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Abstract

This paper deals with the class of uncertain systems with multiple time-delays.
The stability and stabibizability of this class of systems are considered. Their ro-
bustness are also studied when the norm bounded uncertainties are considered. LMIs
Delay-dependent sufficient conditions for both stability and stabilizability and their
robustness are established to check if a system of this class is stable and/or is stabi-
lizable. Some numerical examples are provided to show the usefulness of the proposed
results.

Keywords: Dynamical systems, multiple time-varying delays, stability, robust sta-
bility, stabilizability, robust stabilizability.

Résumé

Cet article traite de la classe des systèmes incertains à retard multiples. Les
problèmes de stabilité de stabilisabilité et leur robustesse sont considérés. Les in-
certitudes utilisées dans ce travail sont du type bornées en norme. Des conditions en
forme de LMI sont établies pour la stabilité, la stabilisabilité et leur robustesse. Des
exemples numériques sont présentés pour montrer la validité des résulats exposés.
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1 Introduction

It was shown in different studies that the presence of the time-delay in the systems dynamics
is the primary cause of instability and performance degradation. The class of dynamical
systems with time-delay has in fact attracted a lot of researchers mainly from the control
community. Many results on this class of systems have been reported to the literature. We
refer the reader to [1, 2] and the references therein for more information.

In the present literature there exist two techniques that can be used to study the stability
and the stabilizability. The first one is based on the Lyapunov-Razumikhin technique and
it consists of considering a Lyapunov function of the form, V (xt) = x>t Pxt, with P a
symmetric and positive-definite matrix with appropriate dimension and xt is the state
vector of the system, to develop the conditions that can be used to check if the system
under study is stable; and/or stabilizable. This technique gives a condition that depends
on the maximum value of the delay. The reader can consult the work of [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 2] and the references therein for more information.

The second technique is based on the Lyapunov-Krasovskii approach and it consists of
considering a more complicated Lyapunov functional to determine the appropriate delay-
dependent condition that in general depends on the upper bound of the first derivative of
the delay when it is time-varying. This technique has been extensively used and the large
number of references using it confirms this. See for example the works done by [1, 2] and
the references therein for more information;

But from the practical point of view we are interested by conditions that depend on
both, i.e: the upper bound of the delay and the lower and the upper bounds of the first
derivative of the time-varying delay. Since in practice the delay is in fact always time-
varying, that can be usually represented by a function h(t), and bounded by a constant
h̄, it is therefore desirable to have conditions that depend on the upper bound of the
time-varying delay and on the lower and the upper bounds of the first derivative of the
time-varying delay.

The goal of this paper consists of considering the class of uncertain linear systems with
multiple time-varying delays and develop sufficient conditions for stability and stabilizabil-
ity and their robustness that depend on the upper bounds of the delays and on the lower and
upper bounds of the first derivative of the time-varying delays. The Lyapunov-Krasovskii
approach will be used in this paper.

The paper is organized as follows. In section 2, the problem is stated and the required
assumptions are formulated. Section 3 deals with the stability and the robust stability.
Section 4 covers the stabilizability and the robust stabilizability of the class of systems
under study. Section 5 presents some numerical examples to show the usefulness of the
proposed results.

Notation: In the rest of this paper the notation is standard unless it is specified
otherwise. L > 0 (L < 0) means that the matrix L is symmetric and positive-definite
(symmetric and negative-definite) matrix. Sym(M) = M +M>
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2 Problem statement

Let us consider the following class of systems with multiple time-varying delays:

ẋt = A(t)xt +

p
∑

j=1

Adj(t)xt−hj(t) +B(t)ut (1)

where xt is the state vector, ut is the control input, hj(t); j = 1, 2, . . . , p, is the time-varying
delay of the system and the matrices A(t), Adj(t) and B(t) are given by:

A(t) = A+DF (t)E

Adj(t) = Adj +DjFj(t)Ej , ∀j = 1, 2, . . . , p

B(t) = B +DbFb(t)Eb

with A, Adj , j = 1, 2, . . . , p, B, D, E, Dj , Ej ; j = 1, 2, . . . , p, Db and Eb are given matrices
with appropriate dimensions and F (t), Fj(t); j = 1, 2, . . . , p and Fb(t) represent the system
uncertainties satisfying the following assumption.

Assumption 2.1 Let us assume that the following hold:

F>(t)RF (t) ≤ R

F>d (t)RdFd(t) ≤ Rd, (2)

F>b (t)RbFb(t) ≤ Rb

where Rd and Fd(t) are diagonal matrices given by

Fd(t) =





F1(t)
. . .

Fp(t)



 Rd(t) =





R1
. . .

Rp



 (3)

with R, R1, . . . , Rp and Rb are given matrices with appropriate dimensions

Remark 2.1 The uncertainties that satisfy (2) will be referred to as admissible uncer-
tainties. Notice that the uncertainties F (t), Fj(t), j = 1, 2, . . . , p and Fb(t) can be chosen
dependent on the system state and the developed results will remain valid. However, in the
present paper we will consider only the case of time-varying uncertainties.

Assumption 2.2 For each j, (j = 1, 2, . . . , p), the time-varying delay hj(t), is assumed
to satisfy the following:

0 ≤ hj(t) ≤ h̄j <∞ (4)

lj ≤ ḣj(t) ≤ l̄j < 1, (5)

where h̄j, lj and l̄j are given positive constants.
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Let us define τ̄ as τ̄ = max
(

h̄1, . . . , h̄1

)

and xt as xt(s) = xt+s, t − τ̄ ≤ s ≤ t. In the
rest of the paper we will use xt instead of xt(s).

Lemma 2.1 Let Z, E, F , R and ∆ be matrices of appropriate dimensions. Assume that
Z is symmetric, R is symmetric and positive definite and ∆>R∆ ≤ R, then

Z + E∆F + F>∆>E> < 0

if and only if there exists a scalar λ > 0 satisfying

Z + E
(

λR
)

E> + F>
(

λR
)−1

F < 0

3 Stability and robust stability

The goal of this section consists of establishing what will be the sufficient conditions that
can be used to check whether or not the class of systems under study is stable. We are
also interested by the robust stability of this class of systems. These two problems will be
discussed in the following subsections.

3.1 Stability

Let us now suppose that the control is equal to zero, i.e: ut = 0, ∀ t ≥ 0 and that the
system doesn’t contain uncertainties which gives the following dynamics:

ẋt = Axt +

p
∑

j=1

Adjxt−hj(t) (6)

The goal of this subsection consists of developing a condition that can be used to check if
the class of systems under study is stable. The condition we are looking for should depend
on the upper bound of the delay and on the lower and upper bounds of the first derivative
of the time-varying delays given in Assumption 2.2. The following theorem states such
result.

Theorem 3.1 Let assume that the assumption 2.2 is satisfied. If there exist P > 0,
Qj > 0, Wj > 0, Xj, Yj and Zj for j = 1, 2, . . . , p such that the following hold:

Zj =

[

Zj Yj

Y >j Xj

]

> 0 (7)

(

l̄j − lj
)

Xj +
(

l̄j − 1
)

Wj < 0, (8)









Ψ1 −Ψ3 0 P

−Ψ>3 −Ψ2 0
0 0 −W WII>

P 0 IIW 0









+ Sym























F1

F2

F3

F4









[A Ad 0 −I ]















< 0 (9)
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where

II = [ I . . . I ]

Ad = [Ad1 . . . Adp ]

W = diag(h1W1, . . . hpWp)

Ψ1 =

p
∑

j=1

[

Qj +
(

l̄j − lj
)

(

h̄jZj + Yj + Y >j

)]

Ψ3 =
[ (

l̄1 − l1
)

Y1 . . . +
(

l̄p − lp
)

Yp

]

Ψ2 = diag(
(

1− l̄1
)

Q1, . . . ,
(

1− l̄p
)

Qp)

then the system under study is asymptotically stable.

In order to the proof of Theorem 3.1, we give the following lemma

Lemma 3.1 The two statements are equivalent

a)






A>P + PA+Ψ1 PAd −Ψ3 A>IIW
(

PAd −Ψ3

)>

−Ψ2 A>d IIW

WII>A WII>Ad −W






< 0 (10)

b)








Ψ1 −Ψ3 0 P

−Ψ>3 −Ψ2 0
0 0 −W WII>

P 0 IIW 0









+ Sym























F1

F2

F3

F4









[A Ad 0 −I ]















< 0 (11)

Proof of Lemma 3.1 The proof is a direct application of the elimination lemma; that
is, notice that

Nright =









I 0 0
0 I 0
0 0 I

A Ad 0









satisfies

[A Ad 0 −I ]









I 0 0
0 I 0
0 0 I

A Ad 0









= 0
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then condition (11) is equivalent to

N>
right









Ψ1 −Ψ3 0 P

−Ψ>3 −Ψ2 0 0
0 0 −W WII>

P 0 IIW 0









Nright=







A>P + PA+Ψ1 PAd −Ψ3 A>IIW
(

PAd −Ψ3

)>

−Ψ2 A>d IIW

WII>A WII>Ad −W






<0

and this ends the proof of Lemma 3.1. ∇∇∇

Proof of Theorem 3.1 Let the Lyapunov functional be defined by:

V (xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt)

where

V1(xt) = x>t Pxt

V2(xt) =

p
∑

j=1

∫ t

t−hj(t)

∫ t

s

ẋ>z Wj ẋzdzds

V3(xt) =

p
∑

j=1

∫ t

t−hj(t)
x>s Qjxsds

V4(xt) =

p
∑

j=1

∫ t

0

(

l̄j − ḣj(z)
)

∫ z

z−hj(z)

[

x>z ẋs

]

[

Zj Yj

Y >j Xj

] [

xz

ẋs

]

dsdz

After taking the derivative of these functionals and some algebraic manipulations we
get

V̇ (xt) = ξ>t Mξt +

p
∑

j=1

∫ t

t−hj(t)
ẋ>s
[(

l̄j − lj
)

Xj +
(

l̄j − 1
)

Wj

]

ẋsds

with

ξ>t =
[

x>t x>
t−h1(t) . . . x>

t−hp(t)

]

M =

[

M11 M12

M>
12 M22

]

where M11, M12 and M22 are given by

M11 = A>P + PA+A>II W II>A+Ψ1
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M12 = PAd −Ψ3 +A>II W II>Ad

M22 = A>d II W II>Ad −Ψ2

Therefore, the system is then asymptotically stable if the following hold:
{

M < 0
[(

l̄j − lj
)

Xj +
(

l̄j − 1
)

Wj

]

< 0, ∀j = 1, . . . , p

Notice that matrix M can be expressed as follows

M =

[

A>P + PA+Ψ1 PAd −Ψ3
(

PAd −Ψ3

)>

−Ψ2

]

+

[

A>II W II>A A>II W II>Ad
(

A>II W II>Ad

)>

A>d II W II>Ad

]

=

[

A>P + PA+Ψ1 PAd −Ψ3
(

PAd −Ψ3

)>

−Ψ2

]

+

[

A>II W

A>d II W

]

(

W
)−1

[

A>II W

A>d II W

]>

Using Shur complement, we conclude that M is negative definite if and only if






A>P + PA+Ψ1 PAd −Ψ3 A>IIW
(

PAd −Ψ3

)>

−Ψ2 A>d IIW

WII>A WII>Ad −W






< 0 (12)

is satisfied. Furthermore, since condition (12) is equivalent to (9) according to Lemma 3.1
and since (9) is verified by assumption as well as conditions (8) and (7) then the system
under study is asymptotically stable. This ends the proof of the theorem. ∇∇∇

Remark 3.1 The results of Theorem 3.1 are only sufficient and therefore if these condi-
tions are not verified we can’t claim that the system under study is not stable.

3.2 Robust stability

Let us now assume that the control is still equal to zero for all time and assume that the
system has uncertainties on all the matrices, i.e:

ẋt = [A+DF (t)E]xt +

p
∑

j=1

[Adj +DjFj(t)Ej ]xt−hj(t) (13)

where all the terms keep the same meaning as before.

We introduce the following notations

Ã = A+DF (t)E

Ãd = [Ad1 +D1F1(t)E1 . . . Adp +DpFp(t)Ep ] = Ad +DdFdEd
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where Ed and Dd are given by

Dd = [D1 . . . Dp ] Ed = diag(E1, . . . Ep)

Note that conditions (7) and (8) do not depend on the system matrices so they do
not need to be adapted to the uncertain case. Besides, we have to replace A and Ad

respectively by Ã and Ãd in condition (9) to get a condition for the robust case which is
stated by Theorem 3.2.

Theorem 3.2 Let assume that the Assumptions 2.1-2.2 are satisfied. If there exist F1, F2,
F3, F4, P > 0, Qj > 0, Wj > 0, Xj, Yj, Zj for j = 1, 2, . . . , p and λ such that conditions
(7), (8) and
















α11 ∗ ∗ ∗ ∗ ∗

AT
d F

T
1 + F2A−Ψ>3 α22 ∗ ∗ ∗ ∗

F3A F3Ad −W ∗ ∗ ∗

F4A+ P − F>1 F4Ad − F>2 IIW − F>3 −F4 − F>4 ∗ ∗

D>F>1 D>F>2 D>F>3 D>F>4 −λR ∗

D>d F>1 D>d F>2 D>d F>3 D>d F>4 0 −λRd

















< 0 (14)

hold with

α11 = Ψ1 +ATF T
1 + F1A+ λE>RE

α22 = AT
d F

T
2 + F2Ad −Ψ2 + λE>d RdEd

then the uncertain system under study is asymptotically stable for all admissible uncertain-
ties.

Proof of Theorem 3.2 As we said before the robust stability is achieved, according to
Theorem 3.1, if conditions (7), (8) and









Ψ1 −Ψ3 0 P

−Ψ>3 −Ψ2 0
0 0 −W WII>

P 0 IIW 0









+ Sym























F1

F2

F3

F4









[ Ã Ãd 0 −I ]















< 0 (15)

are satisfied. And since conditions (7), (8) remains unchanged in the presence of uncer-
tainty, we have to work out only condition 15.

First notice that in condition (15) the second term of the left side can be split into two
part to yield









Ψ1 −Ψ3 0 P

−Ψ>3 −Ψ2 0 0
0 0 −W WII>

P 0 IIW 0









+ Sym























F1

F2

F3

F4









[A Ad 0 −I ]

















Les Cahiers du GERAD G–2002–27 8

+ Sym























F1D F1Dd

F2D F4Dd

F3D F3Dd

F4D F4Dd









[

F (t)
Fd(t)

] [

E 0 0 0
0 Ed 0 0

]















< 0

And according to Lemma 2.1, the previous inequality is equivalent to









Ψ1 −Ψ3 0 P

−Ψ>3 −Ψ2 0 0
0 0 −W WII>

P 0 IIW 0









+ Sym























F1

F2

F3

F4









[A Ad 0 −I ]















+









F1D F1Dd

F2D F4Dd

F3D F3Dd

F4D F4Dd









[

λR

λRd

]−1









F1D F1Dd

F2D F4Dd

F3D F3Dd

F4D F4Dd









>

+

[

E 0 0 0
0 Ed 0 0

]> [
λR

λRd

] [

E 0 0 0
0 Ed 0 0

]

< 0

Using a Schur complement operation yields, for a scalar λ, the following condition

















f11 ∗ ∗ ∗ ∗ ∗

−Ψ>3 f22 ∗ ∗ ∗ ∗

0 0 −W ∗ ∗ ∗

P 0 IIW 0 ∗ ∗

0 0 0 0 −λR ∗

0 0 0 0 0 −λRd

















+ Sym















































F1

F2

F3

F4

0
0

















[A Ad 0 −I D Dd]































< 0 (16)

with

f11 = Ψ1 + λE>RE

f22 = −Ψ2 + λE>d RdEd

It is worth noting that (16) can be rewritten as condition (14) and this ends the proof.
This condition combined with (7) and (8) represent the sufficient conditions for robust
stability of the class of systems under consideration. ∇∇∇

The next section will deal with the stabilizability and the robust stabilizability of the
class of systems under study.
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3.3 Stabilizability

This section deals with the stabilizability problem, and we will try to design a controller
that stabilizes the closed-loop system. We will restrict our self to the class of memoryless
state feedback controller.

Thus the state feedback controller is of the form:

u(t) = Kx(t) (17)

Substituting (17) in the plant model and taking Acl = (A+BK) we get the closed-loop
dynamics:

ẋt = Aclxt +

p
∑

j=1

Adj(t)xt−hj(t) (18)

We note that only condition (9) must be adapted to the stabilizability case. We replace A

by Acl in (9) to get

Mcl =









Ψ1 −Ψ3 0 P

−Ψ>3 −Ψ2 0
0 0 −W WII>

P 0 IIW 0









+ Sym























F1

F2

F3

F4









[Acl Ad 0 −I ]















< 0

The problem of robust stabilization by state feedback is stated by Theorem 3.3.

Theorem 3.3 Let assume that the Assumption 2.2 is satisfied. If there exist F1, F2, F3,
F4, P > 0, Qi > 0, Wi > 0, Xi, Yi, Zi for i = 1, . . . , p and L and G such that the
following hold for i = 1, . . . , p

[

Z̄i Ȳi

Ȳ >i X̄i

]

> 0 (19)

(

l̄i − li
)

X̄i +
(

l̄i − 1
)

W̄i < 0 (20)












Ψ1 +AT
o F

T
1 + F1Ao ∗ ∗ ∗ ∗

AT
do
F T

1 + F2Ao −Ψ>3 AT
do
F T

2 + F2Ado
−Ψ2 ∗ ∗ ∗

F3Ao F3Ado
−W ∗ ∗

F4Ao + P − F>1 F4Ado
− F>2 IIW − F>3 −F4 − F>4 ∗

BTF T
1 + L−GKo BTF T

2 −GKdo
BTF T

3 BTF T
4 −G−GT













< 0

(21)

for given gains Ko and Kdo
that make the matrices Ao = (A+BKo) and Ado

= (Ad+BKdo
)

stable then the closed loop system is asymptotically stable with the stabilizing feedback gain
given by

K = G−1L
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Proof of Theorem 3.3 The closed loop matrix Acl can also be rewritten as

Acl = A+BK = A+BKo +B (K −Ko) = Ao +BSo

Ad = Ad +BKdo
−BKdo

= Ado
+BSdo

where the gain Ko and Kdo
are chosen in such a way that A + BKo and Ad + BKdo

are
stable. This allows us to rewrite Mcl as

Mcl =









Ψ1 −Ψ3 0 P

−Ψ>3 −Ψ2 0 0
0 0 −W WII>

P 0 IIW 0









+Sym























F1

F2

F3

F4









[Ao Ado
0 −I ]















+ Sym























F1B

F2B

F3B

F4B









[So Sdo
0 0 ]















< 0

and using similar arguments as in the proof of lemma 3.1, we introduce a new variable G

to get the following condition.

MSF =













Ψ1 −Ψ3 0 P 0
−Ψ>3 −Ψ2 0 0 0
0 0 −W WII> 0
P 0 IIW 0 0
0 0 0 0 0













+Sym



































F1

F2

F3

F4

0













[Ao Ado
0 −I B ]























+ Sym



































0
0
0
0
I













G [So Sdo
0 0 −I ]























< 0

which is in fact condition (21) where we have introduced the change of variable L = GK.

Indeed, notice that









I 0 0 0 −S>o
0 I 0 0 −S>do

0 0 I 0 0
0 0 0 I 0









MSF













I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

So Sdo
0 0













=Mcl < 0

The introduction of the new variable G allows us to perform a decoupling between the
matrices B and So and hence between B and the state feedback gain K. ∇∇∇
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3.4 Robust stabilizability

In this subsection, we are concerned by robust stabilisability of the uncertain system under
the control law (17). The closed loop system is then given by

ẋt = [A+BK +DF (t)E +DbFb(t)EbK]xt +

p
∑

j=1

[Adj +DjFj(t)Ej ]xt−hj(t) (22)

where all the terms keep the same meaning as previously. Taking account of the uncer-
tainties in (21), we get

M̃SF =













Ψ1 −Ψ3 0 P 0
−Ψ>3 −Ψ2 0 0 0
0 0 −W WII> 0
P 0 IIW 0 0
0 0 0 0 0













+ Sym



































0
0
0
0
I













G [So Sdo
0 0 −I ]























+Sym



































F1

F2

F3

F4

0













[ Ãcl Ãcl
d 0 −I B̃ ]























= MSFo + Sym



































F1D F1Db F1Dd F1Db F1Db

F2D F2Db F2Dd F2Db F2Db

F3D F3Db F3Dd F3Db F3Db

F4D F4Db F4Dd F4Db F4Db

0 0 0 0 0













×F(t)













E 0 0 0 0
EbKo 0 0 0 0
0 EbKdo

0 0 0
0 Ed 0 0 0
0 0 0 0 Eb



































< 0

with

F(t) = diag
[

F (t) Fb(t) Fd(t) Fb(t) Fb(t)
]

Ãcl = Ã+ B̃Ko

Ãcl
d = Ãd + B̃Kdo
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andMSFo the part of M̃SF that contains only the non uncertain terms and using Lemma
2.1 as previously we get

MSFR = Sym































































































F1

F2

F3

F4

0
0
0
0
0
0

































[Ao Ado
0 −I B D Db Dd Db Db ]































































+

































β11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−Ψ>3 β22 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 −W ∗ ∗ ∗ ∗ ∗ ∗ ∗

P 0 IIW 0 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 λE>b RbEb ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 −λR ∗ ∗ ∗ ∗

0 0 0 0 0 0 −λRb ∗ ∗ ∗

0 0 0 0 0 0 0 −λRd ∗ ∗

0 0 0 0 0 0 0 0 −λRb ∗

0 0 0 0 0 0 0 0 0 −λRb

































+Sym































































































0
0
0
0
I

0
0
0
0
0

































G [So Sdo
0 0 −I 0 0 0 0 0 ]































































< 0 (23)

with

β11 = Ψ1 + λ
(

E>RE +K>
o E>b RbEbKo

)

β22 = −Ψ2 + λ
(

E>d RdEd +K>
do
E>b RbEbKdo

)

In condition (23), we have to proceed to the change of variable L = GK and then we
get an LMI problem from which when it is feasible we get the feedback gain as
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K = G−1L (24)

The following theorem summarizes the result of robust stability.

Theorem 3.4 Assume that the assumptions 2.1-2.2 are satisfied. If there exist F1, F2,
F3, F4, P > 0, Qi > 0, Wi > 0, Xi, Yi, Zi for i = 1, . . . , p and L, G and λ such that the
LMI problem constituted by the three conditions (19), (20)and (23) is feasible, the robust
stabilizing state feedback gain is given by (24) and the uncertain closed loop system under
study is asymptotically stable for the set of admissible uncertainties.

4 Example

To show the usefulness of our results, let us consider some numerical examples.

Example 4.1 In this example, we consider that the system under study has one time-delay
and try to apply the results of Theorem 3.2. Let us assume that the dynamics is described
by the following matrices:

A =

[

−3 1
1 −1

]

Ad =

[

−0.2 0.1
−0.3 −0.1

]

D = Dd = 0.2I E = Ed = I R = Rd = I

Maximal h̄

ḣ(t) [15] Theorem 3.2

≤ 0.9 0.1621 0.225
≤ 0.8 0.3802 0.49
≤ 0.6 1.0662 1.425
≤ 0.4 7.1784 ∞

Table 1

In this example we proceed to a comparison with the result given in [15] and we show
that in the robust case, Theorem 3.2 of the present paper provides better results than [15,
Theorem 3.2]. It is worth noting that for the nominal system we get similar bounds.

Example 4.2 In this example, we consider the robust stabilizability problem. For this
purpose let us consider the following data:

A =

[

2.0 0.0
1.0 3.0

]

D = 0.2I E = I, R = I
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B =

[

1.0 2.0
1.0 0.0

]

Db = 0.2I Eb = I, Rb = I

Ad =

[

−0.1 0.0
−0.8 −1.0

]

Dd = 0.2I Ed = I, Rd = I

The characteristics of the first derivative of the delay are as follows

l = 0. l̄ = 0.825

The application of Theorem 3.4 leads to the following results

X =

[

30.1136 −3.9990
−3.9990 0.5311

]

, Y =

[

−3.3436 0.4440
4.4596 −0.5922

]

Z =

[

0.3712 −0.4950
−0.4950 0.6626

]

, W =

[

141.9641 −18.8526
−18.8526 2.5036

]

P =

[

8999.5211 −28.5684
−28.5684 37679.0852

]

, Q =

[

7942.9421 17142.9757
17142.9757 303352.7590

]

F1 =

[

8946.4080 152.8018
−88.7054 37661.7437

]

, F2 =

[

−100.1079 85.6633
−1447.3920 38.6734

]

F3 =

[

350.8231 −40.7311
−46.5886 5.4090

]

, F4 =

[

3449.8341 −375.8000
−500.6067 161.2343

]

L =

[

−223754.6705 19190.1742
−258925.2826 120109.2273

]

, G =

[

37765.6548 53117.4530
42764.2230 62293.1025

]

Ko =

[

−0.5000 −6.2506
−3.8114 6.2506

]

, Kdo
=

[

0.4000 0.4697
−0.3486 −0.4697

]

λ = 816.2566

The stabilizing state feedback gain is then
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K =

[

−2.2826 −63.9955
−2.5896 45.8611

]

These result were obtained for
h̄ = 26.9650

The parameter h̄ has been found by search and it is worth noting that this value does not
correspond to the maximal value and one can improve this result by choosing adequately
the parameters Ko and Kdo

. Based on the results of the previous theorem, we conclude that
the system under study in this example is robustly stable for all admissible uncertainties.

5 Conclusion

This paper dealt with a class of dynamical linear uncertain systems with multiple time-
varying delays in the state. delay-dependent sufficient conditions have been developed to
check if a system of this class of systems is stable and/or stabilizable. A memoryless state
feedback controller with consequent parameters has been used to stabilize the system. The
LMI technique is used in all the development.
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