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Abstract

This paper examines the convergence properties of two well-known heuristics: vari-
able neighborhood search (VNS) and random multistart local search (MLS). Both
methods are shown to be globally convergent under general conditions. A multistart
variable neighborhood search is introduced as a hybrid combination of VNS and MLS.
The finite time performance of the three heuristics is compared on a well-known con-
tinuous location problem, the multisource Weber problem. This study also attempts
to explain why the structured approach of VNS obtains superior results to a multistart
local search.

Keywords: Variable neighborhood search, Multistart local search, Convergence,
Multisource Weber problem

Résumé

On étudie les propriétés de deux heuristiques bien connues : la recherche à voisinage
variable (RVV) et la recherche locale itérée (RLI). On montre que les deux méthodes
sont globalement convergentes sous des hypothèses très générales. Une méthode de
recherche à voisinage variable itérée est introduite, comme hybride de RVV et RLI.
On compare la performance des trois heuristiques en temps fini pour un problème de
localisation bien connu : le problème de Weber multisources. Cette étude s’efforce
d’expliquer pourquoi l’approche structurée de RVV donne de meilleurs résultats que
RLI.

Mots-clés : Recherche à Voisinage Variable, Recherche Locale Itérée, Convergence,
Problème de Weber Multisources.
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1 Introduction

Suppose we have some combinatorial or global optimization problem P that is formulated
as a minimization of a function f on a solution space S that is either a finite set or bounded
region. The idea of variable neighborhood search (VNS) is to define a set of neighborhood
structures Nk, k = 1, . . . , kmax, that can be used in a systematic way to conduct a search
through the solution space. Whereas in local search a single neighborhood is typically
defined (kmax = 1), the VNS expands the search over an increasing radius to escape a
“local optimum trap”.

The VNS metaheuristic is well-established in the literature. For an overview of the
method and numerous applications, the reader is referred to [12], [6], [7]. Despite its
popularity, very little effort has been directed towards a theoretical understanding of the
method. In this paper we examine a general framework for global convergence of VNS.
Some general theory on convergence of metaheuristics exists (e.g., see [10], [9] and [13]);
however, we employ a different approach that is based on a concept of “entrapment”
probabilities. Through the analysis, the superiority of VNS to random multistart local
search (MLS) is also argued. A computational study comparing the finite-time performance
of VNS, MLS and a hybrid of the two methods on the continuous multisource Weber
problem is given to support our analysis. This study also introduces and examines the
concept of entrapment probabilities in different neighborhoods of the incumbent solution,
thus presenting a new statistical methodology for investigating the topology of the solution
space.

2 Review of Basic VNS

To induce a set of neighborhoods Nk on the solution space S, we use a distance function ρ
that specifies the distance between any two solutions, x1, x2 ∈ S. This may be done for
example by comparing the attributes of the two solutions, and setting the distance equal
to the number of attributes where x1 and x2 differ; that is, a Hamming distance is defined
as

ρ(x1, x2) = |x1∆x2| = |(x1 \ x2) ∪ (x2 \ x1)|.
It is readily shown that ρ is a metric, and (S, ρ) a metric space.

The neighborhood Nk(x) denotes the set of solutions in the kth neighborhood of x, and
using the metric ρ, is defined as:

Nk(x) = {y ∈ S | ρ(x, y) = k}.

With this structure applied on the solution space, the basic steps of the VNS metaheuristic
are given as follows:
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Initialization. Select the set of neighborhood structuresNk, k = 1, . . . , kmax,
that will be used in the search; find an initial solution x; choose a stopping
condition;

Repeat the following sequence until the stopping condition is met:
(1) Set k ← 1;
(2) Repeat the following steps until k = kmax:

(a) Shaking. Generate a point y at random from the kth neighbor-
hood of x (y ∈ Nk(x));
(b) Local search. Apply some local search method with y as initial
solution, to obtain a local optimum given by y′;
(c) Move or not. If this local optimum is better than the incum-
bent, move there (x← y′), and continue the search with N1 (k ← 1);
otherwise, set k ← k + 1.

The initial solution is usually obtained in VNS by randomly selecting a point in S and
descending to a local optimum x using the specified local search. In multistart local search
(MLS), a sequence of local optima is obtained by restarting the local search from randomly-
selected points in S. That is, MLS uses a totally randomized restart mechanism to move
to different subregions of S, while VNS uses an anchor point (the incumbent solution) and
chooses random points at systematically-varying distances from the anchor point. The
parameter kmax is typically set as a function of the problem size. For example, in the
discrete p-median problem, where a given number (p) of facilities is to be located at the
nodes of a network in order to minimize a sum of transportation costs, we may define the
distance between two solutions x1 and x2 simply as the number of facility locations that
differ from one solution to the other. In this case, we could set kmax = p (or a fraction of
p). Typically, the neighborhood structure is defined in such a way that when k increases
from 1 to kmax, the size of the neighborhood Nk (or number of points in Nk) increases
at an exponential rate. The more-structured approach of VNS has distinct advantages, as
shall be seen.

For comparison purposes, we assume that the MLS and VNS utilize identical local
search procedures. However, the local search neighborhood may be defined in any manner
and independently of the neighborhood structure imposed on the shaking operation in
VNS. This allows a degree of flexibility in the design of both heuristics. In both cases, the
best solution is retained after reaching a stopping condition, such as a limit on execution
time.

3 Global Convergence Properties

Since the two methods we are investigating, VNS and MLS, use a local search, it is useful
to consider the subset L of local optima in S obtained by the local search. More precisely,
if L denotes the local search operator, then L(x) = x∗ is a local solution obtained from
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a series of descent moves using the neighborhood prescribed by the local search. It is
assumed that a best-improvement strategy is in effect, and if there are tied solutions in the
neighborhood of an intermediate point, any one of the ties is chosen with equal probability;
in this latter case the mapping L(x) may be one-to-many. It follows by definition that x∗

is a stationary point of the mapping L, i.e., L(x∗) = x∗.
The set of local solutions may be obtained as:

L = {L(x) | x ∈ S}.

In combinatorial optimization, S, and hence, L may be assumed to contain a finite number
of solution points, whereas in continuous space, S, and as a result, L may be nondenu-
merable. Therefore, we take the objective function f that is being minimized, and now
consider the set:

f(L) = {f(x) | x ∈ L}.
Setting Lr = {x ∈ L | f(x) = fr}, we further assume that L may be divided into a finite
number of mutually exclusive subsets, L1, . . . , LN (

⋃N
r=1 Lr = L), such that all the local

optima in Lr have the same objective function value fr, and also order the subsets in
decreasing quality of solution so that:

f1 < f2 < · · · < fN ,

where the global minimum is found in L1.
VNS and MLS are now both conceptualized as generating a finite sequence of incumbent

solutions, denoted by xq, q = 1, . . . , N ′, where N ′ ≤ N . The sequence is monotonic, in the
sense that the incumbent solution changes only when an improved local solution is found:

f(x1) > f(x2) > · · · > f(xN ′
).

In MLS, a complete iteration occurs from the generation of one local optimum to the
next. In VNS, an iteration occurs from one improvement (move) to the next or when
the distance k varies through the complete range from 1 to kmax, whichever comes first.
Observe in both methods that the incumbent solution may remain stationary for several
successive iterations if no improvement is found.

Property 1 Let execution time t→∞. The resulting finite trajectory {xq; q = 1, 2 . . . , N ′}
generated by either MLS or VNS follows a Markov process.

Proof. In MLS the starting point at the beginning of each iteration is chosen at random
in the solution space S. In VNS the starting points are chosen at random from a prede-
fined sequence of neighborhoods centered at xq (see the shaking operation). It follows in
both cases that the transition probabilities to the subsets Lr are independent of the prior
trajectory of states leading to the current state xq.
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In the case of MLS, the local search operator L transports the initial point y through a
sequence of neighborhood descents (always choosing the best point in the local neighbor-
hood of the current solution) to some local solution y′. Thus, we may define an “entrap-
ment” zone for each subset Lj as follows:

Aj = {x ∈ S | L(x) ∈ Lj}, j = 1, . . . , N.

(If L(x) is one-to-many, read L(x) ∈ Lj to mean one or more of the points from the
mapping belong to Lj .) It is clear that Aj (Lj ⊆ Aj , ∀j), has a non-zero volume in S
(under mild assumption, e.g. that f is Lipscitz or Hölder). Divide Aj into two mutually
exclusive regions, A′

j and A′′
j , where L is one-to-one for all points in A′

j , and one-to-many
for all points in A′′

j . Then the probability that any iteration of MLS attains a local solution
belonging to Lj is given by

γj = P{y ∈ A′
j}+ P{y ∈ A′′

j }P{L(y) ∈ Lj | y ∈ A′′
j }.

Loosely-speaking, we see that γj is proportional to the size of the entrapment zone Aj .
Recalling that S is a bounded region, it follows that γj > 0, j = 1, . . . , N ; furthermore,∑N

j=1 γj = 1.

Let Q1 = the number of iterations performed by MLS until a global solution is reached.
It follows that Q1 is a geometric random variable with parameter γ1. Thus, the expected
number of iterations required to obtain the global solution is E[Q1] = 1/γ1. We may
similarly consider the number of iterations required to find a solution of value fr or better.
This is again given by a geometric random variable Qr with parameter

θr =
r∑

i=1

γi.

The expected value of Qr, E[Qr] = 1
θr

.

The probability of obtaining a better solution in the subsequent iteration will be gen-
erally referred to as an “entrapment” probability. For MLS, and incumbent solution in
Lr+1, this probability is given by θr.

Property 2 The multistart local search heuristic (MLS) is globally convergent.

Proof. Since Q1 is a geometric random variable with parameter γ1 > 0, the probability
that the global solution is obtained in a finite number of iterations is equal to one.

As seen above, the probability of obtaining a local solution y′ ∈ Lr in any iteration of
MLS depends on the volume of the entrapment zone Ar (or the number of points in Ar),
since any point in S is equally-likely to be chosen as the starting point of the iteration.
Since the entrapment zone A1 for the global solution tends to be an exponentially small
proportion of S as the problem size increases, the expected number of iterations E[Q1]
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tends to increase exponentially. Thus, although the procedure is globally convergent, the
topology of the solution space implies an exponentially increasing time will be required to
find a global solution. In practical terms, we must therefore concern ourselves with the
finite time performance of the heuristic.

Now consider the set of neighborhood structures Nk, k = 1, . . . , kmax, used in the basic
VNS procedure. Let

N (x) =
kmax⋃

k=1

Nk(x)

denote the total neighborhood of any point x ∈ S.

Definition 1 N is said to span the solution space if N (x) = S \ {x}, ∀x ∈ S.

Note that this definition signifies that

ρ(x, y) ≤ kmax,∀x, y ∈ S.

Given that N spans the solution space, any point y ∈ S may be reached from an incum-
bent solution x in the shaking operation. This leads to the following rather obvious but
fundamental result.

Property 3 If N spans S, the basic variable neighborhood search heuristic (VNS) is glob-
ally convergent.

Proof. Consider a current incumbent solution x with objective function value fr, r ¿ 1.
Since N spans S, it is clear that a least one neighborhood Nk(x) may be found where
the transition probability to a better solution is greater than zero. Thus, any incumbent
solution x that is not a global optimum must be a transient state. We conclude that the
sequence of incumbents {xq} is absorbed in a finite number of iterations by a global opti-
mum (f(xN ′

) = f1).

Given an incumbent solution x with objective function value fr+1, let σrk = the prob-
ability that a better solution will be obtained from random starting point y ∈ Nk(x); i.e.,
σrk is the entrapment probability associated with Nk(x). Then the probability of obtaining
a better solution in the next iteration of VNS is given by

σr = σr1 +
kmax∑

k=2

σrk

k−1∏

�=1

(1− σr�).

We hypothesize in general that σr 	 θr, the corresponding probability of improvement in
the next iteration of MLS. Suppose as a simple numerical example that S contains 1000
points, of which a total of 10 points are in entrapment zones that lead to an improved
solution. Suppose further that there are 3 neighborhoods used, N1(x),N2(x),N3(x), con-
taining 9, 90 and 900 points, respectively; of the 10 entrapment points, one is found in
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N1(x), two in N2(x), and the remaining seven in N3(x). Then,

σr =
1
9

+
2
90

(1− 1
9
) +

7
900

(1− 1
9
)(1− 2

90
) = 0.1377.

The expected number of equivalent MLS iterations (or local searches) for one iteration of
VNS is obtained by the formula,

E[#LS] = 1× σr1 +
kmax−1∑

k=2

kσrk

k−1∏

�=1

(1− σr�) + kmax

kmax−1∏

�=1

(1− σr�),

for kmax ≥ 3. For our example, this gives

E[#LS] = 1× 1
9

+ 2× 2
90

(1− 1
9
) + 3× (1− 1

9
)(1− 2

90
) = 2.758.

Comparing σr = 0.1377 with θr×E[#LS] = 0.01× 2.758 = 0.02758, we observe a five-fold
increase in the probability of obtaining an improved solution resulting from the distribution
of entrapment points within the “closer” neighborhoods of the incumbent solution.

The hypothesis that σr 	 θr is based on consistent empirical evidence that any local
optimum tends to be located in close proximity to several other local optima in the solution
space (e.g., see [1]). Thus, the probability of finding an improvement in a tight neighbor-
hood of the incumbent solution is significantly larger than the probability of improvement
from a randomly-selected starting point in S. Furthermore, the local search will be much
faster in the tight neighborhood, since relatively few descent moves will be required.

Property 4 The finite time performance of basic VNS is statistically superior to MLS.

An intuitive proof of Property 4 may proceed as follows. In the next iteration of MLS,
the random starting point y will most likely be chosen far away from the incumbent solution
x. Since the furthest possible neighborhood predominates in size relative to the sum of the
remaining neighborhoods, it is most probable that ρ(x, y) is equal or close to the furthest
possible distance (or largest possible kmax). If the probability θr of finding an improved
solution is small, this implies that it is unlikely that y will be one of the required entrapment
points. Thus, we may expect several iterations of MLS before an improved solution is found.
On the other hand, since the set of local solutions (L) tends to be found in a small compact
subset of S that contains x, we expect ρ(x, x′) < largest kmax, for any improved solution x′.
Thus, the corresponding entrapment zones will tend to have dominant intersections with
the closer neighborhoods centered at x. Since these neighborhoods are orders of magnitude
smaller in size than the kmax neighborhood, it follows that the probability of success in
the next iteration of VNS is much higher. Empirical proof of this argument is obtained
by comparing the finite time performance of the two methods: we expect to see a faster
descent to better solutions using VNS. This fact will be demonstrated in the next section
on sample instances of the continuous multisource Weber problem.
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We conclude this section with a further note on convergence of VNS. Let

Sj = ∪j−1
t=1 At

denote the union of entrapment zones that may lead to better solutions than fj ,

ρj = max
x∈Lj

{min
y∈Sj

ρ(x, y)}, j = 1, . . . , N − 1,

and
k∗

max = max
j
{ρj}.

A sufficient condition for global convergence of VNS in combinatorial optimization prob-
lems is that kmax ≥ k∗

max.
This provides a tighter requirement for convergence than the requirement that N span

the solution space (see Property 3). Thus, it is possible to choose smaller values of kmax

for more efficient versions of VNS, while still ensuring global convergence of the method.

4 Multisource Weber Problem

The location-allocation problem in the continuous plane can be formulated as follows ([11]):

min f(U, V, Z) =
p∑

i=1

n∑

j=1

zij · wj · dj(ui, vi)

subject to

p∑

i=1

zij = 1, j = 1, 2, . . . , n,

zij ∈ [0, 1] i = 1, 2, . . . , p; j = 1, 2, . . . , n,

where p facilities must be located to satisfy the demand of n users, (ui, vi) denotes the
unknown location of the ith facility, dj(ui, vi) the Euclidean distance from the ith facility
to the jth user, where the jth user is at given point aj = (aj1, aj2), wj the demand (or
weight) of the jth user, and zij the fraction of this demand which is satisfied from the ith

facility. It is well-known that an optimal solution exists with all zij ∈ {0, 1}; i.e., each user
is satisfied by its nearest facility with ties broken arbitrarily.

4.1 Finite time performance of MLS, VNS, and a hybrid method

Figure 1 gives the results for a problem with n=1060 customers taken from the TSP
library ([14]). In this example we locate p=100 facilities. The MLS procedure uses a rapid
search in a discretized p-median space. The effectiveness of this local search neighborhood
is due to the asymptotic behavior of the discrete p-median and continuous multisource
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Weber problems (e.g., see [8], [2]). We set the parameter kmax = 10 in VNS, and use fast
p-median interchange neighborhoods ([15], [5]) for the shaking operation as explained in
[2]. Note that N does not span the solution space with kmax = 10; so global convergence is
not immediately guaranteed. On the other hand, the finite time performance is expected
to improve for reasons discussed above.
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Figure 1: Comparison of finite time performance for n = 1060 and p=100.

A new method, multistart VNS (MVNS), is also examined. The idea is to combine the
features of the two heuristics. If the VNS appears to get stuck in a large trough, the pro-
cedure restarts the VNS from a new randomly-selected point in S. In our implementation,
the VNS is restarted each time an iteration through neighborhoods N1(x), . . . ,Nkmax(x)
does not find an improvement to solution x.

The stopping criterion for the three methods is based on a maximum execution time,
tmax = 3, 000 seconds, as shown in Figure 1. The steeper initial descent (and larger number
of descent moves) of VNS compared with MLS evidenced in Figure 1 is typical, and clearly
demonstrates the superior performance of VNS. It is interesting to note that MVNS gives
the best results of the three methods. In fact, the incumbent solution obtained by MVNS
in only 1491 seconds and 23 re-starts of VNS is better than the best-known solution in the
literature ([2]). Meanwhile the basic VNS generated many more unsuccessful iterations,
almost 1000, through neighborhoods N1, . . . ,Nkmax .
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Figure 2: Comparison of finite time performance for n = 3038 and p = 100.

Figure 2 shows results for a larger problem ([14]) with n = 3038, p = 100. Here the
basic VNS performs best. This is partly attributed to the fact that each restart in MLS
and MVNS may use substantial CPU time descending from a poor solution.

4.2 Comparison of entrapment probabilities

We now examine the well-known 50-customer problem given in Eilon et al. [4]. In the first
part of the experiment, 10,000 random restarts of Cooper’s alternating (locate/allocate)
heuristic [3], referred to as ALT for short, are performed for a specified value of p. The
resulting local solutions are recorded, and sorted by objective function value. We are then
able to estimate the probabilities associated with the entrapment zones:

γ̂j =
qj

10, 000
, j = 1, . . . , K,

where qj is the recorded number of occurrences of objective function value fj (
∑

qj =
10, 000), and K is a lower bound on N . These point estimates may then be used to
plot a cumulative probability curve as shown in Figure 3 for p = 5, 10, 15. Note that the
horizontal axis measures the percent deviation from the optimal solution,

er =
fr − f∗

f∗ × 100,
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Figure 3: Cumulative probability versus % deviation from the optimal solution for the
50-customer problem.

where the optimal solution f∗ is obtained from [2]. The cumulative probability is calculated
using the formula,

F (er) = θ̂r =
r∑

j=1

γ̂j , r = 1, . . . , K.

Referring to Figure 3, we observe that the cumulative probability curves shift to the
right as p increases. This signifies, as expected, that it is much harder for MLS to find good
quality solutions as problem size increases, due to an exponentially-increasing number of
local solutions. It is interesting to note that of the 10,000 iterations of MLS, the optimal
solution was obtained 690, 34, 1 times for p=5, 10, 15, respectively, and the worst deviation
from the optimal solution was, respectively, 46.74 %, 65.80 %, 70.27 %. In all 272, 3008,
and 3363 different local solutions were obtained, respectively, for p = 5, 10, 15.

In the next part of this experiment, we perform 10,000 iterations of VNS at a pre-
selected local solution (x) found by MLS. The number of successes in each neighborhood
of x (i.e., the number of times a better solution is found from a randomly-chosen point in
each neighborhood) is recorded, and used to estimate the entrapment probabilities (σrk),
and from this, the net entrapment probability (σr) using the formula derived earlier, or
simply as σ̂r = total number of successes / 10,000.

Sample estimates obtained for θr and σr are compared in Table 1. These results support
the earlier claim that on average σr 	 θr. We see in the table that σr is in fact orders of
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magnitude larger than θr when the incumbent solution is “relatively” close in value to the
optimal solution. This empirical evidence is consistent with the superior performance of
VNS observed earlier on two larger problem instances.

jth p = 5 p = 10 p = 15
best mls vns mls vns mls vns

solut. (θj−1) (σj−1) (θj−1) (σj−1) (θj−1) (σj−1)
2 0.0690 0.3364 0.0034 0.2636 0.0001 0.3192
3 0.0875 0.6664 0.0074 0.6112 0.0002 0.3851
4 0.1002 0.7248 0.0092 0.6972 0.0003 0.2291
5 0.1019 0.4632 0.0104 0.0578 0.0005 0.2513
6 0.1504 0.8981 0.0139 0.6776 0.0006 0.2995
7 0.1805 0.5267 0.0201 0.4582 0.0007 0.3310
8 0.1879 0.6060 0.0210 0.5508 0.0008 0.3992
9 0.1903 0.7928 0.0239 0.8784 0.0009 0.4893

10 0.1916 0.9403 0.0241 0.9674 0.0010 0.5226
11 0.1991 0.6584 0.0242 0.3177 0.0012 0.4891
12 0.2068 0.2362 0.0269 0.6912 0.0013 0.5752
13 0.2106 0.7669 0.0273 0.6547 0.0014 0.1420
14 0.2129 0.5777 0.0299 0.5754 0.0016 0.2788
15 0.2189 0.9915 0.0314 0.6441 0.0017 0.6283
16 0.2713 0.9228 0.0340 0.3922 0.0019 0.2604
17 0.2861 0.1875 0.0357 0.4832 0.0021 0.5176
18 0.4168 0.8619 0.0388 0.6268 0.0022 0.4238
19 0.4264 0.8870 0.0398 0.8595 0.0023 0.3297
20 0.4280 0.8899 0.0405 0.8056 0.0025 0.4131

Table 1: Entrapment probabilities of MLS and VNS.

5 Conclusions

The global convergence properties of multistart local search (MLS) and variable neighbor-
hood search (VNS) are examined under general conditions. The finite time performance
of VNS is argued to be statistically better than MLS. Two large instances of the continu-
ous location-allocation problem demonstrate this result. In addition, a multistart variable
neighborhood search (MVNS) is introduced that combines the features of MLS and VNS.
The concept of “entrapment” probabilities is introduced to assist in the analysis.

Much theoretical and empirical work remains to be done to improve our understanding
and implementation of these and other metaheuristics.
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