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Abstract

In this paper, we describe H-differentials of some well known NCP functions and
their merit functions. We show how, under appropriate conditions on an H-differential
of f , minimizing a merit function corresponding to f leads to a solution of the non-
linear complementarity problem. Our results give a unified treatment of such results
for C1-functions, semismooth-functions, and for locally Lipschitzian functions. Illus-
trations are given to show the usefulness of our results.

Key Words. H-Differentiability, semismooth-functions, locally Lipschitzian, gener-
alized Jacobian, nonlinear complementarity problem, NCP function, merit function,
regularity conditions.

Résumé

Cet article décrit les H–différentiels associés à des problèmes de complémentarité
non-linéaire et à leurs fonctions mérites. Sous des conditions appropriées sur le
H–différentiel de f , la minimisation de la fonction mérite correspondant à f conduit
à la solution du problème de complémentarité non-linéaire. Ces résultats donnent un
traitement unifié de résultats analogues dans le cas de fonctions C1, “semismooth” et
localement Lipschitz. Nous illustrons l’utilité de ces résultats par plusieurs exemples.
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1 Introduction

The concepts of H-differentiability and H-differential were introduced in [12] to study the
injectivity of nonsmooth functions. It has been shown in [12] that the Fréchet derivative of
a Fréchet differentiable function, the Clarke generalized Jacobian of a locally Lipschitzian
function [2], the Bouligand subdifferential of a semismooth function [19], [21], [23], and the
C-differential of a C-differentiable function [22] are examples of H-differentials. Character-
izations of P0- and P- properties of a function were studied in [26] and some applications
of H-differentiability to optimization, complementarity, and variational inequalities are
treated in [28], [29]. The inverse and implicit function theorems of H-differentiability have
been proven in [11]. It were observed in [10] that H-differentials are related to an approx-
imate Jacobian [14] in that the closure of an H-differentials an approximate Jacobian.

In this article, we consider a nonlinear complementarity problem NCP(f) corresponding
to an H-differentiable function f : Rn → Rn: Find x̄ ∈ Rn such that

x̄ ≥ 0 , f(x̄) ≥ 0 and 〈f(x̄), x̄〉 = 0.

By considering an NCP function Φ : Rn → Rn associated with NCP(f) so that

Φ(x̄) = 0⇔ x̄ solves NCP(f),

and the corresponding merit function

Ψ(x) :=
n
∑

i=1

Φi(x). (1)

In this paper, we describe H-differentials of some well known NCP functions and their
merit functions. Also, we show how, under appropriate P0(P, regularity), positive definite-
conditions on an H-differential of f , finding local/global minimum of Ψ (or a ‘stationary
point’ of Ψ) leads to a solution of the given nonlinear complementarity problem. Our results
unify/extend various similar results proved in the literature for C1, locally Lipschitzian,
and semismooth functions [4], [5], [6], [13], [15], [16], [18], [25], [30], [31], [32].

2 Preliminaries

Throughout this paper, we regard vectors in Rn as column vectors. We denote the inner-
product between two vectors x and y in Rn by either xT y or 〈x, y〉. Vector inequalities
are interpreted componentwise. For a matrix A, Ai denotes the ith row of A. For a
differentiable function f : Rn → Rm, ∇f(x̄) denotes the Jacobian matrix of f at x̄.

Definition 1 A function φ : R2 → R is called an NCP function if

φ(a, b) = 0⇔ ab = 0, a ≥ 0, b ≥ 0.
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For the problem NCP(f), we define

Φ(x) =

















φ(x1, f1(x))
...

φ(xi, fi(x))
...

φ(xn, fn(x))

















(2)

and, call Φ(x) an NCP function for NCP(f).

We need the following definitions from [3], [20].

Definition 2 A matrix A ∈ Rn×n is called

(a) P+
0
(P+)-matrix if

∀x ∈ Rn
+, x 6= 0, there exists i such that xi 6= 0 and xi (Ax)i ≥ 0 (> 0).

(b) semimonotone (E0) [strictly semimonotone (E)]-matrix if

∀x ∈ Rn
+, x 6= 0, there exists i such that xi (Ax)i ≥ 0 [> 0].

Definition 3 For a function f : Rn → Rn, we say that f is a

(i) monotone if
〈f(x)− f(y), x− y〉 ≥ 0 for all x, y ∈ Rn.

(ii) P0(P)-function if, for any x 6= y in Rn,

max
{i:xi 6=yi}

(x− y)i[f(x)− f(y)]i ≥ 0 (> 0). (3)

A matrix A ∈ Rn×n is said to be a P0(P)-matrix if the function f(x) = Ax is a P0(P)-
function or equivalently, every principle minor of A is nonnegative (respectively, positive).

We note that every monotone (strictly monotone) function is a P0(P)-function.

The following result is from [20] and [26].

Theorem 1 Under each the following conditions, f : Rn → Rn is a P0(P)-function.

(a) f is Fréchet differentiable on Rn and for every x ∈ Rn, the Jacobian matrix ∇f(x)
is a P0(P)-matrix.

(b) f is locally Lipschitzian on Rn and for every x ∈ Rn, the generalized Jacobian ∂f(x)
consists of P0(P)-matrices.

(c) f is semismooth on Rn (in particular, piecewise affine or piecewise smooth) and for
every x ∈ Rn, the Bouligand subdifferential ∂Bf(x) consists of P0(P)-matrices.
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(d) f is H-differentiable on Rn and for every x ∈ Rn, an H-differential Tf (x) consists
of P0(P)-matrices.

We now recall the following definition and examples from Gowda and Ravindran [12].

Definition 4 Given a function F : Ω ⊆ Rn → Rm where Ω is an open set in Rn and
x∗ ∈ Ω, we say that a nonempty subset T (x∗) (also denoted by TF (x

∗)) of Rm×n is an
H-differential of F at x∗ if for every sequence {xk} ⊆ Ω converging to x∗, there exist a
subsequence {xkj} and a matrix A ∈ T (x∗) such that

F (xkj )− F (x∗)−A(xkj − x∗) = o(||xkj − x∗||). (4)

We say that F is H-differentiable at x∗ if F has an H-differential at x∗.

Remarks

As noted in [12], any superset of anH-differential is anH-differential, H-differentiability
implies continuity, and H-differentials enjoy simple sum, product and chain rules.

As noted in [29], it is easily seen that if a function F : Ω ⊆ Rn → Rm is H-differentiable
at a point x̄, then there exist a constant L > 0 and a neighbourhood B(x̄, δ) of x̄ with

||F (x)− F (x̄)|| ≤ L||x− x̄||, ∀x ∈ B(x̄, δ). (5)

Conversely, if condition (5) holds, then T (x̄) := Rm×n can be taken as an H-differential
of F at x̄. We thus have, in (5), an alternate description of H-differentiability. But, as
we see in the sequel, it is the identification of an appropriate H-differential that becomes
important and relevant.
Clearly any function locally Lipschitzian at x̄ will satisfy (5). For real valued functions,
condition (5) is known as the ‘calmness’ of F at x̄. This concept has been well studied in
the literature of nonsmooth analysis (see [24], Chapter 8).

Example 1 Let F : Rn → Rm be Fréchet differentiable at x∗ ∈ Rn with Fréchet derivative
matrix (= Jacobian matrix derivative) {∇F (x∗)} such that

F (x)− F (x∗)−∇F (x∗)(x− x∗) = o(||x− x∗||).
Then F is H-differentiable with {∇F (x∗)} as an H-differential.

Example 2 Let F : Ω ⊆ Rn → Rm be locally Lipschitzian at each point of an open set Ω.
For x∗ ∈ Ω, define the Bouligand subdifferential of F at x∗ by

∂BF (x∗) = {lim∇F (xk) : xk → x∗, xk ∈ ΩF }
where ΩF is the set of all points in Ω where F is Fréchet differentiable. Then, the (Clarke)
generalized Jacobian [2]

∂F (x∗) = co∂BF (x∗)

is an H-differential of F at x∗.
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Example 3 Consider a locally Lipschitzian function F : Ω ⊆ Rn → Rm that is semismooth
at x∗ ∈ Ω [19], [21], [23]. This means for any sequence xk → x∗, and for Vk ∈ ∂F (xk),

F (xk)− F (x∗)− Vk(x
k − x∗) = o(||xk − x∗||).

Then the Bouligand subdifferential

∂BF (x∗) = {lim∇F (xk) : xk → x∗, xk ∈ ΩF }.

is an H-differential of F at x∗. In particular, this holds if F is piecewise smooth, i.e., there
exist continuously differentiable functions Fj : R

n → Rm such that

F (x) ∈ {F1(x), F2(x), . . . , FJ(x)} ∀x ∈ Rn.

Example 4 Let F : Rn → Rn be C-differentiable [22] in a neighborhood D of x∗. This
means that there is a compact upper semicontinuous multivalued mapping x 7→ T (x) with
x ∈ D and T (x) ⊂ Rn×n satisfying the following condition at any a ∈ D: For V ∈ T (x),

F (x)− F (a)− V (x− a) = o(||x− a||).

Then, F is H-differentiable at x∗ with T (x∗) as an H-differential.

Remark While the Fréchet derivative of a differentiable function, the Clarke generalized
Jacobian of a locally Lipschitzian function [2], the Bouligand differential of a semismooth
function [21], and the C-differential of a C-differentiable function [22] are particular in-
stances of H-differential, the following simple example, is taken from [10], shows that an
H-differentiable function need not be locally Lipschitzian nor directionally differentiable.
Consider on R,

F (x) = x sin(
1

x
) for x 6= 0 and F (0) = 0.

Then F is H-differentiable on R with

T (0) = [−1, 1] and T (c) = {sin(1
c
)− 1

c
cos(

1

c
)} for c 6= 0.

We note that F is not locally Lipschitzian around zero. We also see that F is neither
Fréchet differentiable nor directionally differentiable.

3 The H-differentiability of the merit function

In this section, we consider an NCP function Φ corresponding to NCP(f) and its merit
function Ψ :=

∑n
i=1Φi.
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Theorem 2 Suppose Φ is H-differentiable at x̄ with TΦ(x̄) as an H-differential. Then
Ψ :=

∑n
i=1Φi is H-differentiable at x̄ with an H-differential given by

TΨ(x̄) = {eTB : B ∈ TΦ(x̄)}.

Proof. To describe an H-differential of Ψ, let θ(x) = x1+ · · ·+xn. Then Ψ = θ◦Φ so that
by the chain rule for H-differentiability, we have TΨ(x̄) = (Tθ ◦TΦ)(x̄) as an H-differential
of Ψ at x̄. Since Tθ(x̄) = {eT } where e is the vector of ones in Rn, we have

TΨ(x̄) = {eTB : B ∈ TΦ(x̄)}.

This completes the proof. 2

4 H-differentials of some NCP/merit functions associated
with H-differentiable functions

In this section, we describe the H-differentials of some well known NCP functions and their
merit functions.

Example 5 In [18], Mangasarian and Solodov introduced the so-called implicit Lagrangian
function for solving NCP(f). For α > 1, let

φ(a, b) := a b+
1

2α

[

max2{0, a− αb}+max2{0, b− αa} − a2 − b2
]

.

Then the implicit Lagrangian at x̄ is

Ψ(x̄) :=
n
∑

i=1

Φi(x̄)

where

Φi(x) = φ(xi, fi(x)) := xifi(x) +
1
2α

[

max2{0, xi − αfi(x)}
+max2{0, fi(x)− αxi} − x2i − fi(x)

2
]

.
(6)

Suppose that f is H-differentiable at x̄ with T (x̄) as an H-differential. We claim that
Ψ(x̄) is H-differentiable with an H-differential TΨ(x̄) consisting of all vectors of the form
vTA+ wT with A ∈ T (x̄), v and w are columns vectors with entries defined by

vi = x̄i +
1
α
[−α max{0, x̄i − αfi(x̄)}+max{0, fi(x̄)− αx̄i} − fi(x̄)] ,

wi = fi(x̄) +
1
α
[max{0, x̄i − αfi(x̄)} − x̄i − α max{0, fi(x̄)− αx̄i}] . (7)

First we show that an H-differential of

Φ(x) := x ∗ f(x) + 1
2α

[

max2{0, x− αf(x)}+max2{0, f(x)− αx}
−x2 − f(x)2

] (8)
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is given by

TΦ(x̄) = {B = V A+W : A ∈ T (x̄), V = diag(vi) and W = diag(wi)
where vi, wi satisfy (7)}.

Let g(x) = max{0, x− αf(x)}, h(x) = max{0, f(x)− αx}. For each A ∈ T (x̄), let A′ and
A′′ be matrices such that for i = 1, . . . , n,

A′
i ∈







{ei − αAi} if x̄i − αfi(x̄) > 0
{0, ei − αAi} if x̄i − αfi(x̄) = 0
{0} if x̄i − αfi(x̄) < 0,

(9)

and

A′′
i ∈







{Ai − αei} if fi(x̄)− αx̄i > 0
{0, Ai − αei} if fi(x̄)− αx̄i = 0
{0} if fi(x̄)− αx̄i < 0.

(10)

Then it can be easily verified that Tg(x̄) = {A′|A ∈ T (x̄)} and

Th(x̄) = {A′′|A ∈ T (x̄)} are H-differentials of g and h, respectively. Now simple calcula-
tions show that TΦ(x̄) consists of matrices of the form

B = [diag(x̄)A+ diag(f(x̄))] + 1
2α [2diag(g(x̄))A′ + 2diag(h(x̄))A′′

−2diag(x̄)− 2diag(f(x̄))]
(11)

where A′ and A′′ corresponding A ∈ T (x̄) are defined by (9) and (10), respectively.

Since gi(x) = 0 when xi − αfi(x) ≤ 0, we have

diag(g(x̄))A′ = diag(g(x̄))(I − αA). Similarly, diag(h(x̄))A′′ = diag(h(x̄))(A− αI).

Therefore, (11) becomes

B =
[

diag(x̄) + 1
α
[−αdiag(max{0, x̄− αf(x̄)}) + diag(max{0, f(x̄)− αx̄})

−diag(f(x̄))] A+
[

diag(f(x̄)) + 1
α
[diag(max{0, x̄− αf(x̄)})

−αdiag(max{0, f(x̄)− αx̄})]] = V A+W
(12)

where V and W are diagonal matrices with diagonal entries given by (7). By Theorem 2,
we have

TΨ(x̄) = {eT (V A+W ) = vTA+ wT : A ∈ T (x̄), v and w are vectors in Rn

with components defined by (7)}. (13)

Example 6 The following NCP function is proposed independently by Fukushima [8] and
Auchmuty [1] and its merit function is called the regularized gap function. For α > 0, let
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φ(a, b) := a b+ (1/2α)
[

max2{0, a− αb} − a2
]

.

Then the regularized gap function associated to NCP function at x̄ is

Ψ(x̄) :=
n
∑

i=1

Φi(x̄)

where

Φi(x) = φ(xi, fi(x)) := xifi(x) + (1/2α)
[

max2{0, xi − αfi(x)} − x2i
]

. (14)

In previous example, we describe the H-differential of implicit Lagrangian. A similar
analysis can be carried out for NCP function Φ(x̄) in (14) and its merit function Ψ(x̄) :=
∑n

i=1Φi(x̄).

Ψ(x̄) is H-differentiable with an H-differential TΨ(x̄) consisting of all vectors of the form
vTA+ wT with A ∈ T (x̄), v and w are columns vectors with entries defined by

vi = x̄i +max{0, x̄i − αfi(x̄)}

wi = fi(x̄) + (1/α) [max{0, x̄i − αfi(x̄)} − x̄i] .
(15)

Example 7 The following NCP function was proposed by Solodov [25]

φ(a, b) := amax2{0, b} −max2{0,−b}.

Then the merit function associated to NCP function at x̄ is

Ψ(x̄) :=
n
∑

i=1

Φi(x̄)

where
Φi(x) = φ(xi, fi(x)) := ximax2{0, fi(x)}+max2{0,−fi(x)}. (16)

A straightforward calculation shows that Ψ(x̄) is H-differentiable with an H-differential
TΨ(x̄) consisting of all vectors of the form vTA+wT with A ∈ T (x̄), v and w are columns
vectors with entries defined by

vi = 2x̄imax{0, fi(x)} − 2max{0,−fi(x)}

wi = max2{0, fi(x)}.
(17)
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Example 8 Suppose f : Rn → Rn has an H-differential T (x̄) at x̄ ∈ Rn. Consider the
associated NCP function [31]

φ(a, b) := max{0, a}max3{0, b}+ (1/2)[a+ b−
√

a2 + b2]2.

Then the merit function associated to NCP function at x̄ is

Ψ(x̄) :=

n
∑

i=1

Φi(x̄)

where

Φi(x) = φ(xi, fi(x))

:= max{0, xi} max3{0, fi(x)}+ (1/2)
[

xi + fi(x)−
√

x2i + fi(x)2
]2

.
(18)

Let
J(x̄) = {i : fi(x̄) = 0 = x̄i} and K(x̄) = {i : x̄i > 0, fi(x̄) > 0}.

We can describe the H-differential of Φ in a way similar to the calculation and analysis of
Examples 5-7 in [29]. The H-differential of Φ is given by

TΦ(x̄) = {V A+W : (A, V,W, d) ∈ Γ},

where Γ is the set of all quadruples (A, V,W, d) with A ∈ T (x̄), ||d|| = 1, V = diag(vi) and
W = diag(wi) are diagonal matrices with

vi =























































































[

x̄i + fi(x̄)−
√

x̄2 + fi(x̄)2
]

(

1− fi(x̄)√
x̄2

i+fi(x̄)
2

)

+ 3 x̄i fi(x̄)
2

when i ∈ K(x̄)

[

di +Ai d−
√

di
2 + (Ai d)

2

](

1− Aid√
d2

i+(Aid)2

)

when i ∈ J(x̄) and d2i + (Aid)
2 > 0

[

x̄i + fi(x̄)−
√

x̄2 + fi(x̄)
2

](

1− fi(x̄)√
x̄2

i+fi(x̄)
2

)

when i 6∈ J(x̄) ∪K(x̄)

arbitrary when i ∈ J(x̄) and d2i + (Aid)
2 = 0,

(19)
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wi =























































































[

x̄i + fi(x̄)−
√

x̄2 + fi(x̄)
2

](

1− x̄i√
x̄2

i+fi(x̄)
2

)

+ fi(x̄)
3

when i ∈ K(x̄)

[

di +Ai d−
√

di
2 + (Ai d)

2

](

1− di√
d2

i+(Aid)2

)

when i ∈ J(x̄) and d2i + (Aid)
2 > 0

[

x̄i + fi(x̄)−
√

x̄2 + fi(x̄)
2

](

1− x̄i√
x̄2

i+fi(x̄)
2

)

when i 6∈ J(x̄) ∪K(x̄)

arbitrary when i ∈ J(x̄) and d2i + (Aid)
2 = 0.

By Theorem 2, the H-differential TΨ(x̄) of Ψ(x̄) consists of all vectors of the form
vTA+ wT with A ∈ T (x̄), v and w are columns vectors with entries defined by (19).

5 Minimizing the merit function

For a given H-differentiable function f : Rn → Rn, consider the associated NCP function
Φ and the corresponding merit function Ψ :=

∑n
i=1Φi. It should be recalled that

Ψ(x̄) = 0⇔ Φ(x̄) = 0⇔ x̄ solves NCP(f).

Assume that Ψ is H-differentiable with an H-differential TΨ(x̄) and Φ is nonnegative H-
differentiable with an H-differential TΦ(x̄) is given by

TΦ(x̄) = {V A+W : A ∈ T (x̄), V = diag(vi) and W = diag(wi)} (20)

where Φ, V and W satisfy the following properties:

(i) x̄ solves NCP(f) ⇔ Φ(x̄) = 0.
(ii) For i ∈ {1, . . . , n}, viwi ≥ 0.
(iii) For i ∈ {1, . . . , n}, Φi(x̄) = 0⇔ (vi, wi) = (0, 0).
(iv) For i ∈ {1, . . . , n} with x̄i ≥ 0 and f(x̄i) ≥ 0, we have vi ≥ 0.
(v) If 0 ∈ TΨ(x̄), then Φ(x̄) = 0⇔ v = 0.























(21)

Remarks We note that the NCP function of Example 5 satisfies the properties (i)-(v) in
(21) and is known as unrestricted NCP and its merit function unrestricted implicit La-
grangian function. While the NCP functions in Examples 6-8 are called restricted NCP
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function because they are nonnegative and satisfy properties (i)-(v) in (21) over the non-
negative orthant Rn

+, i.e., for restricted NCP function, the properties in (21) will be

(i) x̄ solves NCP(f) ⇔ Φ(x̄) = 0.
(ii) For i ∈ {1, . . . , n}, viwi ≥ 0 for all x̄i ≥ 0.
(iii) For i ∈ {1, . . . , n}, Φi(x̄) = 0⇔ (vi, wi) = (0, 0) with x̄i ≥ 0.
(iv) For i ∈ {1, . . . , n} with x̄i ≥ 0 and f(x̄i) ≥ 0, we have vi ≥ 0.
(v) If 0 ∈ TΨ(x̄), then Φ(x̄) = 0⇔ v = 0 with x̄i ≥ 0.























(22)

In the following subsections, starting with an H-differentiable function f , we show that
under appropriate conditions, a vector x̄ is a solution of the NCP(f) if and only if zero
belongs TΨ(x̄).

5.1 Minimizing the merit function under P0-conditions

Theorem 3 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).
Suppose Φ is an NCP function of f. Assume that Ψ :=

∑n
i=1Φi is H-differentiable at x̄

with an H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying
properties (iii) and (v) in (21), and viwi > 0 whenever Φi(x̄) 6= 0.

Further suppose that T (x̄) consists of P0-matrices. Then

0 ∈ TΨ(x̄)⇔ Φ(x̄) = 0.

Proof. Suppose Φ(x̄) = 0. Then by property (iii) in (21) and the description of TΨ(x̄), we
have TΨ(x̄) = {0}. Conversely, suppose that 0 ∈ TΨ(x̄), so that for some vTA+wT ∈ TΨ(x̄),

0 = vTA+ wT

yielding AT v + w = 0. Note that for any index i, Φi(x̄) 6= 0⇔ vi 6= 0 (by property (v) in
(21) and viwi > 0 when Φi(x̄) 6= 0) in which case vi(A

T v)i = −viwi < 0 contradicting the
P0-property of A. We conclude that Φ(x̄) = 0. 2

Remarks Theorem 3 is applicable to the following NCP functions:

•Φ(x) = ΦF (x) = x+ f(x)−
√

x2 + f(x)2. (Clarification Example 5 in [29])

•Φ(x) = x+ f(x)−
√

(x− f(x))2 + λxf(x). (Clarification Example 6 in [29])
•Φ(x) = λΦF (x) + (1− λ)x+ f(x)+. (Clarification Example 7 in [29])
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The following are consequences of the above theorems, we state the results for Fischer-
Burmeister function for simplicity. However, it is possible to state a general result for any
NCP function.

Corollary 1 Let f : Rn → Rn be differentiable and Φ(x) be the Fischer-Burmeister func-
tion and Ψ :=

∑n
i=1Φi. If f is P0-function, then x̄ is a local minimizer to Ψ if and only

if x̄ solves NCP(f).

Remarks

When f is C1 (in which case we can let T (x̄) = {∇f(x̄)}), the above result reduces to
Prop. 3.4 in [5]. Also in view of Example 3, if f is locally Lipschitzian with T (x̄) = ∂f(x̄),
the above theorem reduces to a result by Fischer [7]. Moreover, our result extend/generalize
a result obtained by Geiger and Kanzow [9] under monotonicity of a C1 function and by
Jiang [15] under uniform P- property of a directionally differentiable function .

Corollary 2 Let f : Rn → Rn be locally Lipschitzian. Let Φ be the Fischer-Burmeister
function and Ψ :=

∑n
i=1Φi. Further suppose that ∂f(x̄) consists of P0-matrices.

Then
0 ∈ ∂Ψ(x̄)⇔ Ψ(x̄) = 0.

Proof. The proof has been established by Fischer [7]. In fact, by taking Tf (x) = ∂f(x)
in Theorem 3 and noting ∂Ψ(x) ⊆ TΨ(x) for all x, we have the proof. 2

5.2 Minimizing the merit function under P+
0
-conditions

Theorem 4 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).
Suppose Φ is a nonnegative NCP function of f. Assume that Ψ :=

∑n
i=1Φi(x̄) is H-

differentiable at x̄ with an H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying
properties (iii) and (v) in (21), and

for i ∈ {1, . . . , n} with x̄i > 0 and f(x̄i) > 0, we have vi > 0, wi > 0.

Further suppose that x̄ is a strictly feasible point of NCP(f) and T (x̄) consists of P+
0
-

matrices.Then
0 ∈ TΨ(x̄)⇔ Φ(x̄) = 0.

Proof. Suppose 0 ∈ TΨ(x̄). Then v
T A+wT = 0⇒ AT v+w = 0.We claim that Φ(x̄) = 0.

Suppose, if possible, Φ(x̄) 6= 0. Then by property (v) in (21), v 6= 0. Since x̄ is a strictly
feasible point to NCP(f), we have v > 0, w > 0.



Les Cahiers du GERAD G–2002–16 12

Since T (x̄) consists of P+
0
-matrices and A ∈ T (x̄), there exists an index i such that

0 6= Φi, 0 6= vi > 0 and 0 ≤ vi(Av)i. By the fact , viwi > 0, we have 0 ≤ vi(Av)i =
−viwi < 0 which is a contradiction. Hence Φ(x̄) = 0. Conversely, suppose Φ(x̄) = 0. Then
by property (iii) in (21)and the description of TΨ(x̄), we have TΨ(x̄) = {0}. 2

Remarks

• We note that Theorem 4 is applicable to the NCP functions of Examples 7 and 8.

• If we assume the continuous differentiability of f in the above theorem, we get Corollary
3.2 in [25].

A slight modification of the above theorem leads to the following result.

Theorem 5 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).
Suppose Φ is a nonnegative NCP function of f. Assume that Ψ :=

∑n
i=1Φi(x̄) is H-

differentiable at x̄ with an H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying
properties (iii), (iv), and (v) in (21).

Further suppose that x̄ is a feasible point of NCP(f) and T (x̄) consists of P+-matrices.Then

0 ∈ TΨ(x̄)⇔ Φ(x̄) = 0.

Proof. The proof is similar to that of Theorem 4. 2

5.3 Minimizing the merit function under P -conditions

Theorem 6 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).
Suppose Φ is a nonnegative NCP function of f. Assume that Ψ :=

∑n
i=1Φi(x̄) is H-

differentiable at x̄ with an H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying
properties (ii), (iii), and (v) in (21).

Further suppose that T (x̄) consists of P-matrices. Then

0 ∈ TΨ(x̄)⇔ Φ(x̄) = 0.

Proof. To see this, suppose 0 ∈ TΨ(x̄). Then vT A + wT = 0 ⇒ AT v + w = 0. We claim
that Φ(x̄) = 0. Suppose, if possible, Φ(x̄) 6= 0. Then by property (v) in (21), v 6= 0. Since
T (x̄) consists of P-matrices and A ∈ T (x̄), there exists an index i such that vi 6= 0 and
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0 < vi(Av)i. By property (ii) in (21), viwi ≥ 0. But 0 < vi(Av)i = −viwi ≤ 0 which is a
contradiction. Hence Φ(x̄) = 0. Conversely, suppose Φ(x̄) = 0. Then by property (iii) in
(21) and the description of TΨ(x̄), we have TΨ(x̄) = {0}. 2

Remark Theorem 6 is applicable to the NCP functions in Examples 5-8.

5.4 Minimizing the merit function under positive-definite-conditions

Theorem 7 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).
Suppose Φ is a nonnegative NCP function of f. Assume that Ψ :=

∑n
i=1Φi(x̄) is H-

differentiable at x̄ with an H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying
properties (ii), (iii), and (v) in (21).

Further suppose that T (x̄) consists of positive-definite matrices. Then

0 ∈ TΨ(x̄)⇔ Φ(x̄) = 0.

Proof. Suppose Φ(x̄) = 0. Then by property (iii) in (21) and the description of TΨ(x̄), we
have TΨ(x̄) = {0}. Conversely, suppose 0 ∈ TΨ(x̄). Then vT A+ wT = 0⇒ AT v + w = 0.
We claim that Φ(x̄) = 0. Suppose, if possible, Φ(x̄) 6= 0. Then by property (v) in (21),
v 6= 0. Since T (x̄) consists of positive definite matrices and A ∈ T (x̄),

0 < 〈v,Av〉. By property (ii) in (21), 〈v, w〉 ≥ 0. But 0 < 〈v,Av〉 = −〈v, w〉 ≤ 0 which
is a contradiction. Hence Φ(x̄) = 0. 2

Remarks

• We note that Theorem 7 is applicable to the NCP function of Examples 5.

• Since every positive definite matrix is also a P-matrix, the proof of Theorem 7 follows
from Theorem 6. However, we gave a general proof of Theorem 7.

5.5 Minimizing the merit function under strictly semi-monotone (E)-
conditions

Theorem 8 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).
Suppose Φ is a nonnegative NCP function of f. Assume that Ψ :=

∑n
i=1Φi(x̄) is H-

differentiable at x̄ with an H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying
properties (iii), (iv) and (v) in (21).
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Further suppose that x̄ is a feasible point of NCP(f) and T (x̄) consists of E-matrices.Then

0 ∈ TΨ(x̄)⇔ Φ(x̄) = 0.

Proof. Suppose 0 ∈ TΨ(x̄). Then v
T A+wT = 0⇒ AT v+w = 0.We claim that Φ(x̄) = 0.

Suppose, if possible, Φ(x̄) 6= 0. Then by property (v) in (21), v 6= 0. Since x̄ is a feasible
point to NCP(f), by property (iv) in (21), we have v ≥ 0.

Since T (x̄) consists of E-matrices and A ∈ T (x̄), there exists an index i such that
0 < vi(Av)i. By property (ii) in (21), viwi ≥ 0. But 0 < vi(Av)i = −viwi ≤ 0 which is a
contradiction. Hence Φ(x̄) = 0. Conversely, suppose Φ(x̄) = 0. Then by property (iii) in
(21) and the description of TΨ(x̄), we have TΨ(x̄) = {0}. 2

Remark Theorem 8 is applicable to NCP functions of Examples 5-8.

A slight modification of the above theorem leads to the following result.

Theorem 9 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).
Suppose Φ is a nonnegative NCP function of f. Assume that Ψ :=

∑n
i=1Φi(x̄) is H-

differentiable at x̄ with an H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying
properties (iii) and (v) in (21), and

for i ∈ {1, . . . , n} with x̄i > 0 and f(x̄i) > 0, we have vi > 0, wi > .

Further suppose that x̄ is a strictly feasible point of NCP(f) and T (x̄) consists of E0-
matrices.Then

0 ∈ TΨ(x̄)⇔ Φ(x̄) = 0.

Proof. The proof is similar to that of Theorem 8. 2

Remark Theorem 9 is applicable to NCP functions of Examples 7 and 8.

5.6 Minimizing the merit function under regularity (strict regularity)
conditions

We generalize the concept of a regular (strictly regular) point [4] in order to weaken the
hypotheses in the previous Theorems.

For a given H-differentiable function f and x̄ ∈ Rn, we define the following index sets:

P(x̄) := {i : vi > 0}, N (x̄) := {i : vi < 0},
C(x̄) := {i : vi = 0}, R(x̄) := P(x) ∪N (x)
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where vi are the entries of V in (20) (e.g., vi is defined in Examples 5-8).

Definition 5 Consider f , Φ, and Ψ as above. A vector x∗ ∈ Rn is called strictly regular
if, for every nonzero vector z ∈ Rn such that

zC = 0, zP > 0, zN < 0, (23)

there exists a vector s ∈ Rn such that

sP ≥ 0, sN ≤ 0, sC = 0, and (24)

sTAT z > 0 for all A ∈ T (x∗). (25)

Theorem 10 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).
Suppose Φ is a nonnegative NCP function of f. Assume that Ψ :=

∑n
i=1Φi(x̄) is H-

differentiable at x̄ with an H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying
properties (ii), (iii), and (v) in (21).

Then 0 ∈ TΨ(x̄) and x̄ is a strictly regular point if and only if x̄ solves NCP(f).

Proof. Suppose that 0 ∈ TΨ(x̄) and x̄ is a strictly regular point. Then for some vTA+wT ∈
TΨ(x̄),

0 = vTA+ wT ⇒ AT v + w = 0. (26)

We claim that Φ(x̄) = 0. Assume the contrary that x̄ is not a solution of NCP(f). Then
by property (v) in (21), we have v as a nonzero vector satisfying vC = 0, vP > 0, vN < 0.
Since x̄ is a strictly regular point, and viwi ≥ 0 by property (ii) in (21), by taking a vector
s ∈ Rn satisfying (24) and (25), we have

sTAT v > 0 (27)

and
sTw = sTCwC + sTPwP + sTNwN ≥ 0. (28)

Thus we have sT (AT v+w) = sTAT v+ sTw > 0. We reach a contradiction to (26). Hence,
x̄ is a solution of NCP(f).

The ‘if’ part of the theorem follows easily from the definitions. 2

Remark Another proof of Theorem 7 can be obtained by taking s = z in Definition 5 of
a strictly regular point and by using Theorem 10.

Before we state the next theorem, we recall a definition from [27].
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Definition 6 Consider a nonempty set C in Rn×n. We say that a matrix A is a row
representative of C if for each index i = 1, 2, . . . , n, the ith row of A is the ith row of
some matrix C ∈ C. We say that C has the row-P0-property (row-P-property) if every row
representative of C is a P0-matrix (P-matrix). We say that C has the column-P0-property
(column-P-property) if CT = {AT : A ∈ C} has the row-P0-property (row-P-property).

Theorem 11 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).
Suppose Φ is a nonnegative NCP function of f. Assume that Ψ :=

∑n
i=1Φi(x̄) is H-

differentiable at x̄ with an H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying
properties (ii), (iii), and (v) in (21).

Further suppose that T (x̄) has the column-P-property. Then

0 ∈ TΨ(x̄) if and only if x̄ solves NCP(f).

Proof. In view of Theorem 10, it is enough to show x̄ is a strictly regular point. To see
this, let v be a nonzero vector satisfying (23). Since T (x̄) has the column-P-property, by
Theorem 2 in [27], there exists an index j such that vj

[

AT v
]

j
> 0 ∀A ∈ T (x̄). Choose

s ∈ Rn so that sj = vj and si = 0 for all i 6= j. Then sTAT v = vj
[

AT v
]

j
> 0 ∀A ∈ T (x̄).

Hence x̄ is a strictly regular point. 2

As a consequence of the above theorem is the following corollary.

Corollary 3 Let f : Rn → Rn be locally Lipschitzian. Let Φ be a nonnegative NCP
function of f. Assume that Ψ :=

∑n
i=1Φi(x̄). Further suppose that ∂Bf(x̄) has the column-

P0-property. Then
0 ∈ ∂Ψ(x̄)⇔ Ψ(x̄) = 0.

Proof. Note that by Corollary 1 in [29], every matrix in ∂f(x̄) = co ∂Bf(x̄) is a P0-matrix.
Now by Corollary 2, we have the claim.2

Remarks

• Theorem 10 is applicable to the NCP functions of Examples 5-8.

• Corollary 3 might be useful when the function f is piecewise smooth in which case ∂Bf(x̄)
consists of a finite number of matrices.

Concluding Remarks

In this paper, we described the H-differential of the so called restricted and unre-
stricted implicit Lagrangian functions. Also, we considered a nonlinear complementarity



Les Cahiers du GERAD G–2002–16 17

problem corresponding to an H-differentiable function, with an associated NCP function
Φ and a merit function Ψ(x̄) :=

∑n
i=1Φi(x̄) , we described conditions under which every

global/local minimum or a stationary point of Ψ is a solution of NCP(f).

Our results recover/extend various well known results stated for continuously differen-
tiable (locally Lipschitzian, semismooth, C-differentiable) functions.

We note here that similar methodologies under H-differentiability can be carried out for
other merit functions such as Luo-Tseng function [17]. We can consider the NCP function
[17]:

Φ(x) := φ0(x
T f(x)) +

n
∑

i=1

φi(−fi(x),−xi),

where φ0 : R→ [0,∞) and φ1, · · · , φn : R2 → [0,∞) are continuous functions that are zero
on the nonpositive orthant only. By defining the merit function

Ψ(x̄) :=
n
∑

i=1

Φi(x̄) or/and, Ψ(x̄) :==
1

2
||Φ||2.
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