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Abstract

Call and put options embedded in bonds are of American-style, and cannot be
priced in a closed-form. In this paper, we formulate the problem of pricing these
options in a stochastic Dynamic Programming (DP) framework. We let the short-
term risk-free interest rate move as in Vasicek (1977). We approximate the bond value
by a piecewise linear interpolation at each step of the DP procedure, and solve the
DP equation in closed-form. Then, we use the DP formulation to establish the basic
properties of bonds, price their embedded call and put options, and determine their
optimal exercise strategies. Numerical investigations show stability, consistency, and
efficiency.

Résumé

Les options de rachat et de remboursement sont de type américain et, de ce fait,
ne peuvent être évaluées sous forme fermée. On formule cette question d’évaluation
comme un problème de programmation dynamique. On suppose que le sous-jacent, ici
le taux d’intérêt instantané, évolue selon la dynamique de Vasicek (1977). À chaque
étape de la procédure de programmation dynamique, on estime la valeur de l’obligation
par une interpolation linéaire par morceaux et on solutionne l’équation de Bellman sous
forme fermée. Cette méthodologie permet de valoriser les obligations avec clauses op-
tionnelles implicites et d’identifier leurs stratégies optimales d’exercice. On établit
aussi les propriétés théoriques des titres rachetables et remboursables. Une investiga-
tion numérique montre que cette procédure est stable, consistante et efficace.
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1 Introduction

A bond is a contract which pays to its holder a known amount, called the face value, at
a known future date, called the maturity. A bond may also pay periodically to its holder
fixed cash dividends called coupons. Otherwise, it is called a zero-coupon bond. A bond
can be interpreted as a loan with a principal equal to the face value and interest payments
equal to the coupons (if any). The borrower is the issuer of the bond and the lender,
i.e., the holder of the bond, is the investor. For a description of fixed income securities in
general and of bonds in particular, we refer to Fabozzi (1997).

Several bonds contain one or several options coming in various flavors. Firstly, the
issuer of the bond may have the right to purchase back its debt for a known amount, called
the call price, during a specified period within the bond’s life. This is the call option.
Several government bonds contain a call feature [see Bliss and Ronn (1995) for the history
of callable U.S. Treasury bonds from 1917]. Secondly, the investor may have the right to
return the bond to the issuer for a known amount, called the put price, during a specified
period within the bond’s life. This is the put option. See for example Brennan and Schwartz
(1977). In this way, a savings bond can be redeemed at any time before its maturity and
a retractable bond can be redeemed only at a specified date before its maturity. Similarly,
the maturity of an extensible bond can be extended to a longer period [Ananthanarayanan
and Schwartz (1980) and Longstaff (1990)].

An investor may also have the right to exchange the bond for a given number of an
underlying asset during a specified period within the bond’s life. In general, this asset
is the stock of the bond issuer (a firm in this case). This is called a conversion option
[Brennan and Schwartz (1980)]. Corporate bonds often contain several embedded options,
e.g., the Liquid Yield Option Note (LYON), a product developed by Merrill Lynch Capital
Markets in 1985, is a zero-coupon bond that is callable, putable, and convertible.

All the options described above are an integral part of a bond, and cannot be traded
alone as is the case for call and put options on stocks (for example). They are said to be
embedded in the bond. In general, they are of the American-type, so that the bond with
its embedded options can be interpreted as an American-style financial derivative with
(possibly) a protection period against early exercising.

Other options embedded in bonds do exist. We give here some examples from the
Future contract on long-maturity U.S. Treasury bonds traded on the Chicago Board of
Trade (CBOT). This Future contract is an agreement to sell or to buy some U.S. Treasury
bonds with a total face value of $100,000 at a certain date in the future, called the delivery
date, for a certain price, called the delivery price. This contract contains several embedded
options discussed by Boyle (1989) and Cohen (1991) among others. The first, called the
timing option, gives the seller the right to deliver the underlying Treasury bonds at any
time during a specified delivery month. The second, called the quality option, gives the
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seller the right to deliver any U.S. Treasury bond with at least 15 years to the earliest call
date or to maturity at the first delivery date. The third, called the wild card option, comes
from the time difference between the closing hours of the cash and the Future markets.
Thus, from 2:00 PM (Chicago time), when the CBOT closes, the seller has until 8:00 PM
to decide whether to deliver or not. Bond markets remain open until 4:00 PM.

There are no analytical formulas for valuing American options, even under very sim-
plified assumptions. Numerical methods, essentially trees and finite-differences (FD), are
usually used for pricing using a backward induction framework. Recall that trees are par-
ticular discrete-time models and FD are numerical solution methods for Partial Differential
Equations (PDE). As an alternative approach, the pricing of Bermudan American finan-
cial derivatives can be formulated as a Markov Decision process, i.e., a stochastic Dynamic
Programming (DP) problem as pointed out by Barraquand and Martineau (1995). Here,
the DP function, i.e., the value of the bond with its embedded options, is a function of the
current time and of the current interest rate, namely the state variables. The set of all the
(possible) realizations of the state variables defines the state space. This value function
verifies a DP recurrence (known as the DP or the Bellman equation) via the risk-neutral
principle of asset pricing. Indeed, the DP equation relates the holding value of the bond at
the current time as an expectation, under the so-called risk-neutral probability measure,
of its future value discounted at the risk-free interest rate. The key point with DP is to
solve efficiently the DP equation which yields both the bond value and the optimal exercise
strategies of its embedded options. For an overview of stochastic DP, we refer to Bertsekas
(1987), and for risk-neutral evaluation, we refer to Karatzas and Shreve (1998).

The problem of pricing options embedded in bonds is related to the term structure of
interest rates. In this context, the short term risk-free interest rate is very often used as
a Markov process in arbitrage-free markets, but zero-coupon bonds and forward rates are
also used. Several approaches are suggested in the literature depending on the nature of
the underlying asset(s), the dimension of the state space, and the frequency with which the
state variables are observed. For example, a one-factor model may be used for the interest
rate, a two-factor model may be used for the interest rate and its random volatility, or for
the interest rate and a risky asset (say a stock), and so on. The underlying asset(s) may
be observed discretely or continuously.

For discrete-time models, the discrete interest rate is the most widely used, through a
binomial tree in the spirit of Cox, Ross, and Rubinstein (1979). These include models by
Ho and Lee (1986), Black, Derman, and Toy (1990), and Kalotay, Williams, and Fabozzi
(1993). All these models are calibrated to exactly mimic the initial yield curve.

For continuous-time models, the short-term risk-free interest rate is very often modeled
as a diffusion process. As pointed out by Chan et al. (1992), most of the alternative
dynamics for the interest rate are described by the general stochastic differential equation
(SDE)
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drt = (α+ βrt) dt+ σrγt dBt, for 0 ≤ t ≤ T , (1)

where α, β, σ, and γ are real parameters and Bt, for 0 ≤ t ≤ T , is a standard Brownian
motion. Table 1 presents various versions of equation (1) used in the literature.

Table 1: Models for the Short-Term Interest Rate

Model α β σ γ

1. Merton (1973) 0 0

2. Vasicek (1977) 0

3. Brennan-Schwartz (1977) 0 0 1

4. Brennan-Schwartz (1980) 1

5. Marsh-Rosenfeld (1983) 0

6. Cox-Ingersoll-Ross (1985) 1/2

The model by Merton (1973) is simply a standard Brownian motion with a drift. Va-
sicek (1977) uses a mean-reverting Ornstein-Uhlenbeck process. This model gives nice
distributional results and ensures explicit formulas for zero-coupon bonds and for several
European-style interest rate derivatives, but it has the undesirable property of allowing
negative interest rates (though with very low probabilities). Several authors take advan-
tage of its properties to price various interest rate derivatives (often in closed-form), e.g.,
Jamshidian (1989) and Rabinovitch (1989). Brennan and Schwartz (1977, 1980) are pio-
neers on the modeling of options embedded in bonds. They use the PDE approach and
FD algorithms. They let the interest rate move as a geometric Brownian motion (GBM)
without a drift to price the call and the put options (Model 3) and as a mean-reverting
proportional process to price the conversion option (Model 4). Model 3 has also been used
by Dothan (1978) to price bonds in closed-form, and Model 4 by Courtadon (1982) to
price several European as well as American options on bonds. Notice that Model 3 is a
special case of Model 4 and that the latter includes the GBM process of Black and Scholes
(1973). Marsh and Rosenfeld (1983) use the constant elasticity of variance (CEV) process
(among others), introduced previously for options pricing [see Cox (1996)]. Cox, Ingersoll,
and Ross (CIR) (1985) use the mean-reverting square-root process (MRSR) to handle the
interest rate movements. Their basic one-factor formulation is based on an equilibrium
concept, known to preclude against arbitrage opportunities. It is extendible to several
factors, ensures strictly positive interest rates, and gives explicit formulas for zero-coupon
bonds and for some European-style interest rate derivatives. Other authors use the MRSR
equation to price various interest rate derivatives, e.g., Richard (1978), Ananthanarayanan
and Schwartz (1980), and Schaefer and Schwartz (1984). Other dynamics for interest rates
can also be found, e.g., Brennan and Schwartz (1979) and Clewlow and Strickland (1997).
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The underlying assets may also be zero-coupon bonds, e.g., Briys, Crouhy, and Schöbel
(1991), or forward rates, e.g., Heath, Jarrow, and Morton (HJM) (1992). The HJM model
is one of the most flexible as it integrates several systematic sources of risk and random
coefficients.

Continuous-time models are parsimonious, so that matching all theoretical bond values
with their market counterparts gives much more equations than the number of parameters
to estimate. A remedy, proposed by Hull and White (1990a), is to augment the model, i.e.,
add parameters until a calibration becomes possible. This leads to the extended Vasicek
model and to the extended CIR model. See the note by Carverhill (1995) and the response
by Hull and White (1995) for a discussion about the performance of their “extended”
models. Hull and White (1990b, 1993, 1994a, 1994b, 1996) interpret the FD method as a
trinomial tree and price several interest rate derivatives within their “extended” models.

In this paper, we formulate the problem of pricing options embedded in bonds as a
stochastic DP model, the focus being on the solution of the DP equation. Precisely, we
consider call and put options. It is well known that the call option tends to decrease the
price of the bond, while the put option has the opposite effect. It is also well known that
the call option is more likely exercised by the bond issuer when the interest rates are low,
while the put option is more likely exercised by the investor when the interest rates are
high. We use the DP formulation to establish these basic intuitions, to evaluate the impact
of these options on the bond price, and to determine their optimal exercise strategies.

We adopt the Vasicek (1977) model for the short-term risk-free interest rate. By the
finite-elements technique, we approximate the DP function by a piecewise linear interpola-
tion, and, subsequently, we solve the DP equation in closed-form. The PDE approach and
FD algorithms could but are not used in this context [Wilmott, Dewynne, and Howison
(1997)]. Indeed, the DP formulation and the finite elements technique is a viable alterna-
tive to the PDE approach and FD algorithms if the joint distribution of the state variables
is known explicitly and the number of exercise opportunities is limited [see Chapter 2].

In Section 2, we present the Vasicek formulation and its distributional properties. In
Section 3, we give the DP formulation. In Sections 4 and 5, we derive some theoretical
properties of the bond value and solve the DP equation. In Section 6, we give some results.
In Section 7, we conclude.

2 The Model

Vasicek (1977) introduced a continuous-time, finite horizon, and frictionless market for the
short-term risk-free interest rate in which risk-neutral evaluation is possible. We present
this model directly under the risk-neutral probability measure, denoted by Q, whose exis-
tence is guaranteed by the no-arbitrage property.
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The risk-free interest rate moves under Q according to the SDE

drt = κ (r − rt) dt+ σdB (t) , for 0 ≤ t ≤ T , (2)

where κ, r, and σ are real positive constants and B (t), for 0 ≤ t ≤ T , is a standard
Brownian motion whose augmented natural filtration is denoted by F (t), for 0 ≤ t ≤ T .
Over time, the interest rate process is pushed towards its reverting level r at the reverting
rate κ, and these random reverting cycles are more or less amplified depending on the
volatility parameter σ. We show later that the standard error of the future interest rate
depends on σ.

In this model, a financial derivative can be priced as an expectation under Q of its future
payoff discounted at the risk-free rate. This is the fundamental risk-neutral principle of
asset pricing. Of course, bonds may be priced in that way. For example, for 0 ≤ t′ ≤ t ≤
t′′ ≤ T , the rational price at t′ of an optionless zero-coupon bond paying 1 at T is

vt′ (r) = E

[
e−

∫ t′′
t′

rtdtvt′′ (rt′′) | F
(
t′
)
, rt′ = r

]
(3)

= E

[
e−

∫ t′′
t′

rtdtvt′′ (rt′′) | rt′ = r

]
,

where vt′′ is the value of the bond at t′′. Equation (3) at t′ = 0 and t′′ = T gives

v0 (r) = E
[
e−

∫ T
0
rtdt
]
,

where r is the interest rate at time 0.

In the Vasicek (1977) model, it is well known that the random variables rt′′ and
∫ t′′
t′ rudu

are normal [see Elliott and Kopp (1999) for example]. In the following, we extend this result

to the random vector
(
rt′′ ,

∫ t′′
t′ rudu

)′
.

Lemma 1 For f and g two real functions continuously differentiable in [t′, t′′], for 0 ≤
t′ ≤ t′′ ≤ T , and W (t), for t ∈ [0, T ], a standard Brownian motion, one has

∫ t′′

t′

(∫ u

t′
f (t) g (u) dW (t)

)
du

=

∫ t′′

t′

(∫ t′′

t′
f (t) g (u) I

(
t ∈
[
t′, u

])
dW (t)

)
du

=

∫ t′′

t′

(∫ t′′

t′
f (t) g (u) I

(
u ∈

[
t, t′′

])
du

)
dW (t)

=

∫ t′′

t′

(∫ t′′

t
f (t) g (u) du

)
dW (t) .
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Proof. We use the integration by parts theorem in stochastic calculus [Øksendal

(1995)]. We define the function h(t) = f (t)
∫ t′′
t g (u) du and transform the right hand

integral as

∫ t′′

t′

(∫ t′′

t
f (t) g (u) du

)
dW (t) =

∫ t′′

t′
h (t) dW (t)

= h
(
t′′
)
W
(
t′′
)
− h

(
t′
)
W
(
t′
)
−

∫ t′′

t′

∂h

∂t
(t)W (t) dt

= −
∫ t′′

t′
f
(
t′
)
g (u)W

(
t′
)
du

+

∫ t′′

t′
f (t) g (t)W (t) dt

−
∫ t′′

t′

(∫ t′′

t

∂f

∂t
(t) g (u)W (t) du

)
dt.

We now use the same theorem to transform
∫ u
t′ f (t) g (u) dW (t) and thereafter the left

hand integral as

∫ t′′

t′

(∫ u

t′
f (t) g (u) dW (t)

)
du =

∫ t′′

t′
f (u) g (u)W (u) du−

∫ t′′

t′
f
(
t′
)
g (u)W

(
t′
)
du−

∫ t′′

t′

(∫ u

t′

∂f

∂t
(t) g (u)W (t) dt

)
du.

The final result comes from the basic properties of multi-dimensional real integrals.

Proposition 2 Conditioning on the information available at time t′, that is, for rt′ = r,
the random vector (

rt′′,

∫ t′′

t′
rudu

)′
, 0 ≤ t′ ≤ t′′ ≤ T ,

is a normal vector with mean

µ (r) =

[
µ1 (r) = r + e−κ∆t (r − r)

µ2 (r) = r∆t+ 1−e−κ∆t

κ (r − r)
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and variance

Σ =

[
σ21 =

σ2

2κ

(
1− e−2κ∆t

)
σ12 =

σ2

2κ2

(
1− 2e−κ∆t + e−2κ∆t

)

σ21 = σ12 σ22 =
σ2

2κ3

(
−3 + 2κ∆t+ 4e−κ∆t − e−2κ∆t

)
]
,

where ∆t = t′′ − t′. It admits the following decomposition

{
rt′′ = µ1 (r) + σ1Z1∫ t′′

t′ rudu = µ2 (r) + σ2

[
ρZ1 +

√
1− ρ2Z2

] ,

where (Z1, Z2)
′ is a standard normal vector and ρ = σ12/ (σ1σ2) is the (conditional) coef-

ficient of correlation between rt′′ and
∫ t′′
t′ rudu.

Proof. From equation (2), one can apply Ito’s lemma to the process φ (t, rt) = eκtrt,
for t ∈ [0, T ], and show that

ru = r + e−κ(u−t
′) (r − r) + σ

∫ u

t′
e−κ(u−t)dB (t) ,

and consequently that

∫ t′′

t′
rudu = r∆t+

1− e−κ∆t

κ
(r − r) + σ

∫ t′′

t′

(∫ u

t′
e−κ(u−t)dB (t)

)
du

= r∆t+
1− e−κ∆t

κ
(r − r) + σ

∫ t′′

t′

(∫ t′′

t
e−κ(u−t)du

)
dB (t) .

The last equality comes from the Lemma. Conditioning on the information available at

time t′ ∈ [0, T ], we can decompose each component of the vector
(
rt′′ ,

∫ t′′
t′ rudu

)′
into a

deterministic part and a random part. The latter part turns out to be a limit of linear
combinations of the same standard Brownian motion taken at different points in time. We

conclude that the random variables rt′′ and
∫ t′′
t′ rudu, conditioned on F (t′), are jointly

normal.

Now, from basic properties of stochastic integrals [Øksendal (1995)], one can derive

the conditional mean and the conditional variance of the vector
(
rt′′ ,

∫ t′′
t′ rudu

)′
. Its

conditional mean is

E

[(
rt′′ ,

∫ t′′

t′
rudu

)′
| F
(
t′
)
]

=

(
r + e−κ∆t (r − r) , r∆t+

1− e−κ∆t

κ
(r − r)

)′
,
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since the centered random vector
(∫ t′′

t′
e−κ(u−t)dB (t) ,

∫ t′′

t′

(∫ t′′

t
e−κ(u−t)du

)
dB (t)

)′
,

is independent of F (t′). The conditional variance of rt′′ is

Var
[
rt′′ | F

(
t′
)]

= E



(∫ t′′

t′
σe−κ(t

′′−t)dB (t)

)2
| F
(
t′
)



= σ2
∫ t′′

t′
e−2κ(t

′′−t)dt

=
σ2

2κ

(
1− e−2κ∆t

)
.

The conditional variance of
∫ t′′
t′ rudu is

Var

[∫ t′′

t′
rudu | F

(
t′
)
]

= E



(∫ t′′

t′

(∫ t′′

t
σe−κ(u−t)du

)
dB (t)

)2
| F
(
t′
)



= σ2
∫ t′′

t′

(∫ t′′

t
e−κ(u−t)du

)2
dt

=
σ2

2κ3
(
−3 + 2κ∆t+ 4e−κ∆t − e−2κ∆t

)
.

The conditional covariance between rt′′ and
∫ t′′
t′ rudu is

Cov

[
rt′′ ,

∫ t′′

t′
rudu | F

(
t′
)
]

= E

[∫ t′′

t′
σe−κ(t

′′−t)dB (t)

∫ t′′

t′

(∫ t′′

t
σe−κ(u−t)du

)
dB (t) | F

(
t′
)
]

= σ2
∫ t′′

t′
e−κ(t

′′−t)

(∫ t′′

t
e−κ(u−t)du

)
dt

=
σ2

2κ2
(
1− 2e−κ∆t + e−2κ∆t

)
.
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3 The DP Formulation

In this section, we present the DP function and the DP equation for a zero-coupon bond
with its embedded call and put options. We essentially use the risk-neutral principle of
asset pricing to assess the DP formulation.

Let t0, . . . , tM be a sequence of dates such that ∆t = tm+1 − tm, for m = 0, . . . ,M − 1,
where t0 = 0 is the origin and tM = T is the maturity of the bond. We assume that the
exercise opportunities of the embedded options are at tm, for m = 1, . . . ,M . In practice,
the first increment of time t1 − t0 and the last one tM − tM−1 may be different from ∆t.

Let cm and pm be the call and the put prices at tm, respectively. If the issuer calls back
the bond at tm, he pays a known amount cm to the investor, and, at the same date, if the
investor puts the bond, he receives a known amount pm from the issuer. Assume that the
call and put prices verify 0 < pm ≤ cm, as is usual in practice, and cM = pM = 1. Finally,
let vm (r) be the value of the bond and vhm (r) its holding value at time tm, where r is the
interest rate at that time.

At the maturity date tM = T , the value of the bond is

vM (r) = 1, for all r, (4)

where 1 is the face value of the bond with its embedded options. Table 2 gives the “payoff”
at time tm by the issuer to the investor under decision pairs.

Table 2: The bond payoff under decision pairs

Investor

Issuer Put Hold

Call pm cm
Not to Call pm −

From Table 2, we can specify the optimal strategies of the two agents at each monitoring
date. The issuer has a dominating strategy; he will call the bond if vhm (r) > cm, otherwise,
he is better not to call. In the first case, the investor will put the bond if pm > cm
(a possibility that we exclude). In the second case, the investor will put the bond if
vhm (r) < pm. Therefore, for m = 1, . . . ,M − 1, one has

vm (r) =





cm if vhm (r) > cm
vhm (r) if pm ≤ vhm (r) ≤ cm
pm if vhm (r) < pm

. (5)
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By the risk-neutral principle of asset pricing, we obtain the holding value of the bond
vhm (r) at time tm from its value vm+1 at time tm+1 by

vhm (r) = E
[
e−

∫ tm+1
tm

rtdtvm+1
(
rtm+1

)
| F (tm) , rtm = r

]
(6)

= Em,r

[
e−

∫ tm+1
tm

rtdtvm+1
(
rtm+1

)]
.

At the origin, the bond value is a function of the observed interest rate

v0 (r) = vh0 (r) , for all r. (7)

Equations (4-7) define the stochastic DP formulation. In particular, equations (4),
(5), and (7) define respectively the DP function at maturity, at a given step of the DP
procedure, and at the origin. Solving the expectation in (6) backwards from the maturity
to the origin yields both the initial value of the bond and the optimal exercise strategies
of its embedded options. We return to this point later.

4 Properties of the Bond’s Value

In this section, we study the shape of the value function for a zero-coupon bond with its
embedded options. We essentially use the properties of real integrals.

Proposition 3 For m = 0, . . . ,M − 1, the holding value of the bond, vhm (r), is a strictly
positive, continuous, and strictly decreasing function of r. The value function, vm (r),
verifies

vm (r) =





cm, if r ≤ am
vhm (r) , if am < r < bm
pm, if r ≥ bm

,

where am and bm are two thresholds associated with time tm.

Proof. The proof proceeds by induction on m. For m = M − 1, equation (6) gives

vhM−1 (r) = EM−1,r

[
e
−
∫ T
tM−1

rtdt
]

= e−µ2(r)+σ
2
2/2,

because by conditioning on the information available at time tM−1, the random variable

e
−
∫ T
tM−1

rtdt
is lognormal with parameters µ2 (r) and σ2 [see Proposition 6]. Clearly, the

holding value of the bond vhM−1 (r) is a strictly positive, continuous, and strictly decreas-
ing function of r, since µ2 (r) is a continuous and strictly increasing function of r. The
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thresholds aM−1 and bM−1 at step M − 1 do exist since vhM−1 (r) → +∞ when r → −∞
and vhM−1 (r)→ 0 when r → +∞ [see equation (5)].

Now, we show that the properties under interest are verified at step m once they are
verified at step m+ 1. From equation (6), one has

vhm (r)

= Em,r

[
e−

∫ tm+1
tm

rtdtvm+1
(
rtm+1

)]

=

∫∫

IR2
e
−µ2(r)−σ2

(
ρz1+

√
1−ρ2z2

)

vm+1 (µ1 (r) + σ1z1)φ (z1)φ (z2) dz1dz2

= e−µ2(r)+σ
2
2(1−ρ2)/2

∫ +∞

−∞

e−σ2ρz1vm+1 (µ1 (r) + σ1z1)φ (z1) dz1,

where φ is the density function of a standard normal random variable.

The holding value is strictly positive and continuous by the Lebesgue’s dominated con-
vergence theorem [Billingsley (1995)]. It is a strictly decreasing function of r since µ1 (r)
and µ2 (r) are strictly increasing functions of r and vm+1 (r) is a strictly positive, bounded,
bounded away from zero, and non-increasing function of r. Finally, the thresholds am and
bm at step m do exist since vhm (r)→ +∞ when r → −∞ and vhm (r)→ 0 when r → +∞.

5 Solving the DP Equation

In this section, we show how to compute the expectation in (6) for each m. The idea
here is to partition the real axis into a collection of intervals and then to approximate the
bond value by a piecewise linear interpolation, so that computation becomes feasible in
closed-form.

Let a0 = −∞ < a1 < . . . < ap < ap+1 = +∞ be a set of points and R1, . . . , Rp+1 be a
partition of IR into (p+ 1) intervals such that R1 = (−∞, a1) and

Ri = [ai−1, ai) for i = 2, . . . , p+ 1.

Given an approximation ṽm of the bond value vm at the points ak and step m, we
interpolate this function by a piecewise linear interpolation of the form

v̂m (a) =

p+1∑

i=1

(αmi + βmi a) Ii (a) , (8)

where

Ii (a) =

{
1 if a ∈ Ri

0 elsewhere
.
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Its local coefficients αmi and βmi are obtained by solving the linear equations

ṽm (ai) = v̂m (ai) , for i = 2, . . . , p, (9)

and, for i ∈ {1, p+ 1}, they are identical to those of the adjacent interval. Other piecewise
polynomial approximations, such as quadratic and cubic splines, could be used in this
context [see de Boor (1978) for a general discussion].

Assume now that v̂m+1 is known, and so are its local coefficients at step m + 1 as in
(8). The expectation in (6) at step m becomes

ṽhm (ak) = Em,ak

[
e−

∫ tm+1
tm

rtdtv̂m+1
(
rtm+1

)]
(10)

=

p+1∑

i=1

(
αm+1i Em,ak

[
e−

∫ tm+1
tm

rtdtIi
(
rtm+1

)]
+

βm+1i Em,ak

[
e−

∫ tm+1
tm

rtdtrtm+1Ii
(
rtm+1

)])
,

where ṽhm denotes the approximate holding value of the bond. Now, we use the decompo-

sition of the random vector
(
rtm+1 ,

∫ tm+1
tm

rtdt
)′

in Proposition 2 to compute explicitly the

integrals in (10).

Indeed, for k = 1, . . . , p and i = 1, . . . , p+ 1, the first integrals can be expressed as

Ak,i = Em,ak

[
e−

∫ tm+1
tm

rtdtIi
(
rtm+1

)]

= e−µ2(ak)+σ
2
2/2 [Φ (ak,i)− Φ (ak,i−1)] ,

and the second ones as

Bk,i = Em,ak

[
e−

∫ tm+1
tm

rtdtrtm+1Ii
(
rtm+1

)]

= e−µ2(ak)+σ
2
2/2 ×[

(µ1 (ak)− σ12) (Φ (ak,i)− Φ (ak,i−1))− σ1

(
e−a

2
k,i − e−a

2
k,i−1

)
/
√
2π
]
,

where Φ is the cumulative density function of a standard normal random variable and

ak,j = (aj − µ1 (ak) + σ12) /σ1, for j ∈ {i− 1, i} .

In this case, the future interest rate may take negative values [see Proposition 1], but
with very low probabilities. We take a1 = µ1 (r)− 6σ1, a2 = µ1 (r)− 4σ1, ap−1 = µ1 (r) +
4σ1, and ap = µ1 (r)+ 6σ1, where r is the interest rate at time 0 and ∆t = T the maturity
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of the bond. The integer p is a parameter to be specified. Then, we select the points ak,
for k = 2, . . . , p− 1, to be equally spaced within the interval [a2, ap−1].

Finally, we explain how the DP procedure works:

FOR m = M, 0 by step -1

FOR k = 1, p

Compute ṽhm (ak) for all the points ak by (10);

Compute ṽm (ak) for all the points ak by (5);

NEXT k

Compute the coefficients of v̂mat step m by (9);

NEXT m

6 Numerical Experiments

The value of an embedded option is obtained by making the difference between the prices
of the bond with and without the option. In this section, we price by DP a call and a
put options embedded in a zero-coupon bond. We price first some optionless zero-coupon
bonds by DP and compare the results with the exact solution of Vasicek (1977).

Consider a zero-coupon bond paying 1 at the maturity T (in years) and let r0 = 4.5%,
κ = 1, r = 5%, and σ = 0.01. The number of monitoring dates is denoted by M . Table
3 gives the values of some optionless zero-coupon bonds computed by DP. Its last column
indicates the exact solution of Vasicek (1977). CPU times are given in seconds and they
are for the last line (the most expensive). In Table 4, all the parameters values are the
same as in Table 3 except for the interest rate at the origin, increased to 5.5%.

Table 3: Optionless Zero-Coupon Bonds (r0 = 4.5%)

p

(T,M) 25 50 100 Vasicek

(1, 2) 0.9543 0.9543 0.9543 0.9543

(2, 4) 0.9088 0.9088 0.9088 0.9088

(5, 10) 0.7828 0.7828 0.7828 0.7828

(10, 20) 0.6097 0.6097 0.6097 0.6098

CPU (sec) 0.08 0.37 1.01
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Table 4: Optionless Zero-Coupon Bonds (r0 = 5.5%)

p

(T,M) 25 50 100 Vasicek

(1, 2) 0.9482 0.9482 0.9482 0.9482

(2, 4) 0.9010 0.9010 0.9010 0.9010

(5, 10) 0.7750 0.7750 0.7750 0.7751

(10, 20) 0.6037 0.6037 0.6037 0.6038

CPU (sec) 0.09 0.28 1.07

As expected, the value of a zero-coupon bond decreases when the maturity or the
interest rate increases. In view of the results, the DP procedure appears to be stable,
consistent, and efficient. CPU times are obtained with an old 100 Mhz Silicon Graphics
(and an f77 compiler).

Now, consider the 5 years zero-coupon bond in Table 4 for which we add a call and a
put features. The call and put prices are specified in the contract and could be selected
arbitrarily. Here, they are determined as in Mason et al. (1995) [see the case “Waste
Management, Inc.”].

Table 5: The Call and Put Prices

m tm (in years) cm pm
1 0.5 0.83070 0.78914

2 1 0.84734 0.80749

3 1.5 0.86452 0.83040

4 2 0.88223 0.85824

5 2.5 0.90051 0.88039

6 3 0.91935 0.90311

7 3.5 0.92641 0.92641

8 4 0.95032 0.95032

9 4.5 0.97484 0.97484

10 5 1 1

In this example, the bond under interest will be exercised for sure after 3.5 years (if not
exercised before). The last column of Table 6 reports the options values. They are obtained
by making the difference between the price of the bond with its embedded option(s) and
the price of its optionless counterpart (0.7751).
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Table 6: Pricing the Embedded Call and Put Options

p

(T,M) Option 25 50 100 Vasicek Option Value

(5, 10) Call 0.7726 0.7727 0.7727 0.7751 0.0024

(5, 10) Put 0.7767 0.7766 0.7766 0.7751 0.0015

(5, 10) Call+Put 0.7751 0.7751 0.7751 0.7751 0

CPU (sec) 0.09 0.3 1.04

As expected, the call option tends to decrease the bond value and the put option has
the opposite effect. In this case, the inclusion of both the call and the put features has
negligible effect on the bond value (no effect for the precision given in this example). They
tend to compensate each other.

7 Conclusion

American-style financial derivatives do not admit closed-form solutions even under very
simplified assumptions. In this paper, we address the problem of pricing the embedded
call and put options via a stochastic DP formulation, the focus being on the solution of the
DP equation. We let the interest rate move as in Vasicek (1977), we approximate the bond
value by a piecewise linear interpolation, and solve the DP equation in closed-form. We
use this formulation to price zero-coupon bonds and their embedded options. Results show
that the bond value decreases when the call option is included, and increases when the
put option is included. Numerical investigation shows stability, consistency, and efficiency.
Also, we use the DP formulation to establish some theoretical properties of the bond value
with its embedded options. It is a strictly positive, continuous, and non-increasing function
of the interest rate. It is equal to the call price for “low” interest rates and to the put price
for “high” interest rates.

If the interest rate moves according to the GBM, the CEV, or the CIR process, the
market remains arbitrage-free and risk-neutral evaluation is preserved. In this context, the
interest rate is Markov and the stochastic DP formulation could be applied.
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