+1;

*fx = pow( ( x[1] - 4 ), 2 ) + pow( ( x[2] - 13 ), 2 )

+ pow( ( x[3] - 35 ), 2 ) + pow( ( x[4] - 2 ), 2 );

return;

}

/* ************************************************************************* */

/* gradient of objective function */

/* ************************************************************************* */

void egradf(DOUBLE x[],DOUBLE gradf[]) {

#define X extern

#include "o8fuco.h"

#undef X

extern double *xnew;

icgf = icgf+1;

gradf[1] = 2 * x[1] - 8;

gradf[2] = 2 * x[2] - 26;

gradf[3] = 2 * x[3] - 70;

gradf[4] = 2 * x[4] - 4;

return;

}

/* ************************************************************************* */

/* compute the i-th equality constaint, value is hxi */

/* ************************************************************************* */

void eh(INTEGER i,DOUBLE x[],DOUBLE *hxi) {

#define X extern

#include "o8fuco.h"

#undef X

return;

}

/* ************************************************************************* */

/* compute the gradient of the i-th equality constraint */

/* ************************************************************************* */

void egradh(INTEGER i,DOUBLE x[],DOUBLE gradhi[]) {

#define X extern

#include "o8fuco.h"

#undef X



Les Cahiers du GERAD G–2002–37 43

return;

}

/* ************************************************************************* */

/* compute the i-th inequality constaint, bounds included */

/* ************************************************************************* */

void eg(INTEGER i,DOUBLE x[],DOUBLE *gxi) {

#define X extern

#include "o8fuco.h"

#undef X

extern double *xnew;

cres[i] = cres[i] + 1;

switch(i) {

case 1:

*gxi = - 0.4 * x[1] - 0.7 * x[2] + xnew[0];

return;

case 2:

*gxi = - 0.6 * x[1] - 0.3 * x[2] + xnew[1];

return;

case 3:

*gxi = - 0.4 * x[3] - 0.7 * x[4] + xnew[2];

return;

case 4:

*gxi = - 0.6 * x[3] - 0.3 * x[4] + xnew[3];

return;

case 5:

*gxi = x[1];

return;

case 6:

*gxi = x[2];

return;

case 7:



Les Cahiers du GERAD G–2002–37 44

*gxi = x[3];

return;

case 8:

*gxi = x[4];

return;

case 9:

*gxi = - x[1] + 20;

return;

case 10:

*gxi = - x[2] + 20;

return;

case 11:

*gxi = - x[3] + 40;

return;

case 12:

*gxi = - x[4] + 40;

return;

}

}

/* ************************************************************************* */

/* compute the gradient of the i-th inequality constraint */

/* not necessary for bounds, but constant gradients must be set */

/* here e.g. using dcopy from a data-field */

/* ************************************************************************* */

void egradg(INTEGER i,DOUBLE x[],DOUBLE gradgi[]) {

#define X extern

#include "o8fuco.h"

#undef X

extern double *xnew;

cgres[i] = cgres[i] + 1;

switch(i) {

case 1:

gradgi[1] = - 0.4;



Les Cahiers du GERAD G–2002–37 45

gradgi[2] = - 0.7;

gradgi[3] = 0.0;

gradgi[4] = 0.0;

return;

case 2:

gradgi[1] = - 0.6;

gradgi[2] = - 0.3;

gradgi[3] = 0.0;

gradgi[4] = 0.0;

return;

case 3:

gradgi[1] = 0.0;

gradgi[2] = 0.0;

gradgi[3] = - 0.4;

gradgi[4] = - 0.7;

return;

case 4:

gradgi[1] = 0.0;

gradgi[2] = 0.0;

gradgi[3] = - 0.6;

gradgi[4] = - 0.3;

return;

case 5:

gradgi[1] = 1;

gradgi[2] = 0;

gradgi[3] = 0;

gradgi[4] = 0;

return;

case 6:

gradgi[1] = 0;

gradgi[2] = 1;

gradgi[3] = 0;

gradgi[4] = 0;

return;

case 7:

gradgi[1] = 0;

gradgi[2] = 0;

gradgi[3] = 1;



Les Cahiers du GERAD G–2002–37 46

gradgi[4] = 0;

return;

case 8:

gradgi[1] = 0;

gradgi[2] = 0;

gradgi[3] = 0;

gradgi[4] = 1;

return;

case 9:

gradgi[1] = -1;

gradgi[2] = 0;

gradgi[3] = 0;

gradgi[4] = 0;

return;

case 10:

gradgi[1] = 0;

gradgi[2] = -1;

gradgi[3] = 0;

gradgi[4] = 0;

return;

case 11:

gradgi[1] = 0;

gradgi[2] = 0;

gradgi[3] = -1;

gradgi[4] = 0;

return;

case 12:

gradgi[1] = 0;

gradgi[2] = 0;

gradgi[3] = 0;

gradgi[4] = -1;

return;

}

}

/* ************************************************************************* */

/* user functions (if bloc == TRUE) */

/* ************************************************************************* */

void eval_extern(INTEGER mode) {



Les Cahiers du GERAD G–2002–37 47

#define X extern

#include "o8comm.h"

#include "o8fint.h"

#undef X

#include "o8cons.h"

return;

}

5.4 Running BIPA and obtaining results

Once files PROBLEM.DAT, prob_eval.c, and donlp2_eval.c are coded as shown in the
previous three sections, one may compile BIPA (see the makefile given with BIPA).
To run BIPA, just type bipa. While running, BIPA completes the file RESULTS.DAT. In
the case of our example with problem Bard88Ex2, running BIPA on a Sun Ultra-10/300
computer (512M RAM) gives the following results:

Problem name : bard88ex2

Dimension : n1 = 4

n2 = 4

Initial point : x11 = 5.00

x12 = 5.00

x13 = 15.00

x14 = 15.00

x21 = 0.00

x22 = 0.00

x23 = 0.00

x24 = 0.00

=> objectives : F = -0.00

f = 1414.00

After donlp2 : x11 = 5.00

x12 = 5.00

x13 = 15.00

x14 = 15.00

x21 = 0.49

x22 = 6.86

x23 = 25.00

x24 = 0.00

=> objectives : F = -5499.37

f = 153.98

--------------------------------------------------------

It. F f Rho Delta M Donlp2 Total

-5499.3692 153.9846 10.0000 0.00

1 -6574.4279 64.1377 0.9425 14.0000 0 0.13 0.24

2 -6590.8978 96.1156 0.2017 14.0000 0 0.15 0.46

3 -6590.8978 96.1156 -0.3381 8.4000 1 0.14 0.69

4 -6590.8978 96.1156 -0.3381 5.0400 1 0.12 0.88

5 -6590.8978 96.1156 -0.3381 3.0240 1 0.12 1.07

6 -6594.5113 54.6900 0.1117 3.0240 0 0.14 1.26



Les Cahiers du GERAD G–2002–37 48

7 -6594.5113 54.6900 -0.1439 1.8144 1 0.13 1.46

8 -6596.4785 66.7273 0.0995 1.8144 0 0.13 1.66

9 -6596.4785 66.7273 -0.1242 1.0886 1 0.13 1.84

10 -6598.4687 58.8550 0.1703 1.0886 0 0.13 2.02

11 -6598.4687 58.8550 -0.2582 0.6532 1 0.14 2.22

12 -6598.4687 58.8550 -0.0923 0.3919 1 0.12 2.40

13 -6599.6279 57.9292 0.2535 0.3919 0 0.12 2.59

14 -6599.6279 57.9292 -0.5143 0.2351 1 0.13 2.77

15 -6599.7515 57.6655 0.0914 0.2351 0 0.15 2.99

16 -6599.7515 57.6655 -0.1119 0.1411 1 0.13 3.17

17 -6599.9723 57.5288 0.3329 0.1411 0 0.13 3.37

18 -6599.9723 57.5288 -0.9961 0.0847 1 0.12 3.54

19 -6599.9723 57.5288 -0.1976 0.0508 1 0.12 3.72

20 -6599.9947 57.4761 0.2816 0.0508 0 0.13 3.91

21 -6599.9947 57.4761 -0.6445 0.0305 1 0.12 4.07

22 -6599.9950 57.4939 0.0136 0.0305 0 0.14 4.29

23 -6599.9950 57.4939 -0.0140 0.0183 1 0.13 4.49

24 -6599.9998 57.4783 0.3925 0.0183 0 0.13 4.68

25 -6599.9998 57.4783 -1.8255 0.0110 1 0.13 4.87

26 -6599.9998 57.4783 -0.6960 0.0066 1 0.13 5.06

27 -6599.9998 57.4783 -0.0105 0.0039 1 0.12 5.24

28 -6600.0000 57.4804 0.4141 0.0039 0 0.13 5.44

29 -6600.0000 57.4804 -2.4118 0.0024 1 0.13 5.63

30 -6600.0000 57.4804 -1.1588 0.0014 1 0.14 5.83

31 -6600.0000 57.4804 -0.0779 0.0009 1 0.13 6.03

32 -6600.0000 57.4804 -0.0779 0.0009 1 0.14 6.22

--------------------------------------------------------

Solution

x11 = 7.36

x12 = 3.55

x13 = 11.64

x14 = 17.45

x21 = 0.91

x22 = 10.00

x23 = 29.09

x24 = 0.00

F = -6600.00

f = 57.48

Total CPU time : 6.22

Acknowledgements: This work was partly supported by the Ministère de la Com-

munauté Française (Belgium).
The author is indebted to Patrice Marcotte and Gilles Savard for having given him the
opportunity to build an interesting and friendly collaboration on the occasion of three stays
at the Centre de Recherche sur les Transports.
Finally, computational support from Serge Bisaillon and Luc Rocheleau is gratefully ac-
knowledged.



Les Cahiers du GERAD G–2002–37 49

References

[1] E. Aiyoshi and K. Shimizu. A solution method for the static constrained Stackelberg
problem via penalty method. IEEE Transactions on Automatic Control, 29:1111–1114,
1984.

[2] J. F. Bard. Convex two-level optimization. Mathematical Programming, 40:15–27,
1988.

[3] D. Braess. Über ein Paradox der Verkehrsplannung. Unternehmenstorchung, 12:258–
268, 1968.

[4] L. Brotcorne. Approches opérationnelles et stratégiques des problèmes de trafic routier.
PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, 1998.

[5] B. Colson, P. Marcotte, and G. Savard. A trust-region method for nonlinear bilevel
programming: Algorithm and computational experience. Submitted to Computational

Optimization and Applications, July 2002.

[6] B. Colson, P. Marcotte, G. Savard, and D. L. Zhu. Theoretical study and convergence
properties of a trust-region method for nonlinear bilevel programming. Working paper,
July 2002.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-region methods. SIAM, Philadel-
phia, 2000.

[8] S. Dempe. A necessary and a sufficient optimality condition for bilevel programming
problems. Optimization, 25:341–354, 1992.

[9] J. E. Falk and J. Liu. On bilevel programming, Part I: general nonlinear cases.
Mathematical Programming, 70(1):47–72, 1995.

[10] ILOG CPLEX Division. CPLEX User’s Guide.

[11] M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its applications
to optimal highway pricing. Management Science, 44:1595–1607, 1998.

[12] P. Marcotte. Network design problem with congestion effects: A case of bilevel pro-
gramming. Mathematical Programming, 34:142–162, 1986.

[13] A. Migdalas. Bilevel programming in traffic planning: models, methods and challenge.
Journal of Global Optimization, 7:381–405, 1995.

[14] J. Outrata. On optimization problems with variational inequality constraints. SIAM

Journal on Optimization, 4(2):340–357, 1994.

[15] G. Savard. Contribution à la programmation mathématique à deux niveaux. PhD
thesis, Ecole Polytechnique de Montréal, Université de Montréal, April 1989.

[16] K. Shimizu and E. Aiyoshi. A new computational method for Stackelberg and min-
max problems by use of a penalty method. IEEE Transactions on Systems, Man, and

Cybernetics, 11:444–449, 1981.

[17] K. Shimizu, Y. Ishizuka, and J. F. Bard. Nondifferentiable and two-level mathematical

programming. Kluwer Academic Publishers, 1997.



Les Cahiers du GERAD G–2002–37 50

[18] A. H. De Silva. Sensitivity Formulas for Nonlinear Factorable Programming and their

Application to the Solution of an Implicitly Defined Optimization Model of US Crude

Oil Production. PhD thesis, George Washington University, 1978.

[19] P. Spellucci. DONLP2 users guide. Technical University at Darmstadt, Department
of Mathematics, 64829 Darmstadt, Germany.

[20] P. Spellucci. A new technique for inconsistent problems in the SQP method. Math.

Meth. of Oper. Res., 47:355–400, 1998.

[21] P. Spellucci. An SQP method for general nonlinear programs using only equality
constrained subproblems. Mathematical Programming, 82:413–448, 1998.


