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Abstract 

There is increased interest in rating types of hospitals or geographical regions containing 
hospitals on the basis of their performance in the provision of certain types of medical services or 
procedures. Another important aspect of such a study could be the identification of exceptional 
hospitals or regions. The outcome variable of interest is often a binary one representing the type of 
procedure used or a successful outcome of a service. Because of the hierarchical nature of the data 
(for example, patients, doctors, hospitals, hospital type within hospitals, regions or small areas, 
etc.), a hierarchical model should be used. Such studies lend themselves very easily to a multiple 
logistic regression model with mixed effects; that is, patient information such as age, gender and 
hospital information such as caseload are considered as fixed effects while hospital and/or region 
are modeled as random effects. The hierarchical Bayes approach proposed here also allows for the 
standardization of the random effects which permits the use of normal probability plots for the 
detection of outliers and exceptional cases. For a large well-defined hospital population, Simons et 
al (1997) recently reported statistically significant differences in surgical choices in the treatment 
of rectal cancer seemingly due to hospital type and caseload within hospital type.  Their data are 
used here to illustrate the utility of hierarchical Bayes techniques for parameter estimation and 
outlier detection in a logistic regression model with random effects in such a study. 

 

Résumé 

Il y a un intérêt croissant dans l’évaluation des types d’hôpitaux ou de régions 
géographiques contenant des hôpitaux sur la base de leur performance pour fournir certains types 
de procédures ou services médicaux. Un autre important aspect de telles études peut être 
l’identification d’hôpitaux ou régions exceptionnels. Les variables d’intérêt sont souvent binaires, 
représentant le type de procédure utilisée ou les résultats réussis d’un service. À cause de la nature 
hiérarchique des données (par exemple, patients, docteurs, hôpitaux, types d’hôpitaux, régions ou 
petits territoires, etc.) un modèle hiérarchique doit être utilisé. De telles études conduisent très 
facilement à des modèles de régression logistique multiple avec des effets mixes, c’est-à-dire que 
l’information sur les patients telles que l’age, le sexe et l’information de l’hôpital telle que 
l’occupation de l’hôpital sont considérés comme des effets fixes, alors que les hôpitaux et/ou les 
régions sont modelés comme des effets aléatoires. L’approche Bayes hiérarchique proposée ici 
permet aussi la standardisation des effets aléatoires qui permettent l’utilisation des courbes de 
probabilités normales pour la détection des valeurs aberrantes et des cas exceptionnels. Pour une 
population grande et bien définie d’hôpitaux, les données de Simons et al (1997) sont utilisées pour 
illustrer l’utilité des techniques Bayes hiérarchique pour les paramètres d’estimation et les 
détections de valeurs aberrantes dans un modèle de régression logistique avec des effets aléatoires 
dans une telle étude. 
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1. Introduction 

A problem of high priority in medical research is the analysis of health services 
data that have a hierarchical structure. There is increased interest in rating types of 
hospitals or geographical regions containing hospitals on the basis of their performance in 
the provision of certain types of medical services or surgical procedures. The process of 
comparing the quality of care or the use of services and cost with established standards is 
called profiling (Normand et al 1997). A study is often organized and analyzed in order to 
assist in medical decision making vis a vis the procedure or service. 

According to Normand et al (1997) the most important aspect of profiling is to 
develop a method of evaluating the providers of medical care. In order to do this 
successfully, Daniels et al (1997) suggest that the analysis of variation is important in the 
study of the type of service provided or of other outcomes. They indicate that a very 
important question to answer is whether comparable patients receive similar treatments or 
procedures across the medical care providers and/or hospitals and suggest that 
hierarchical regression models are an excellent choice for analysis of such data that have 
many levels and a nested structure. 

Many generalizations of the hierarchical logistic model originally proposed by 
Wong and Mason (1989, 1991) exist. In particular, we cite Daniels et al (1997) Malec et 
al (1997) and Albert and Chib  (1993), who generalized the method to allow for the 
analysis of polychotomous  responses. Using another generalized linear model, 
Christiansen et al  (1996, 1997) were very successful in modeling patient mortality rates 
in heart transplant patients using a two-level Poisson regression model.  For an overview 
of the use of hierarchical generalized linear models in the study of health care, see 
Daniels et al (1999).  

However, as the outcome variable of interest is often a binary one representing the 
type of procedure used or a successful outcome of a service, we will concentrate on this 
type of outcome here. Because of the hierarchical nature of the data (for example, 
patients, doctors, hospitals, hospital type within hospitals, regions or small areas, etc.), a 
hierarchical model should be used. A goal of such an analysis would be to reduce 
variation in the estimation of the individual parameters while properly accounting for it. 

Such studies lend themselves very easily to a multiple logistic regression model 
with mixed effects; that is, patient information such as age and gender, and hospital 
information such as caseload are considered as fixed effects while hospital and/or region 
are modeled as random effects. One of the difficulties of such an analysis is the numerical 
computation of model parameter estimates. One possible approach is an empirical Bayes 
procedure using the EM algorithm (Dempster et al 1977). As it is not feasible in the case 
of logistic regression to obtain a closed form expression for the posterior distribution of 
the parameters, the approximation often used to avoid the intractable numerical 
integration is that originally proposed by Laird (1978). This method has been used 
successfully for logistic regression with random intercepts by Stiratelli, Laird and Ware 
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(1984) and for small area estimation of proportions by Dempster et al (1980), MacGibbon 
et al (1989), Farrell et al (1994, 1997).  

However, when the number of random effects is large, this computational 
approach is no longer feasible and we turn to a hierarchical Bayes approach with the 
Gibbs sampler, originally proposed by Geman and Geman (1984). An excellent 
discussion of this method can be found in Gelfand and Smith (1990). Another potential 
computational difficulty occurs when the number of cases in certain hospitals is very 
small or when the random effects distribution is highly skewed. In such cases an adaptive 
rejection Metropolis sampling scheme as proposed by Gilks, Best and Tan (1995) can be 
appended to the Gibbs sampling algorithm. 

Regression diagnostics, analogous to those introduced by Pregibon (1981) in the 
context    of ordinary logistic regression, including normal probability plots within the 
hierarchical Bayes framework, using methods developed by Farrell et al (1994) in an 
empirical Bayes setting can also be used here to identify possible outliers.  

Simons et al (1997) recently report statistically significant differences in surgical 
choices in the treatment of rectal cancer seemingly due to hospital type and caseload 
within hospital type.  Their data are used here to illustrate the utility of the hierarchical 
Bayes approach described above for parameter estimation in a logistic regression model 
with hospital modeled as a random effect in such a study. 

The paper is organized as follows. Section 2 presents the hierarchical 
model with fixed and random effects that will be used to analyze this type of data. 
Section 3 describes how to obtain hierarchical Bayes point and interval estimates 
for such a model using adaptive rejection Metropolis sampling within the Gibbs 
sampler as originally proposed by Gilks, Best and Tan (1995). Regression 
diagnostics are also discussed here. In section 4 the data from Simons et al (1997) 
are analyzed and discussion of the approach is given in section 5. 

 

2. The hierarchical Bayes model with fixed and random effects for the 
analysis of dichotomous choice data 

We restrict our attention here to the analysis of data leading to a dichotomous 
choice and for convenience we assume that the random effect variable is labeled as 
hospital, although it could equally well be a region, etc. More precisely let ijY = 1 if the j-

th patient treated at hospital i receives one option, and let ijY = 0 in the case that the 

patient received any other option. The random variable ijY follows a Bernoulli distribution 

with parameter ,ijπ  reflecting the probability that the j-th patient treated at hospital i 

receives the first option.  To study the effects of various covariates on the choice of 
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surgery for rectal cancer, one possibility is to make use of a simple logistic regression 
model:  

ijY  ∼  Bernoulli ),( ijπ  

logit )( ijπ = ln 
πij

1− πij

 

  
 

  
= ,βijx′                                             (1) 

where ijx is a vector, augmented by the constant one, of covariates associated with the j-th 

patient at the i-th hospital while β is an associated parameter vector which contains a 

constant term 0β .  Maximum likelihood estimation of the parameters in (1) is 
straightforward and can be accomplished using any statistical software package. 

 However, this model may not describe the data well if there are covariates other 
than those in ijx that influence the variation in rates from one hospital to another.  If this is 

the case, the following random effects logistic regression model may be more 
appropriate: 

ijY  ∼  Bernoulli ),( ijπ  

logit )( ijπ = ln 
πij

1− πij

 

  
 

  
= ,iijx δβ +′                                        (2) 

iδ ∼  Normal (0, 2τ ). 

 The quantity iδ is a random effect associated with the i-th hospital.  Thus, the 
model assumes that the hospitals included in the data set are a sample of all possible 
hospitals. The purpose of the random effect terms in the model is to account for the 
influence of unobserved covariates on the hospital-to-hospital variation in the proportion 
of patients receiving a particular option. We assume that these effects are normally 

distributed with an unknown variance 2τ .  Estimation of the parameters in (2) can be 
accomplished via a hierarchical Bayes approach. This requires the specification of a prior 

distribution for 2τ .  We consider a diffuse version of an inverse gamma distribution for 
the random effect variance in what follows.  
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3. Hierarchical Bayes estimation and regression diagnostics for the mixed 
effects model. 

 To develop hierarchical Bayes estimates for the parameters in the hierarchical 
model given by (2) requires posterior distributions of the model parameters.  However, it 
is only possible to know these distributions up to a constant of proportionality (see Gilks, 
Best, and Tan 1995); specifically the posterior distribution for any given parameter is 
proportional to the product of all terms in the model that contain it. Therefore, for Model 
(2), if Y andδ  are vectors containing ijY and iδ respectively, then  

),,,,,( 2
10 τδβββ mYf K α ∏

−−
ij

y
ij

y
ij

ijij ,)1(
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where u refers to the u-th covariate, m is the number of covariates, and n is the number of 
sampled hospitals. 

 Under Gibbs sampling, an initial set of values would be assumed as the estimates 

for β, δ, and τ2, say ,ˆ
}0{β ,ˆ

}0{δ  and .ˆ2
}0{τ  An updated estimate for β0, say ,ˆ

}1{0β  is 

obtained by sampling from the full conditional distribution 

).ˆ,ˆ,ˆ,,ˆ,( 2
}0{}0{}0{}0{10 τδβββ mYf K  Sampling from the full conditional distribution 

),ˆ,ˆ,,ˆ,ˆ,( 2
}0{}0{}0{}0{2}1{01 τδββββ mYf K  

based on }1{0β̂  yields the revised estimate }1{1β̂ for β1. The completion of a first iteration 

is realized once the revised estimates ,ˆ
}1{β ,ˆ

}1{δ  and 2
}1{̂τ are obtained. This procedure of 

sampling from full conditional distributions using the most up-to-date revised estimates 
continues until the estimates of each parameter are deemed to have stabilized from one 
iteration to the next.  See Geman and Geman (1984) and Gelfand and Smith (1990) for a 
general discussion on Gibbs sampling, and Gelman and Rubin (1992) for methods of 
convergence. 

 Note that a different full conditional distribution must be sampled every time a 
new estimate is obtained, regardless of which parameter is being estimated.  Since many 
iterations are usually needed to ensure that estimates for each parameter have stabilized, 
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efficient methods for constructing full conditional distributions and sampling from them 
are required.  For log-concave distributions, this can be accomplished through adaptive 
rejection sampling (See Gilks and Wild, 1992).  For applications where the full 
conditional distributions are not log-concave, Gilks, Best, and Tan (1995) propose 
appending a Hasting-Metropolis algorithm step to the adaptive rejection sampling 
scheme.  They suggest using the resulting adaptive rejection Metropolis sampling scheme 
within the Gibbs sampling algorithm.  We follow this approach here. 

    Specifically, suppose that the Gibbs sampler has been applied to the full 
conditional distribution of the parameter θ, ),ˆ,( ψθ Yf to obtain an updated estimate, say 

CURθ̂ .  Here, ψ̂ contains the most recent updated estimates for all other parameters with 

associated full conditional distributions. For example, one possibility is that θ = β0, 

ψ̂ = }ˆ,ˆ,ˆ,,ˆ{ 2
}10{}10{}10{}10{1 τδββ mK , so that CURθ̂  = .ˆ

}11{0β  In what follows, the various 

distributions referred to are conditional upon Y and ψ̂ ; however we will suppress the 

conditioning, writing )ˆ,( ψθ Yf  as )(θf , for example.  Let SK = {θi; i = 0, 1, …, K + 1} 

denote a set of values in ascending order for θ at which )(θf  is to be evaluated, where θ0 

and θK+1 are possibly infinite lower and upper limits.  Further, for 1 ≤ i ≤ j ≤ K, let Lij(θ; 
SK) denote the straight line through the points [θi, ln f(θi)] and [θj, ln f(θj)]; for other (i, j) 
assume that Lij(θ; SK) is undefined.  Under adaptive rejection Metropolis sampling, in 

order to determine if CURθ̂  is to be kept or replaced when applying the Gibbs sampler to 
the full conditional of the next parameter, we proceed as follows: 

(1)  Sample θ from )](exp[
1

)( θθ K
K

K h
v

g =  where ∫= ,)](exp[ θθ dhv KK  and hK(θ) is a 

piecewise linear function given by: 

hK(θ) = max[Li, i+1(θ; SK), min{Li-1, i(θ; SK), Li+1, i+2(θ; SK)}],        θi ≤ θ ≤ θi+1. 

(2) Sample W1 from a uniform (0, 1) distribution. 

(3) If W1  > )(θf  / )](exp[ θKh , set SK+1 = SK ∪  {θ}, ensure that all values for θ in SK+1 

are arranged in increasing order, increment K, and go back to (1).  Otherwise, set θA 
= θ, and continue. 

(4) Sample W2 from a uniform (0, 1) distribution. 

(5) If W2 >












)]}(exp[),(min{)ˆ(

)]}ˆ(exp[),ˆ(min{)(
,1min

AKACUR

CURKCURA

hff

hff

θθθ
θθθ

, then use CURθ̂  when applying 

the Gibbs sampler to the next full conditional distribution.  Otherwise, use θA instead.  

When making use of adaptive rejection Metropolis sampling within the Gibbs sampler 
here, for each parameter SK = {θi; i = 0, 1, …, K + 1} initially comprised sixθi values 
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based on the 5th, 30th, 45th, 55th, 70th, and 95th percentiles of hK(θ) from the previous Gibbs 
iteration. This adaptive rejection Metropolis sampling scheme is applied immediately 
following each time a full conditional distribution is sampled via the Gibbs sampler. 

 Once the parameter estimates have been obtained, it is important to determine 
whether or not there are any outliers in the data. Pregibon (1981) was the first to study 
this in the case of logistic regression with fixed effects only. Analogous to these ideas, in 
an empirical Bayes approach to logistic regression parameter estimation, Farrell et al 
(1994) estimated the sampling variance of the estimated random effects as the difference 
between the prior and posterior variances. This allowed the standardization of these 
estimated random effects and the use of the normal probability plots for the detection of 
outliers. We adapt this method to the hierarchical Bayes model described here in order to 
identify outlying hospitals in the data of Simons et al. (1997). 

 

4. Statistical inference for the study of variations in choice between 
hospitals 

Simons et al (1997) examined variation in the surgical treatment of rectal cancer 
for a large, well-defined patient population and specifically tried to determine if 
differences exist based on hospital type and surgical caseload. The database of the 
University of Southern California Cancer Surveillance Program (CSP), a population-
based cancer registry in Los Angeles County was used to retrieve information collected 
on all patients who underwent definitive surgery for rectal cancer in Los Angeles County 
during the five-year period from 1988 to 1992. Surgical procedures were classified as 
either sphincter sparing procedures (SSP) or abdominoperineal resection (APR).   
Information such as patient age, gender, date of surgery, type of surgery, tumor stage, 
hospital type, status at last follow-up (dead or alive), and date of last follow-up was 
collected. From the database, hospitals could be classified into 7 categories following 
established guidelines of the American College of Surgeons (ACOS) Commission on 
Cancer. The categories were comprehensive cancer centers, teaching hospitals, health 
maintenance organizations, hospitals with ACOS-approved cancer programs, ACOS-
approved hospitals, hospitals not approved by ACOS, and veteran’s administration 
hospitals.  Simons et al (1997) assigned each hospital to a unique subgroup based on the 
predominant characteristics of the hospital.  In order to assess the role of caseload volume 
in the study, they classified hospitals according to whether the number of rectal surgery 
cases during the five-year period was 25 or less (that is, an average of 5 or fewer cases 
per year) versus greater than 25, a number initially chosen arbitrarily by Simons et al 
(1997) because of a break point seen in the distribution of data. 

Simons et al (1997) reported results of various comparisons of the above variables 

using Kruskal-Wallis 2χ  tests and a multiple comparison test.  They also used Kaplan-
Meier plots and the log-rank test to compare survival differences between the various 
hospital types. They concluded that variability exists in the choice of procedure for rectal 
cancer even within the Los Angeles County region. In particular, hospital type and 
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caseload experience seem to have a significant effect on the choice of surgical procedure 
and on survival. 

Here we model hospitals as random effects and use a hierarchical Bayes model to 
study this variability.  The covariates selected for ijx  were chosen by applying a stepwise 

logistic regression procedure to the data set. Because of the importance attached to 
controlling for age and to hospital type in the original study, these variables were 
included in the model regardless of their level of significance. Random effects were not 
included in the model during this selection procedure.  The resulting covariates are 
summarized in Table 1.  Six indicator variables, labeled HOSTYPE2 through HOSTYPE7 
are included in order to acknowledge the seven different hospital categories given above.  
Table 2 provides various summary statistics for the different types of hospitals included 
in the study, while Table 3 summarizes the association of the outcome variable with type 
of hospital and stage of disease (dichotomized into local versus regional).  

Models (1) and (2) were fit to the University of Southern California Cancer 
Surveillance Program (CSP) database using the above covariates.  In fitting Model (2) the 
procedure employed by Gilks, Best, and Tan (1995) was used.  Specifically, the Gibbs 
sampler was run for 15000 iterations twice, each with a different set of starting values for 
the parameter estimates. The method of Gelman and Rubin (1992) was used to assess 
convergence of the Gibbs sampler.  To ensure proper convergence only the last 3000 
iterations of each of the two runs were used to construct posterior distributions.  
Specifically, the results over these two sets of 3000 iterations were combined in order to 
approximate these distributions. 

Table 4 reports the results of fitting Model (1), the usual fixed effects logistic 
regression analysis ignoring hospital-to-hospital variation and Table 5 reports the results 
where hospitals are treated as random effects. As can be seen, the fixed effect variables 
that are statistically significant in the first logistic regression such as caseload, sex, stage 
of the cancer, and HOSTYPE5 (ACOS-approved or not) remain significant when hospital 
is considered as a random effect. However, the level of significance is reduced and the 
confidence intervals are wider. 

Figure 1 shows the results of the regression diagnostics and the normal 
probability plots for the standardized random effects for each hospital type. There are 
only 3 or 4 hospitals each of the comprehensive cancer centers, teaching hospitals, and 
veteran’s administration hospitals which makes it difficult to detect departures from 
normality. Standardized random effects for the health maintenance organizations, the 
hospitals with ACOS-approved Cancer Programs, and the hospitals not approved by 
ACOS do not exhibit departures from normality, but the plot of the effects for the ACOS-
approved hospitals exhibits several interesting features. First, the hypothesis of normality 
for the random effects can be rejected at the 10% level and one hospital (with 
standardized random effect = 3.2) is a significant outlier. Moreover, the standardized 
random effects do not cluster around zero but their average is equal to 0.45. This is 
exhibited in Figure 2. 
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After identifying the outlier, we verified that it did not account for all of the 
statistically significant difference between ACOS-approved hospitals and those of other 
types by eliminating it from the sample and  redoing the analysis. Very little change in the 
estimators was observed when this was done. Omitting this hospital only raised the P-
value slightly. This supports our conclusion that the ACOS-approved hospitals are 
different from the others and that within this hospital type there is an interesting outlier. 

In order to further understand the nature of the intrinsic difference between the 

outlier and the remaining ACOS-approved hospitals, one and two sample t-tests and 2χ  
tests were performed. The outlier had a significantly different caseload (lower) (P-value = 
0.0000) age (lower) (P-value = 0.056), but the most significant difference was in the 
outcome variable where all patients had received sphincter sparing in the outlier hospital 
versus a proportion of 0.6269 among the other ACOS-approved hospitals.  In order to 
rule out the possibility that the cancer was more localized (versus non-localized) in this 
hospital, a  2x2 Fisher exact test was performed using a collapsed version of the data in 
Table 6.  A P-value of 0.18 was obtained; we can therefore conclude that the choice of 
sphincter-sparing surgery in the outlier hospital does not seem to be due to differences in 
rates of localized versus non-localized cancers. 

 

5. Discussion 

The hierarchical Bayes approach to logistic regression with random effects has 
met with success in analyzing the data from the variations in surgical procedures by 
hospital study originally considered by Simons et al (1997). It is an extremely flexible 
method that easily allows multilevel analysis. In addition, the regression diagnostics using 
standardized versions of the posterior estimates of the random effects can be used to 
identify outliers as well as different trends in the data. 
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Table 1. 
List of variables included in the analysis. 

 
HOSPITAL RELATED COVARIATES (based on hospital of jth patient) 

   
AVGCSLD =  Quantitative variable Average Annual Number of 

Surgical Cases for Cancer of the 
Rectum 

  

  

   
Indicator Variables for Type of 
Hospital:  

HOSTYPE2 = 1 if Teaching Hospital 

(Baseline: Comprehensive  HOSTYPE3 =   1 if Health Maintenance Organization 
Cancer Center) HOSTYPE4 =  1 if hospital with ACOS* approved cancer 

program 
 HOSTYPE5 = 1 if hospital approved by ACOS* 
 HOSTYPE6 = 1 if hospital not approved by ACOS* 
 HOSTYPE7 = 1 if Veteran’s Administration Hospital 
  0 otherwise 

 
PATIENT RELATED COVARIATES (for jth patient at ith hospital) 

   
Gender: SEX = 1 if Male, 0 if Female 

   
Age: AGE = Quantitative variable 

   
Indicator Variables for Stage of 
Rectal Cancer: 
(Baseline: Localized Disease) 

STAGE2 = 1 if regional disease – direct extension only 

 STAGE3 = 1 if regional disease – involved lymph nodes only 
 STAGE4 = 1 if regional disease with both direct extension 

and involved lymph nodes 
  0 otherwise 

 
DEPENDENT/OUTCOME VARIABLE (for jth patient at ith hospital) 

   

Type of Surgery 
Yij = 1 if SSP  

0 if APR (requiring colostomy) 

 
* American College of Surgeons (ACOS) 

 



Les Cahiers du GERAD G-2002-22 12 

 

 
Table 2. 
Summary statistics for the different types of hospitals. 
 
 
 
 
 
Type of Hospital 

 
 
 

Number of 
Hospitals 

 
Total 

Number 
of 

Patients 

Annual Number 
of Surgeries for 
Rectal Cancer 
(Median  & 

Range) 

 
Percent of 
Patients 
that are 
Male 

 
 
 

Median Age 
(Range) 

Percent of  
Patients with 

Localized  
Disease 

Comp CC 3 71 6.2 (1.2-6.8) 41% 62 (27-93) 51% 
Teaching 3 65 4.2 (1.4-7.4) 49% 57 (20-80) 35% 
ACOS-CP 35 1029 6.2 (0.6-24.0) 53% 69 (21-102) 54% 
HMO 9 301 6.8 (0.4-11.0) 63% 66 (26-93) 52% 
ACOS-App 15 139 1.8 (0.2-4.0) 50% 72 (19-93) 55% 
NonACOS-App 56 341 0.8 (0.2-5.0) 53% 70 (29-95) 51% 
Veteran’s 4 60 3.4 (0.4-4.8) 98% 66 (37-88) 40% 
Total 125 2006 2.0 (0.2-24.0) 55% 68 (19-102) 52% 
 
 
Table 3. 
Patients undergoing sphincter-sparing surgical procedure (SSP) by stage of disease and hospital type, number of cases, and 
patient demographic characteristics.(*) 
 
 Localized Disease Regional Disease 
 No. of Patients % SSP  No. of Patients % SSP  
TYPE OF HOSPITAL     
Comp CC 36 61%  35 34%  
Teaching 23 52%  42 43%  
ACOS-CP 560 67%  469 43%  
HMO 156 72%  145 41%  
ACOS-approved 76 78%  63 44%  
Non ACOS-approved 173 61%  168 42%  
Veteran’s 24 58%  36 39%  
CASELOAD     
≤ 5 Cases per Year 419 63% 404 42% 
> 5 Cases per Year 629 69% 554 43% 
GENDER     
Male 555 64% 555 40% 
Female 493 70% 403 45% 
AGE     
67 Years orLess 518 67% 578 42% 
More Than 67 Years 530 67% 380 42% 
     
Total 1048 67%  958 42%  
 
* unadjusted percents (calculated as number of patients undergoing SSP divided by the total number of patients) 
 

 



Les Cahiers du GERAD G-2002-22 13 

 

 
Table 4. 
Estimates of fixed effects based on Model (1). 

 
Fixed Effect Estimate Std Err Est / Std Err 95%  Conf  Int 
CONSTANT 
AVGCSLD 

SEX 
AGE 

STAGE2 
STAGE3 
STAGE4 

HOSTYPE2 
HOSTYPE3 
HOSTYPE4 
HOSTYPE5 
HOSTYPE6 
HOSTYPE7 

-0.1505 
0.0499 
-0.2381 
0.0057 
-0.9647 
-0.8021 
-1.1091 
0.1491 
0.3096 
0.1984 
0.7505 
0.3338 
0.2764 

0.3544 
0.0113 
0.0960 
0.0038 
0.1247 
0.1715 
0.1220 
0.3567 
0.2758 
0.2576 
0.3102 
0.2756 
0.3688 

-0.42 
4.44 
-2.48 
1.49 
-7.74 
-4.68 
-9.09 
0.42 
1.12 
0.77 
2.42 
1.21 
0.75 

(-0.8451, 0.5441) 
(0.0279, 0.0720) 

(-0.4264, -0.0499) 
(-0.0018, 0.0132) 
(-1.2091, -0.7203) 
(-1.1382, -0.4660) 
(-1.3482, -0.8700) 
(-0.5500, 0.8482) 
(-0.2310, 0.8502) 
(-0.3065, 0.7033) 
(0.1425, 1.3585) 
(-0.2064, 0.8740) 
(-0.4465, 0.9993) 

 
 

Table 5. 
Estimates of fixed effects based on Model (2). 

 
Fixed Effect Estimate Std Err Est / Std Err 95%  Conf  Int WidM1 / WidM2 
CONSTANT 
AVGCSLD 

SEX 
AGE 

STAGE2 
STAGE3 
STAGE4 

HOSTYPE2 
HOSTYPE3 
HOSTYPE4 
HOSTYPE5 
HOSTYPE6 
HOSTYPE7 

-0.1509 
0.0544 
-0.2414 
0.0057 
-0.9660 
-0.8033 
-1.1106 
0.1508 
0.3088 
0.1999 
0.7508 
0.3321 
0.2775 

0.3913 
0.0135 
0.1053 
0.0042 
0.1367 
0.1857 
0.1316 
0.3842 
0.3007 
0.2787 
0.3368 
0.2992 
0.4009 

-0.39 
4.03 
-2.29 
1.37 
-7.07 
-4.32 
-8.44 
0.39 
1.03 
0.72 
2.23 
1.11 
0.69 

(-0.9821, 0.6408) 
(0.0252, 0.0769) 

(-0.4165, -0.0354) 
(-0.0027, 0.0131) 
(-1.2586, -0.7051) 
(-1.2257, -0.4173) 
(-1.3274, -0.7931) 
(-0.6143, 0.8678) 
(-0.3003, 0.9612) 
(-0.3776, 0.7835) 
(0.0834, 1.5379) 
(-0.2798, 0.9737) 
(-0.4930, 1.0208) 

0.8560 
0.8529 
0.9878 
0.9507 
0.8832 
0.8316 
0.8950 
0.9434 
0.8571 
0.8697 
0.8360 
0.8618 
0.9551 

 
 

Table 6. 
Number of cases at each stage in all ACOS-approved hospitals and the outlying ACOS-approved 
hospital. 

 
 

Stage of Disease 
Cases in 

ACOS-Approved 
Hospitals 

Cases in Outlier 
of ACOS-Approved 

Hospitals 
Localized 
Regional (Directed Extension Only) 
Regional (Lymph Nodes Only) 
Regional (Directed Extension/Lymph Nodes) 

76 
28 
12 
23 

7 
1 
1 
0 
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Figure 1.  
Normal probability plots of standardized random effects by hospital type. 
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Figure 2. 
Simultaneous dotplots of standardized random effects by hospital type. 
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