
Les Cahiers du GERAD ISSN: 0711–2440

Joint optimization of electric bus scheduling and fast
charging infrastructure location planning

K. Alamatsaz, F. Quesnel, U. Eicker

G–2024–28

April 2024

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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Abstract : Transit authorities are rapidly replacing conventional buses with electric ones because
of the increasing concerns about air quality, greenhouse gas emissions, and energy demand. Many
mathematical optimization models have been developed for scheduling conventional buses. However,
such models would not fit electric buses (EBs) due to their limited travelling range and long charging
time. Moreover, such operational differences have prompted new research into the literature on the
charging station location problem for EBs. This study combines EB scheduling with fast-charging
infrastructure location planning with the objective of minimizing the total costs of scheduling, including
deadhead trips, electricity and ownership costs of EBs, as well as the cost of establishing fast-chargers.
We propose a Mixed-Integer Linear Programming (MILP) formulation for an arc-based model and an
Integer Linear Programming (ILP) formulation for a path-based model and solve them with Cplex
solver and branch-and-price algorithm, respectively. The two solution approaches have been tested for
various instances with different numbers of trips and potential charging locations. The computational
experiments show that the branch-and-price algorithm is more computationally efficient in terms of
execution time compared to the arc-based model solved with Cplex. Finally, a sensitivity analysis was
conducted to identify the most cost-effective EB type, considering the real characteristics of different
EB types. Moreover, we assessed how changes in battery capacity and the maximum travel range of
EBs impact the optimal solution.

Keywords : Transportation, electric bus scheduling, charging station location, charging scheduling,
branch-and-price
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1 Introduction

Energy sources that release greenhouse gases are a major contributor to global warming. Therefore,

replacing such energy sources with clean and renewable ones has become vital in recent decades. Among

the various ways to mitigate the impact of greenhouse gases, electrifying vehicles has gained attention

as a particularly effective measure due to increasing concerns about the environment, air quality, and

energy consumption. Thus, there has been a significant increase in the utilization of electric vehicles

and electric buses. According to the recent research by Bloomberg New Energy Finance Electric, EBs

are projected to replace more than 47% of the world’s city bus fleet by 2025 (An, 2020). The European

electric bus market is projected to increase by 18.6% between 2022 and 2027, indicating a shift towards

electric buses from conventional buses.

Transit authorities are increasingly focused on enhancing the efficiency of their public bus transit

systems and one of the most important factors affecting that is operational processes (Kang and

Meng, 2017). Therefore, optimizing bus operation planning has become essential to reduce operational

costs and decrease passengers waiting time. Bus scheduling is one of the most vital processes in bus

operations and has a considerable impact on operational costs. Bus/vehicle scheduling (VS) is the

process of assigning buses to the trips of a given timetable and aiming to use the minimum number

of buses while minimizing operating costs. EBs have battery capacity limitations and their scheduling

and charging processes differ from those of conventional buses (Yao et al., 2020). The operating range

of EBs is less than conventional buses and their charging time is longer than refueling diesel buses. Li

(2014) demonstrates how the introduction of electric buses affects the bus scheduling procedure.

The limited travelling range of EBs has prompted new research into the literature, which is the

problem of locating charging stations for electric buses. This problem identifies the ideal places for

installing fast-charging infrastructures on the bus transportation network, as well as the optimal num-

ber of such stations to minimize the total establishment costs. Public transportation agencies have

adopted fast-charging (FC) technology using high-voltage electricity to address the challenges of long

charging times and limited driving range of electric buses. FC technology allows EBs to recharge in

just a few minutes. Bus transit systems that use fast-charging technologies are gaining popularity.

Also, charging stations at bus terminals are less costly than depot charging and better suited to bus

electrification throughout the life cycle (Lajunen, 2018). However, using such technology makes EBs

scheduling more complex (He et al., 2020). For example, the location of fast chargers affects the

travelling time of charging trips of electric buses; hence, EB scheduling should be customized to con-

sider this charging trip time. Also, the time of charging due to the limited availability and capacity

of charging stations should be coordinated. Thus, as highlighted by Bie et al. (2021), a reasonable

charging strategy is necessary to improve bus scheduling, and it is crucial to study the fast-charging

infrastructure location planning problem for electric buses.

Transit authorities opting for fast-charging solutions will employ pantograph technology capable of

delivering up to 350 kW of power. Although initially more costly, pantograph systems could ultimately

decrease the total cost of ownership (TCO) and operational expenses for EBs as they allow continuous

opportunity charging along routes. This reduces the need for large battery capacities and energy

consumption. Moreover, pantograph charging enables an automatic connection from the bus roof,

which can be integrated into existing bus networks by installing fast chargers at particular stops. This

integration supports continuous bus operation with lower maintenance costs and higher availability,

allowing buses to run around the clock (Al-Saadi et al., 2022). This mechanism is a well-established

method for linking electric buses with their power sources. A special inverted pantograph automatically

lowers when a bus arrives at the charging station. After completing the safety checks, the system

provides the bus with a swift and powerful recharge.

Transitioning from traditional buses to electric buses requires further research on public tran-

sit operation planning steps. These steps are network route design, timetable development, vehicle

scheduling, and crew scheduling. First, the network route design outlines the bus routes and their
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bus stops based on the regions’ geographical layout and travel demand. Next, the timetable develop-

ment sets bus departure frequencies in order to cover the travel demand of passengers. In the vehicle

scheduling step, buses will be efficiently assigned to bus routes based on the timetables. Finally, the

last step determines the schedule for bus drivers. The limited range and longer charging time of EBs

necessitate a reassessment of these steps. The majority of studies discuss public transportation op-

eration planning in a sequential manner, where the output of one planning phase is used as input

for the next stage. This approach is less effective compared to a fully integrated strategy. The fully

integrated method analyzes the problem as a whole, considering all phases of public transportation

planning simultaneously. For instance, making minor adjustments to the bus timetable might lead to

better vehicle scheduling, and locating fast-charging infrastructure based on bus schedules could lower

the operational costs of bus scheduling. Thus, in this research, we aim to integrate charging station

location planning and bus scheduling steps of electric bus transit operation planning to improve the

overall efficiency of the transit system.

In the network design step, the travel demand of each region is analyzed to design the bus routes

and their bus stop locations based on the geographical features and travel demand of that region. It

also includes determining the length of bus routes ensuring the routes are of a length that EBs can

complete their cycles without battery depletion. Finding the best spots to locate charging stations

or continuous charging infrastructures is another aspect of the network design step for EBs. Also,

this step includes choosing the most suitable charging technology based on the EBs’ specifications and

bus network features. The vehicle or bus scheduling step involves assigning the buses to each route

based on the vehicle’s range, charging requirements, given timetable, and route’s length. The aim is

to cover all the given trips in timetables with minimum operational costs. In this step, planners seek

to minimize the total number of required EBs, total deadhead trips, and charging costs while covering

all the given trips. Also, The charging scheduling of EBs will be analyzed in this step.

In this research, we aim to integrate the network design step and vehicle scheduling step of public

bus transit operation planning, which, in our case, are fast-charging location planning and electric

bus scheduling (FCLP-EBS), respectively. We seek to minimize the total operational costs, including

deadhead trips, electricity and ownership costs of EBs while covering all the given trips. Also, we find

the best locations and the optimum number of fast chargers to be placed on the bus network to meet

the charging demand for EBs with minimum cost. By doing so, we improve the overall efficiency and

performance of operating EBs and fleet management.

We present two mathematical optimization models for the problem: an arc-based model (ABM)

and a path-based model (PBM). The former is solved using the Cplex solver, while the latter employs

the branch-and-price algorithm.

The contributions of this study are as follows:

• Proposing the integrated problem of fast-charging infrastructure location planning and electric

bus scheduling, while addressing the charging scheduling of electric buses, taking into account

the capacity of fast-charging stations.

• Developing an exact branch-and-price (B&P) algorithm to solve the FCLP-EBS problem.

• Performing sensitivity analysis on different EB types based on original equipment manufacturers’

real data and analyzing the added cost due to the increase in the battery capacity.

The remainder of this article is structured as follows. A literature review on charging station

location planning for EBs and electric bus scheduling problems is presented in Section 2. In Section 3,

we provide a detailed description of the fast-charging location planning and electric bus scheduling

problem. Section 4 describes the proposed models, including arc-based and path-based models. This

section also provides an overview of the branch-and-price algorithm used to solve the path-based model.

Then, Section 5 reports computational results. Finally, conclusions are drawn in Section 6.
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2 Literature review

The following sections will provide a brief overview of the related works and theoretical background

of charging station location planning and EB scheduling. Section 2.1 describes the different charging

station location models found in the literature. In Section 2.2, we review the literature on electric bus

scheduling problems and different methods, including exact and heuristic solution approaches, adopted

to solve such problems. Finally, the integration of charging station location and EB scheduling problems

are briefly discussed in Section 2.3.

2.1 Charging station location

Fast-charging for electric buses is becoming more common. Due to this growth, extensive research is

required to determine the best locations for installing charging station infrastructure along bus routes.

Kunith et al. (2014) conducted one of the initial studies on the planning of fast-charging stations.

The study aimed to identify the optimal locations for fast-chargers throughout the network, taking

into account operational restrictions and serving the required daily energy demand of EBs. For the

same problem, Wu et al. (2021) added the power distribution network and bus operation network.

Their proposed approach aimed to reduce the overall installation costs of fast-chargers, as well as

their operation and maintenance costs, travel costs to the chargers, and power loss costs. The affinity

propagation approach was used to determine the number of fast-charging infrastructures needed, and

binary particle swarm optimization was utilized to determine the best places for chargers and their

maximum capacity.

Enhanced heuristic descent gradient is another optimization technique to address fast-charging

infrastructure location planning. This technique was employed by Othman et al. (2020) to identify the

best spots for fast-charger locations based on the given timetable. Csonka (2021) considered partial

charging for EBs, i.e. how much to charge during each charging event. The author determined the

best places to locate charging infrastructures to meet the total energy demand of EBs by solving the

problem of both static and dynamic charging technologies. Conductive charging stations and overhead

wire charging lanes are referred to as static charging and dynamic charging, respectively.

A mixed-integer linear programming approach was suggested by Kunith et al. (2017) to jointly

optimize the battery capacity for each line and location planning of the fast-charging infrastructure

for electric buses. The optimal places and best number of chargers were found using a set covering

problem. He et al. (2019) solved this problem by considering an added energy storage system (ESS) to
store the energy during off-peak hours and sending it to fast-charging infrastructure during peak hours.

Comparing the findings of this study to those of Kunith et al. (2017) study yielded a 9.2% reduction

in the overall system costs. Zhou et al. (2023) aimed to determine the optimal number and types

of EB chargers required at bus terminals and depots. The objective was to fulfill the daily charging

needs of electric buses efficiently while also minimizing the overall cost. To address this, the authors

developed a two-stage stochastic programming model that handles uncertainties related to travel time

and battery degradation.

In another study, Olmos et al. (2019) looked into the problem of locating opportunity charging

infrastructure for hybrid and fully electric buses to cover the required charging activities that fulfill

the energy demand of EBs. Determining the size of energy storage systems and the power rates of

opportunity charging infrastructures were the other two objective functions in their research. Berthold

et al. (2017) studied the charging station location problem along with battery aging and partial charg-

ing. The goal was to decrease overall costs, including the price of installing charging stations and

buying new buses. Liu et al. (2018) also considered uncertain energy consumption for battery-electric

buses for this problem. To determine the lowest overall implementation cost, the authors proposed a

mixed-integer linear programming model based on a robust optimization methodology. The optimal

capacity for EBs (Kunith et al., 2017), constructing transit route networks (Zhang et al., 2021), and
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finding out the charging schedule for each fast-charging facility (He et al., 2020) are other extensions

of this problem.

In earlier literature, most studies treat the energy demand for EBs as a constant. Furthermore,

these studies assume that the bus schedule is predetermined. Consequently, the primary focus was

identifying the best locations for charging stations and their optimum number, ensuring EBs can

complete their trips based on fixed schedules. However, our research introduces flexibility by treating

the bus schedule as a variable that could be changed according to the charging station locations and the

number of such facilities. Thus, this research seeks to find the optimum solution for the fast charging

station location planning while optimizing the scheduling of electric buses. This integrated approach

promises more effective solutions than the traditional sequential methods where the EB schedules are

set in advance.

The combination of the opportunity charging location problem and the charging scheduling problem

of EBs was investigated in a recent work by Hu et al. (2022). They took into account electricity prices

based on time of usage and included passenger waiting times associated with the charging procedure

during trips as a penalty cost. The authors sought to decrease the cost of procuring opportunity

chargers and batteries for electric buses, as well as the overall cost of charging and the amount of

extra waiting time for passengers. A robust optimization strategy was developed to deal with trip

time uncertainty and passenger travel demand. The main difference between Hu et al. (2022) and our

study is that we consider the EB scheduling and number of required buses to cover all the trips, while

they do not consider these features. A summary of relevant studies with more detailed information is

provided in Table 1. This table allows readers to compare different approaches and methodologies used

in FCLP problems, highlighting the diversity and innovation in solving these problems with different

objective functions.

Table 1: Studies on electric buses fast-charging location planning

Paper Objective(s)
Fast-charger
Location Model Algorithm Case Study

Kunith et al. (2014) Min construction cost Depot MILP Standard solver -

Kunith et al. (2017)
Min the total cost and number of
chargers Depot MILP Standard solver

Berlin,
Germany

Liu et al. (2018)
Min the cost of installing FC and
batteries Bus stop MILP AARC Utah, USA

He et al. (2019)
Minimizing the total cost of
installing FC, ESS, and EB batteries Bus stop MILP Standard solver Utah, USA

Lin et al. (2019)

Min the total operating,
establishing, and grid power loss
costs Depot MISOCP

Spatial-temporal
approach

Shenzhen,
China

Liu and Ceder (2020)
Min the required number of EBs
and FC infrastructure Terminal DF and IP

Adjusted
max-flow Singapore

Othman et al. (2020)
Min the operational costs and
energy consumption

Specific
locations EHDG Voronoi diagram

Toronto,
Canada

Zhang et al. (2021)
Min the total costs, passengers’
travel time, and operator cost Terminal

MINLP &
MILP Modified GA Swiss

Wu et al. (2021)

Min maintenance, FC station
construction, travel to charging
stations costs and power loss of FC Terminal BPSO

Mathematical
program

Yangjiang,
China

Li et al. (2022)
Min the deadhead trips and
charging services Terminal MILP Standard solver

Chengdu,
China

2.2 Electric bus scheduling

Vehicle scheduling (VS) is the process of assigning buses to the routes of a given timetable and the

timetable is the input for the vehicle scheduling problem. VS aims to cover the given timetable

efficiently while satisfying all operational constraints by finding the necessary number of buses and
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reducing the deadhead trip costs. The problem of electric bus scheduling across multi-depots falls

within the category of NP-hard problems Carpaneto et al. (1989). A well-known approach to model

vehicle scheduling problems was introduced by Bertossi et al. (1987) and is known as the time-space

network framework. In this framework, nodes show the trips and their starting and ending times,

while arcs show the routes taken by vehicles to get from one node to another.

Rinaldi et al. (2018) investigated the electric bus scheduling problem with service factor and charg-

ing factor limitations in order to find the sequence of electric and hybrid buses departing from a

multi-line bus terminal. They proposed a mixed-integer linear program (MILP) to reduce total op-

erating costs. Tang et al. (2019) addressed the electric bus scheduling problem by developing static

and dynamic scheduling models to minimize total operating costs by implementing a buffer-distance

approach and rescheduling buses based on current traffic conditions. The authors used a branch-

and-price method to tackle the problem. This is one of the few publications that dealt with the EB

scheduling problem using an exact solution technique. Alwesabi et al. (2020) investigated the EB

scheduling problem by reducing the total cost by determining the optimal number of electric buses

while considering the number of charging stations and battery size constraints.

2.2.1 Heuristic solution approaches

One of the earliest investigations on scheduling electric buses with a constrained travel range and a

constrained recharge period was conducted by Wang and Shen (2007). The aims were to reduce the

number of buses and the time spent on deadhead trips. The authors used the ant colony optimization

(ACO) technique to tackle the problem. The charging, scheduling, and operation of electric buses and

conventional buses for four bus routes were discussed by Paul and Yamada (2014). They intended

to increase the overall travel distance of the EBs while minimizing CO2 emissions and fuel costs. By

using a real use-case in Japan, the authors used a k-greedy algorithm to solve the suggested problem

and validate it. Scheduling problems for electric buses could also be resolved using simulation models.

Sung et al. (2022) aims to reduce the cost of charging stations, batteries, and buses and power usage.

To accomplish this, a simulation model and heuristic algorithm were created. The optimal number

and type of buses and charging stations are the primary findings of this study. Various metaheuristic

solution techniques were combined to establish the ideal bus departure timings. Ke et al. (2022)

combined genetic algorithm (GA), Particle Swarm Optimization (PSO), and Simulated Annealing

(SA) methods to reduce both energy costs and overall greenhouse gas emissions. For a heterogeneous

bus fleet (conventional and electric buses), joint optimization of EB scheduling and crew scheduling

was investigated in Wang et al. (2022a).

Another method for solving the vehicle scheduling problem is the adaptive genetic algorithm (AGA).

This approach was applied by Li et al. (2020) to address the integration of stationary charger deploy-

ment and electric bus scheduling for a real-world case study in Anting Town, Shanghai. They inves-

tigated partial charging and time-varying energy pricing and tried to reduce the overall construction

and maintenance costs of charging infrastructure and bus scheduling operational costs. In order to de-

termine the optimal electric buses departure intervals, Guo et al. (2022) looked at uncertainties in the

number of arriving passengers, their wait time, and the energy consumption of electric buses. Based

on an uncertain bi-level programming model (UBPM), the problem was solved. The higher level tries

to reduce the cost of transportation for the passengers, while the lower level seeks to reduce how much

energy is used by electric buses. A real-world case study was solved using GA. The objective function

also includes reducing in-service costs and electricity usage. Yao et al. (2020) conducted research on

a multi-vehicle form of electric bus scheduling in 2020. The authors sought to lower operational costs

associated with deadhead trips while also decreasing the required investment for purchasing EBs and

charging infrastructures. A heuristic strategy was used to solve the NP-hard problem in a reasonable

amount of time.

In a multiple bus line transit system with a partial charging policy, Liu and Ceder (2020) proposed

a bi-objective integer programming method to reduce the number of electric buses and fast-charging
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infrastructures. The authors proposed two approaches to address this problem: a lexicographic ap-

proach and a modified max-flow technique. They examined their model in a real-world case study

in Singapore. Zhou et al. (2020) investigated the combined optimization of electric bus scheduling

and charging scheduling. This research developed a multi-objective bi-level programming model for

reducing carbon emissions and operating costs, such as passenger trip costs, deadhead trip costs and

power consumption costs. To tackle the electric bus scheduling and charging scheduling problem, an

iterative neighborhood search and a greedy dynamic search technique were used.

2.2.2 Exact solution approaches

Alwesabi et al. (2020) investigated the electric bus scheduling problem by reducing total cost, de-

termining the optimal number of electric buses, by considering the number of charging stations and

battery size constraints. Li (2014) looked into the scheduling of EBs that used fast-charging or battery

swapping technologies. He also investigated this problem using a restricted trip range form for buses

powered by various sources of energy. For these problems, mixed-integer programming methods have

been presented. Because the battery swapping time is almost equivalent to the fast-charging time,

the author asserts that the suggested methodology will be used for both charging modes. The column

generation technique was employed to solve this scheduling problem. Rinaldi et al. (2018) investigated

the scheduling problem of electric buses with service factor and charging-factor constraints in order to

determine the order of EBs and hybrid buses departing from a multi-line bus terminal. A mixed-integer

linear program to reduce total operating costs was proposed to solve the problem.

Two methods for battery-electric bus scheduling with a limited-travel-range limitation were pre-

sented by van Kooten Niekerk et al. (2017). The first one is a simplified model that assumes buses

can be charged linearly, ignoring the time-of-use (TOU), and ignoring the effects of depth-of-discharge

(DOD). The second one modified those assumptions to make the model more realistic. The proposed

model for this problem was solved for small and medium-sized problems in an acceptable amount of

time using integer linear programming. The authors offered two more strategies based on the column

generation method for finding near-optimal solutions to large-scale problems. According to Wang

et al. (2017), the travel range constraint of electric buses will be addressed and removed using the

optimal recharging approach. Thus, the study aimed to determine the best strategy for charging EBs.

Finally, the authors applied their approach to a real-world case study in California. Avishan et al.

(2023) studied the electric bus scheduling under energy consumption and travel time uncertainty. The

objectives were to find the best number of required buses, determine the optimum schedule and find

the best strategy for charging EBs. The authors developed a MILP model and solved it through a
robust optimization approach.

Table 2 provides an overview of the objective functions of numerous bus scheduling studies and the

different main features of the studied problems. In this table, each row represents a research work. The

second column represents the objectives that the studies seek to reach, which are the number of buses

used to cover all the trips, deadhead trip costs, and electricity cost of operating EBs, respectively.

The next two columns indicate whether the problems were considered on either single or multi-depot

and single or multi-line bus networks. The ”Veh. type” column specifies whether the considered fleet

is homogeneous or heterogeneous. Finally, the last two columns present the models and the solution

approaches adopted to solve EB scheduling problems. This table reveals that scheduling electric buses

involves multiple factors, highlighting the complexity of the problem. It shows that research in this area

must consider diverse operational, economic, and infrastructure considerations to create effective urban

bus systems. It indicates that most of the studies on EB scheduling used heuristic or metaheuristic

solution approaches to deal with the problem. Additionally, it is evident that MILP models are the

most commonly used for modelling various types of EB scheduling problems.
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Table 2: Studies on electric buses fast-charging location planning. DH: Deadhead trips, EC: Electricity Cost, S/M-D:
Single/Multi Depot, S/M-L: Single/Multi Line, Veh. type: Vehicle Type

Paper
Objective

S/M-D S/M-L Veh. type Model Method
No.
buses

DH EC

Li et al. (2019) ✓ ✓ Multi Multi Het1 ILP TSE4 network
Zhang et al. (2020) ✓ Single Single Het MIP GA
Yao et al. (2020) ✓ ✓ ✓ Multi Multi Het MILP GA

Teng et al. (2020) ✓ ✓ Single Single Het MIP
Multi-objective
PSO

Zhou et al. (2020) ✓ ✓ Single Multi Het Bi-level programming

Iterative
Neighborhood
Search

Liu and Ceder (2020) ✓ Multi Multi Hom2 DF3 and IP
Adjusted
max-flow

Li et al. (2020) ✓ ✓ Single Multi Hom Nonconvex model AGA
Bie et al. (2021) ✓ ✓ Single Single Hom ILP B&P
Sung et al. (2022) ✓ ✓ Multi Multi Hom Simulation Heuristic
Wang et al. (2022a) ✓ Single Multi Hom MILP MILP
Jiang and Zhang (2022) ✓ ✓ ✓ Multi Multi Hom MILP B&P
Zhang et al. (2022) ✓ ✓ Multi Multi Het MILP ALNS
Guo et al. (2022) ✓ Single Single Hom UBPM GA
Wu et al. (2022) ✓ Single Multi Hom MILP B&P
Gkiotsalitis et al. (2023) ✓ Multi Multi Hom MILP B&C5

This study ✓ ✓ ✓ Multi Multi Hom MILP B&P

1 Heterogeneous
2 Homogeneous
3 Time-Space-Energy
4 Deficit Function
5 Branch-and-Cut

2.3 Integrated fast-charging station location and bus scheduling

The integration of fast-charging infrastructure site planning with electric bus scheduling has not re-

ceived much attention in the literature. The study by Stumpe et al. (2021) was the most comparable.

The authors investigated the simultaneous optimization of opportunity charging location planning

and electric bus scheduling. They suggested an innovative mixed-integer linear formulation and used

variable neighborhood search to solve it. Wang et al. (2022b) addressed joint optimization of battery

electric bus scheduling, pantograph charger location planning, and battery capacity. The goal was to

minimize the overall cost of the fleet, and they developed a mixed-integer linear programming model

to address the problem. Tzamakos et al. (2023) investigated fast-wireless-charging infrastructure loca-

tion planning, taking into account the impact of delays caused by buses lining up to charge at charger

locations. They proposed a MILP approach to reduce the total costs of installing wireless charging.

Olsen and Kliewer (2022) studied the combination of depot charging planning with EB schedul-

ing. The goal was to reduce the total cost, which included the operational costs, costs of installing

depot chargers, and vehicle costs. To address this problem, a metaheuristic solution method based on

variable neighborhood search (VNS) was proposed. They proved that optimizing these two problems

simultaneously outperforms the sequential planning approach. Li et al. (2019) investigated the mul-

tidepot and multi-vehicle form of this problem for refueling charging stations. The authors sought to

reduce the number of buses and refueling stations necessary, as well as energy consumption, mainte-

nance costs, and external emission costs. To handle small-scale problems, the authors presented an

arc-based model, and to tackle large-scale problems, they suggested a time-space bus flow network.

Alwesabi et al. (2021) provided a mixed-integer linear programming formulation for determining the

battery capacity, optimal fleet size, and dynamic wireless charging locations all at the same time.

The study by Liu and Ceder (2020) addressed the combination of electric bus scheduling with the

optimization of charging infrastructure. However, they focused on depot charging and did not address
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fast-charging infrastructures. Thus, with the rapid increase in fully electric buses, an investigation on

the integration of bus scheduling and fast-charging infrastructure location problems is necessary.

Although electric bus scheduling, charging scheduling, and charging station location problem have

been the subject of various studies, there is still more work to be done to bridge the gap between theory

and practice. If we explore the literature, we can find that no work has been done on the influence

of electric bus scheduling on the location of fast-charging infrastructure and vice versa. There are

currently few papers that deal with the location problem of fast-charging infrastructures. Based on

these papers, the charging station location problem is treated as an individual optimization problem.

3 Problem description

This paper addresses the joint optimization of fast charging station location planning and electric bus

scheduling. The aim is to schedule a homogenous fleet of EBs that start their trip from multiple depots

and return to the same depots after completing their daily trips with minimum total operational costs

and simultaneously find the best locations for fast-chargers to be placed on predetermined spots on

the bus network to satisfy the energy demand of EBs. Since EBs have a limited travel range, they

need to be charged at charging stations frequently throughout the day to complete their daily trips.

The objective is to minimize the required number of EBs needed to fulfill the given trips and their

total operational costs by reducing their deadhead trips and electricity costs while minimizing the total

installing cost of fast chargers. Figure 1 represents a schematic view of the problem.

Figure 1: A schematic view of the problem

Henceforth, the term trip will refer to the scheduled timetable for each bus route. Take, for instance,

a bus route that begins its first journey at 06:00 AM with a frequency of 30 minutes until 08:00 AM,

with each trip lasting 45 minutes. For this bus route, there would be a series of six trips, starting at

06:00, 06:30, 07:00, 07:30, and 08:00, and correspondingly ending at 06:45, 07:15, 07:45, 08:15, and

08:45. For the FCLP-EBS problem, we are given a set of trips denoted as S and a set of potential

locations for locating fast-charging stations as B. Each trip in S has a starting time ai and an ending

time ei. It’s important to note that each bus can only be assigned to one trip at a time. An EB can

start a new trip if it finishes its previous one with enough time to travel to the starting point of the

next trip as a deadhead trip and still has enough energy. Deadhead trips refer to the transit between

trips, in which buses travel without any passengers. They occur mainly to relocate buses for their next
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trip. Deadhead trips can be from the depots to bus routes and vice versa or between charging stations

and bus routes and vice versa.

Let dji denote the deadhead trip distance from j to i, where j is either a depot, a charging station,

or the end location of a trip, and i is either a depot, a charging station, or the beginning location of a

trip, plus the trip distance of trip i, which is denoted by d̃i if i ∈ S. Similarly, let τji denote the travel

time from j to i plus the travel time of trip i, which is denoted by ∆i if i ∈ S. Let dmax indicate

the maximum distance that a fully charged battery can travel. The unit cost of a vehicle’s travelled

distance is represented by cd, while cw stands for the cost of the vehicle’s waiting time. Meanwhile,

the cost of charging at a fast-charging station at time t is indicated by Ct, and Cv denotes the fixed

annual cost of each EB.

Electric buses starting from a depot fully charged can operate along a series of feasible connecting

trips. They can cover these trips as long as they have enough energy to return to either the same

depot or a charging station. At each charging station, at most W , buses can be charged simultaneously

and we suppose a fixed charging time of U for each charging event. For each b ∈ B, let Vb be the

establishment cost of a fast-charger at location b.

The aim of this paper is to find the set of feasible connecting trips in order to cover all the given

trips with the minimum total costs. The cost function in the objective function includes three main

components. The first component is the total annual purchase cost of the required number of EBs.

The second component is the annual cost of establishing fast chargers along the network. Finally, the

third component is the operational costs of EBs, which are divided into two components. The annual

travelling costs and electricity costs due to charging the EBs. The first one is the sum of the travelling

costs of EBs from depots to the trips and vice versa, from trips to trips, and from trips to the charging

stations and vice versa. The electricity cost is the cost of charging electric buses based on the given

electricity tariff.

4 Methodology

This section explains the fast-charging location planning and electric bus scheduling (FCLP-EBS)

problem in more detail and describes the methodology used to solve the problem. Section 4.1 presents

an arc-based mathematical formulation and Section 4.2 presents a path-based model for FCLP-EBS

problem. Although the arc-based formulation can be solved using standard integer programming

techniques, the path-based formulation cannot due to its high number of variables. We propose a

branch-and-price algorithm to solve the path-based formulation in Section 4.3.

4.1 Arc-Based Model (ABM)

Consider G = (N,A) as the bus network, where N is the trip nodes and A is the feasible connecting

arcs. The set of origins and destinations nodes linked with the depots are labelled as O and D,

respectively. The set of nodes N includes the EB trips, the depots, and the time-expanded nodes of

charging stations.

We model the charging station capacity, which is denoted by W as time-expanded station nodes,

by discretizing the range of service start times into a set of discretized nodes. One minute is specified

as the sample time step. The time period set T consists of {1, 2, . . . , |T |}, for the planning horizon for

charging electric buses at charging stations and T ′ be the set of time periods, {1, 2, . . . , |T | −U}, from
the first period to the maximum time period reduced by the fixed charging time of electric buses. The

set of time-expanded nodes of a potential spot b ∈ B for locating a charging station is denoted by Tb.

The set of arcs A is divided into five categories. There are depot-to-trip arcs between O and j ∈ S.

There are trip-to-trip arcs between j ∈ S and i ∈ S if aj + ∆j + τji ≤ ei. There are trip-to-charger

arcs from j ∈ S to time-expanded node t for potential spot b ∈ B if aj + ∆j + τjt ≤ |T | − U , and
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charger-to-trip arcs from time-expanded node t for potential spot b ∈ B to j ∈ S if t + τbj ≤ ej .

Finally, there are trip-to-depot arcs between j ∈ S and D. A′ is the set of all possible arcs between

trips and charging stations and vice versa. The set of candidate locations for locating fast-chargers

denoting by B. The network used in the arc-based formulation is presented in Figure 2. The cost of

arc ji is defined as: (1) cji = cddji + Cv if j = O; (2) cji = cddji + cwwji + Ct if i ∈ B; and (3)

cji = cddji + cwwji for other arcs.

Figure 2: Arc-based network

We now present an arc-based formulation of the integrated EB scheduling and fast charging station

location planning problem. The decision variables for the problem are as follows. Let zb be a binary

decision variable with zb = 1 if a fast-charger is located at location b ∈ B, and zb = 0 otherwise. Let

xo
ji be a binary decision variable, with xo

ji = 1 if an electric bus is assigned to node i immediately after

trip j starting at depot o ∈ O, and xo
ji = 0 otherwise. Lastly, goi is a continuous decision variable,

representing the accumulative distance travelled from depot o to the ending point of trip i ∈ S since

the latest battery renewal.

The arc-based model can be formulated as a mixed-integer programming model as follows:

min

∑
o∈O

∑
(j,i)∈A\A′

cojix
o
ji +

∑
o∈O

∑
(j,t)∈A′

cojtx
o
jt +

∑
b∈B

Vbzb

 (1)

s.t. ∑
o∈O

∑
j

(j,i)∈A

xo
ji =1 ∀i ∈ S (2)

∑
i

(j,i)∈A

xo
ji −

∑
i

(i,j)∈A

xo
ij =0 ∀j ∈ S, ∀o ∈ O (3)

∑
j

(j,t∈Tb)∈A′

xo
jt =

∑
j

(j,t∈Tb)∈A′

xo
tj ∀b ∈ B, ∀o ∈ O (4)



Les Cahiers du GERAD G–2024–28 11

goi =
∑
j

(j,i)∈A\A′

(goj + dji)x
o
ji ∀i ∈ S, ∀o ∈ O (5)

got ≤(1− xo
jt)dmax ∀(j, t) ∈ A′,∀o ∈ O (6)

goi ≤dmax ∀i ∈ S ∪ T, ∀o ∈ O (7)∑
o∈O

∑
i

(i,t∈Tb)∈A′

xo
it +

∑
o∈O

∑
i

(i,t∈Tb)∈A′

U∑
s=1

xo,t+s
it ≤W ∀b ∈ B, ∀t ∈ T ′ (8)

∑
i

(i,t∈Tb)∈A′

xo
it ≤zb ∀b ∈ B, ∀o ∈ O (9)

xo
ji ∈{0, 1} ∀(j, i) ∈ A,∀o ∈ O (10)

zb ∈{0, 1} ∀b ∈ B (11)

goj ≥0 ∀j ∈ S, ∀o ∈ O (12)

The objective function (1) includes three terms. The first term calculates the total travelling

and waiting costs between trips plus the annual purchase cost of each electric bus, the second term

determines the charging cost and travelling cost between trips and charging stations, and the last term

indicates the total establishing cost of fast-chargers. Constraints (2) and (3) represent the covering

and flow conservation of trips. Constraint (4) ensures that the inbound and outbound trips to/from a

charging station should be equal. Constraint (5) determines the accumulative distance travelled since

the latest battery renewal. This particular constraint introduces nonlinearity to the mathematical

model. A linear version of our model can be found in the appendix. Constraint (6) ensures that when

an EB recharges at a station, its total travelled distance resets to zero. Constraint (7) forces that the

total travelled distance of each EB cannot exceed its maximum travel range. Constraint (8) ensures

that the station capacity constraint must be satisfied. Constraints (9) ensure that EBs can be charged

only at the locations where a charger has been installed.

4.2 Path-Based Model (PBM)

In this section, we convert the arc-based model to a path-based model in which the number of variables

is huge and the number of constraints is reasonable. This makes the optimization model capable to

exploit the branch-and-price algorithm.

We denote P as the set of all possible paths from O to D. Such paths should satisfy the maximum

distance constraint prior to battery renewal. Each path p ∈ P has an operational cost of cp. Let

ϖp
ji = 1 if arc (j, i) ∈ A is in path p, otherwise ϖp

ji = 0; thus,
∑

(j,i)∈A ϖp
jicji = cp. Let δ

p
i = 1 if trip

i ∈ S is covered by path p, and otherwise δpi = 0. Let σp
tb = 1 if path p is recharging at time t at

station b, otherwise σp
tb = 0. Let binary variable yp = 1, if path p is selected in the solution, otherwise

yp = 0. The path-based formulation of FCLP-EBS problem is as follows:

min

∑
p∈P

cpyp +
∑
b∈B

Vbzb

 (13)

s.t. ∑
p∈P

δpi yp =1 ∀i ∈ S (14)

∑
p∈P

ypδ
p
t ≤zb ∀b ∈ B, ∀t ∈ Tb (15)

∑
p∈P

σp
tbyp ≤W ∀b ∈ B, ∀t ∈ T ′ (16)
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yp ∈{0, 1} ∀p ∈ P (17)

zb ∈{0, 1} ∀b ∈ B (18)

The objective function (13) aims to minimize the total operational costs of EBs and the total

establishment costs of fast-chargers. The first term calculates the cost of selected paths, and the

second term calculates the cost of installing the required number of fast-chargers. Constraint (14)

ensures that each trip is served once. Constraint (15) states that to charge an EB at a charging

station, a charger should have been installed at that point. Constraint (16) ensures that the charging

station capacity limitation must always be met.

4.3 Branch-and-price

Branch-and-price is a powerful optimization method used to solve combinatorial optimization problems,

which involve a large number of variables and constraints. This method combines two well-known

techniques: branch-and-bound and column generation.

Column generation is an optimization method used to solve large-scale linear programming prob-

lems. This technique involves iteratively generating columns, also known as variables, by solving the

Pricing Problem and adding them to the Restricted Master Problem (RMP) until an optimal solution

is reached. The RMP is the linear relaxation of the master problem, restricted to only some of its

columns. Column generation is particularly useful for problems with a large number of variables, where

generating all possible columns upfront is computationally infeasible.

To generate these new columns, a pricing problem, which is typically formulated as a shortest

path problem or a knapsack problem, is formulated and solved to find the best columns to add to the

master problem and the optimization process continues. The master problem formulation includes all

previously generated columns and the new ones, and it is solved again using the optimization algorithm.

This process of generating new columns and adding them to the problem formulation continues until

there are no other columns that can be added to master problem and improve the solution. In this

case, the optimum solution is reached. Figure 3 depicts the column generation algorithm.

Figure 3: Column generation flowchart

The linear relaxation of the path-based model mentioned in the previous section is the RMP in the

CG method. The restricted master problem (RMP) of the master problem in which P is replaced by
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P̄ , which is a subset of paths or columns. By iteratively solving the RMP and a pricing subproblem,

the proposed path-based model will be solved through the column generation algorithm. It is not

guaranteed that the optimal solution obtained is integral even if the linear relaxation of the path-

based model is solved to optimality via column generation. Thus, we develop a branch-and-price

algorithm to integrate the column generation algorithm into a branch-and-bound search framework.

The idea behind branch-and-price is to start with a small subset of the problem variables and solve

it using branch-and-bound, dividing the problem into smaller subproblems and recursively solving

them. A depth-first search strategy is used to explore the branch-and-bound tree. At each node in

the search tree, the linear relaxation is solved using CG to obtain a lower bound on the objective

function. If the RMP at a given node is infeasible or produces an integer solution, the node is pruned.

Otherwise, the branch-and-bound algorithm selects a variable with a fractional value and creates two

subproblems by branching on that variable. The algorithm ends when all nodes have been explored.

To apply the branch-and-price technique, we model the pricing subproblem as a constrained

shortest-path problem on an acyclic network. This subproblem network is similar but not identi-

cal to the network in the path-based formulation and is described as follows. Consider Gs = (Ns, As),

which Ns stands for the node sets and As for the arc sets. There is one origin node for each depot

o ∈ O where EBs initiate their journeys and one destination node for the same depot but with a

different notation of d ∈ D where EBs finish their daily trips. The set of nodes contains origin nodes,

O, where EBs initiate their journeys and destination nodes, D, where EBs finish their daily trips; One

trip node for each trip in S; and for each fast-charging location, we create two sets of node: there is

one time-expanded node in T per each fast charger signifying available charging intervals at one-minute

samples, and one dummy trip node per trip in S which is a replica of the actual trips to retain the

network’s acyclic nature. The set of all dummy nodes is denoted by S′ and the set of dummy nodes

associated with each fast charger b ∈ B is denoted by S′
b. The set of arcs contains four different sets:

beginning and ending arcs, deadhead trips, dummy arcs, and waiting time arcs for fast chargers. The

beginning trip arcs connect the depots, O, to the trip nodes, S, to start a path for an EB and the

ending trip arcs connect each trip node to the destination depots, D to finish the path for that EB.

Deadhead arcs are divided into two groups: First, the arcs linking trip nodes to each other. Second,

the arcs linking trip nodes to the time-expanded nodes of fast chargers. Let teib be the earliest time an

EB can be at charging station b ∈ B after completing trip i ∈ S. This deadhead arc links trip node i

to the time node of station b that corresponds to teib. Dummy arcs are divided into two groups: First,

the arcs linking time-expanded nodes to the dummy trips associated with each charging station time-

expanded nodes. These dummy arcs link the time-expanded nodes, t ∈ Tb, of each fast charger, b ∈ B,

to all dummy trip nodes, i ∈ S′
b, of the corresponding fast charger. Second, the dummy arcs linking

dummy trips to the trip nodes. The final set illustrates the waiting times at each charger, sequentially

connecting time-expanded nodes to indicate one-minute waiting periods at charging stations.

In this network, as shown in Figure 4, the charging stations are depicted by a block containing a

group of two sets of node types: time-expanded nodes and dummy trips. This is created to model

the charging scheduling of EBs at these stations based on the capacity of the charging stations. The

time-expanded nodes indicate the arrival time of EBs at each charging station. Also, the waiting

time of EBs at charging stations could be calculated using time-expanded nodes in the given network

structure. The purpose of including dummy trips in the network is to eliminate cycles and make it

possible to solve efficiently in the Gencol library. When trips involve travelling to charging stations

and returning, it produces a cycle in the network, which we avoid by adding dummy trips.

Our problem has two limited resources, which are time and travel distance since the last trip node or

time-expanded node. Traversing arcs in the network consumes resources. Every constrained resource

at each node must lie within a specified range, known as the resource window. Let R represent the

set of resources. For each node i ∈ Ns and each resource r ∈ R, the resource window is given by

[lri , u
r
i ]. As an illustration, the time resource window at a trip node i ∈ S is set to [ei, ei]. For all

nodes (except the origin and destination nodes), the distance resource window is [0, D]. While, for
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Figure 4: Acyclic network of the problem to deploy branch-and-price method

the origin node, the range is fixed at [0, 0], implying that all EBs begin their journey fully charged.

In our network, time resource windows are categorized based on node types. Trip nodes and dummy

trips have a time window matching their ending time, [ei, ei], meaning each trip must be completed

by its designated end time, if not earlier. Note that the lower bound for such nodes is soft, meaning

the nodes can be visited even when the arrival time falls below the lower bound. In that case, the

value of the resource gets updated to the lower bound. On the other hand, nodes associated with fast

charging stations, termed as time-expanded nodes, indicate when an EB can arrive for charging. For

instance, a time-expanded node for fast charging at a specific time t has a time window of [t, t]. It is

noteworthy to mention that the time window for the destination nodes is [0, |T |].

Each arc has three components. The first component is the reduced cost of travelling through that

arc. This cost, c̄ji, depending on the origin and destination nodes, includes the travelling, waiting time,

and electricity costs of EBs and dual variables. For example, the reduced cost of dummy arcs from the

time-expanded nodes to the dummy trips is the reduced cost of travelling from that charging station to

the dummy trip plus the electricity costs of charging the EB. However, the reduced cost of the second

type of dummy arcs, which connect the dummy trips to the trips, is zero. Secondly, we consider the

time resource and, finally, the travel distance resource used by each arc. For instance, travelling from

a depot to a specific trip consumes a certain amount of time (usage from the time resource) and a

specific distance (usage from the travel distance resource). The only exception to positive resource

usage is when travelling from charging stations to dummy trips. In such cases, the travel range usage

is set as −dmax, ensuring that the EBs be recharged completely before continuing their journey. It is

important to highlight that all the resource windows for nodes and resource usages for arcs should be

integers that we could use the Gencol library to apply the branch-and-price algorithm.

The dual variables associated with the restricted master problem are outlined as follows. λ1
i are the

vector of dual variables associated with constraints (14), λ2
b are the vector of dual variables associated
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with constraints (15) and λ3
bt are the vector of dual variables associated with constraints (16). Thus,

the reduced cost of path p is as follows:

c̄p ≡ cp −
∑
i∈S

δri λ
1
i +

∑
b

∑
t

σtb
rλ2

b +
∑
b

∑
t

σtb
pλbt

3 (19)

The reduced cost of path p is decomposed to the reduced cost of the arcs composing that path.

The reduced cost of arc c̄ji, then equals: cji − λ1
i if i ∈ S; cji +

∑
t b

rλ2
i +

∑
t b

pλit
3 if i ∈ B; and cji

if i ∈ D. The pricing subproblem, in our case, is the problem of finding a route with the minimum

reduced cost from the origin depot o ∈ O to the destination depot d ∈ D. The pricing subproblem

can be classified as a type of constrained shortest-path problem, and this particular problem has been

shown to be NP-hard by Garey Michael and Johnson David (1979) in 1979. Thus, it can be concluded

that the suggested pricing subproblem is also NP-hard.

5 Results and analysis

We present the results for different sizes of the problem and show the performance of the proposed

method on the developed model in Section 5.1. Then, in Section 5.2, a brief sensitivity analysis on the

critical parameters will be done to check the validity of the model and observe the impacts of changing

such parameters’ values on the different terms of the objective function. The arc-based model was

solved using the C++ programming language and IBM ILOG CPLEX Optimization Studio. The

experiments were conducted on the Intel Core ™ i7-8750 CPU 2.20 GHz processor with 16GB of RAM

using a single thread. To solve the path-based model, we utilized the specialized Gencol library version

4.5, which is specifically designed for the branch-and-price algorithm in a Linux computer with an Intel

i7-8700 CPU clocked at 3.20 GHz without parallel computing and compared with the results of Cplex

in terms of execution time.

5.1 Instance description and parameter settings

For our computational experiments, we used the larger instances of the benchmark dataset introduced

by Carpaneto et al. (1989) in 1989 in order to investigate the computational complexity of our approach.

Most of the parameters to generate different instances with various scales are collected from Li (2014)

and Gkiotsalitis et al. (2023).

The starting and ending points of the trips, the coordinates of the depots, and the coordinates of

potential spots for locating fast-chargers are located in a 10 km to 10 km square on the Euclidean plane,

with an even distribution. The travel time between any two points is proportional to the Euclidean

distance between them, and assuming that, on average, a vehicle can travel 60 km in an hour. Based

on Bloomberg New Energy Finance (2018), the capital cost of pantograph chargers and electric buses

are $230,000 and $530,000, respectively. The lifetime of both EBs and pantograph chargers is 15 years.

Thus, the annualized purchase cost of an EB and annualized installation cost of fast chargers will be

around $35,333 and $15,333, respectively. The actual cost may vary depending on the location where

the charger is installed, and it will be multiplied by a factor within the range of [1, 1.25]. According to

Li (2014), the cost of waiting time is 0.1$/min , and the unit cost of EBs travelled distance is 6.61935

cent/km. Also, the maximum travel range of EBs is assumed to be 70 km. This information and other

required parameters are given in Table 3. It is important to note that the operational costs shown

in Table 3 will be multiplied by the number of days in a year. This will convert them into annual

costs, allowing for a direct comparison with the yearly expenses of acquiring a new bus and installing

a fast-charging station.

We solved instances of different sizes for two depots. For each instance, we list the number of trips,

potential spots to locate fast-chargers and the number of time-expanded nodes as the available time

to charge with pantograph chargers. The number of trips, potential spots for establishing charging
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Table 3: Parameters settings for generating random instances

Parameter Description Value Reference

Cv Annual cost of using a new bus $ 35,333 Bloomberg New Energy Finance (2018)
Vb Annual cost of establishing fast-chargers $ 15,333 Bloomberg New Energy Finance (2018)
cw Cost of waiting time 0.1 $/min Li (2014)
U Charging time 10 min Li (2014)
cji Unit travel cost 0.06 $/km Li (2014)
dmax Maximum travel range of EBs 70 km
T Number of time periods maxi∈S{ei}

stations, and time periods, are represented by S, B, and T , respectively. For example, S10 B2 T250

indicates that there are ten trips, two potential places to install fast-chargers, and 250 number of time-

expanded nodes. 21 instances have been generated with this representation. Instances are categorized

based on the number of trips : those with fewer than 30 trips are labelled as small, instances with 30

or more trips are categorized as medium-scale, and, finally, instances that involve more than 50 trips

are classified as large-scale problems.

The results of arc-based model solving with Cplex and the results of path-based model solving using

the branch-and-price algorithm are presented in Table 4. The operational costs (OC) column indicates

the total travelling cost, waiting time cost and cost of charging. The next column shows the total

annual installation cost (IC) of fast chargers, and the next two columns present the objective value

and execution time, respectively. The objective value includes the total operational costs, electricity

costs, and the annual cost of purchasing EBs and installing fast-chargers.

Table 4: Comparison of the results of Cplex and branch-and-price method

Intance No. chargers No. EB OC ($) IC ($) Obj ($) CPU (s)

Cplex Branch-and-Price

S10-B3-T250 1 4 16549.1 15564 173445.1 1.5 0.1
S10-B5-T250 1 4 15556.3 15680 172568.3 2.3 0.2
S10-B8-T250 1 4 15687.7 15680 172699.7 4.3 0.7
S20-B3-T300 1 7 34572.8 15564 297467.8 84.8 1.7
S20-B5-T300 1 6 35441.5 15708 263147.5 32.5 1.2
S20-B8-T300 1 6 35353.9 15708 263059.9 65.4 4.1
S30-B3-T404 2 8 51866.5 34374 368904.5 117.5 2.8
S30-B5-T404 2 8 52764.4 31272 366700.4 205.4 16.4
S30-B8-T404 1 8 54268.2 16811 353743.2 255.9 76.5
S40-B3-T404 3 10 65440.8 53242 472012.9 91.8 9.3
S40-B5-T404 3 10 65448.2 50198 468976.1 193.7 31.7
S40-B8-T404 3 10 64867.8 50543 468740.8 393.9 152.8
S50-B3-T444 1 14 85873.5 15564 596099.5 604.3 53.3
S50-B5-T444 1 14 82730.9 15564 592956.9 615.2 124.2
S50-B8-T444 2 12 80409.5 31272 535677.5 1256.8 553.0
S60-B3-T444 2 15 95432.9 34374 659801.9 ### 394.9
S60-B5-T444 2 15 95630.0 31272 656897.0 ### 781.8
S60-B8-T444 2 15 91888.7 32836 654719.7 ### 5043.5
S70-B3-T444 3 16 106937.7 46781 719046.7 ### 564.2
S70-B5-T444 4 16 106839.1 65820 737987.1 ### 12194.4
S70-B8-T444 3 16 106061.7 49999 721388.7 ### 37105.6

Comparing the results of Cplex and branch-and-price methods shows that the proposed branch-

and-price algorithm for the path-based model improves the computational performance compared to

the arce-based model solved with Cplex. In all cases, the computational time of branch-and-price is

less than the execution time of the Cplex solver. Altering the parameters of the instances significantly

impacts the difficulty of solving of those instances. For example, in the S40-B5-T404 case, adding

three more locations for fast chargers, and changing it to S40-B8-T404, results in a doubling of CPU

processing time, indicating a rise in complexity. In a more extreme scenario, adding ten extra trips
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to the S50-B3-T444 instance makes it so challenging that the Cplex solver cannot find the optimal

solution within a day. Note that the optimality gap has been set to zero for all the instances.

5.2 Sensitivity analysis

In this section, we assess the model’s performance and accuracy by introducing various changes to the

problem parameters and analyzing the corresponding results. First, we check the results for different

electric bus types. Then, we focus on the sensitivity analysis of the maximum travel range of EBs.

5.2.1 Bus selection

The differences in electric bus types are based on their purchasing cost, maximum travel range, and

charging time. Note that the lifetime of all EBs is assumed to be 15 years. Table 5 illustrates these

characteristics for four real-world electric bus types according to Proterra Electric Vehicle Technology

Manufacturer (2016) and Gallo et al. (2014). We conduct individual model runs for each electric bus

type and present the corresponding results. This analysis can assist transit authorities in determining

the most suitable electric bus type for their fleet, considering factors such as cost-effectiveness and

scale of the problem.

Table 5: Different features of five types of well-known EBs

Electric bus Purchase cost of EB ($) Maximum travel range (km) Charging Time (min)

Proterra-40 Ft. Catalyst 799000 49 10
Proterra-40 Ft. Catalyst+ 1000000 62 13
New Flyer-40 ft 1300000 72 6
Hengtong-40ft 1220000 50 10

The aim is to find the EB type with the lowest total costs among the given electric bus types. In

this comparison, we focus on two specific instances: S30-B5-T404 and S60-B5-T444. By conducting

these comparisons, we can identify the most cost-effective electric bus type for the given instance. The

results of such analysis are represented in Tables 6 and 7.

Table 6: Comparison of results for different EB types for 30 trips

Electric bus No, chargers No. EB EB purchase cost ($) OC ($) IC ($) Obj ($)

Proterra-40 Ft. Catalyst 1 9 479394 54782.6 16307 548483.6
Proterra-40 Ft. Catalyst+ 2 9 599994 51950.8 32174 684118.8
New Flyer-40 ft 1 8 693328 45939.6 16307 755574.6
Hengtong-40ft 1 9 731997 52428.6 16307 800732.6

Table 7: Comparison of results for different EB types for 60 trips

Electric bus No. chargers No. EB EB purchase cost ($) OC ($) IC ($) Obj ($)

Proterra-40 Ft. Catalyst 4 16 852256 89782.7 66584 1008622.7
Proterra-40 Ft. Catalyst+ 2 17 1133322 99102.2 33155 1265579.2
New Flyer-40 ft 1 14 1213324 95097.1 16307 1324728.1
Hengtong-40ft 4 16 1301328 89768.1 66584 1457680.1

The general understanding from this analysis is that purchasing expensive buses with longer ranges

is not cost-effective, mainly because the cost of EBs heavily influences the objective function. According

to Table 6, more charging stations are needed as the charging time for the Catalyst+ bus increases.

Also, the longer charging time of Catalyst+ prevents EBs from starting their subsequent trips on time.

For that reason, the model has decided to install an additional charging station as a more cost-effective

solution than purchasing new EBs. Additionally, in this case, the total operational costs will decrease.

This decrease is due to fewer deadhead trips to charging stations because of the longer travel range of
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Catalyst+ bus and reduced waiting time costs, which outweigh the higher electricity costs from longer

charging times. In contrast, the New Flyer bus, with its short charging time and longer maximum

travel range compared to the other EB types given in Table 5, shows a greater reduction in charging

costs compared to its increase in EB waiting times and deadhead trips for recharging due to fewer

established fast chargers. It is noteworthy to highlight that because of the longer travel range of the

New Flyer bus, the number of deadhead trips to the charging stations would be less than EBs with a

shorter travel range. However, the travel distance for such EBs to reach the fewer available charging

stations is greater compared to the scenario where more charging stations are installed.

For the S60-B5-T44 instance and according to Table 7, increasing the charging time for electric

buses from 10 to 13 minutes requires adding an extra EB to the system, raising total costs. However,

there is a reduced need for charging stations for the Catalyst+ bus, which has a longer travel range than

the Catalyst. This decrease is also due to the higher number of EBs for Catalyst+ buses. The New

Flyer bus, despite needing the least number of EBs, comes with high initial purchase costs. However,

its advantage lies in its longer range and shorter charging time, which means a transit system using

these buses would only require a single charging station.

This analysis, however, has a limitation as it only accounts for fixed charging times. If variable

charging times were considered, the Catalyst+ bus would outperform the Catalyst in all aspects

except for its higher purchase cost. It is crucial to note that this experiment was conducted for specific

instances, and the results may vary if the scale of the problem changes. Therefore, it is essential first

to determine the scale of the bus network, consider the number of given trips, and identify potential

locations for fast chargers. Once these factors are established, transit authorities can then assess which

electric bus type best suits their fleet. By utilizing the proposed model and conducting a thorough

analysis, transit authorities gain valuable insights to make well-informed decisions before purchasing

or expanding their electric bus fleet. This approach empowers them to select the most suitable electric

bus type that aligns with their specific requirements, resulting in a more efficient and cost-effective

public transportation system.

5.2.2 Range sensitivity analysis

In this sensitivity analysis, we aim to explore the relationship between battery capacity and the objec-

tive function value by running the model on S30-B5-T404 and S60-B5-T444 instances with the same

parameters described in Table 3. According to the research by Bi et al. (2018), electric buses typically

require an average of 1.24 kWh for every kilometer travelled and based on Chen et al. (2018), the

unit manufacturing cost of an EB battery is 570 $/kWh of capacity. To assess the costs on an annual

basis, we calculate the yearly added expense of batteries to the purchase cost of EBs. This is achieved

by dividing the total cost of batteries by the electric bus’s lifespan, which is 15 years. This process

allows us to understand the annual impact of battery costs on the overall cost of an EB. Based on

this information, we can calculate how the cost increases as the maximum travel range of an electric

bus is extended. This calculation will take into account the energy requirement per kilometer and the

manufacturing cost of the EB battery. By identifying sensitive points in battery capacity, this analysis

provides crucial insights for informed decision-making regarding electric bus specifications and the

optimal battery size to achieve cost-effective and efficient operations.

Table 8 shows that EBs with a 45 km maximum travel range have the highest objective value

compared to those with longer ranges. Increasing the range by 5 km reduces the need for fast chargers

from 2 to 1, significantly lowering the objective value. However, extending the range to 60 km does

not notably affect the objective value. Also, the total cost decreases as the maximum range of EBs

increases from 45 to 60 km.

A notable drop in the objective value occurs at a 65 km range due to the reduction of EBs from

9 to 8. When the range is expanded to 75 km, the requirement for fast chargers decreases again,

from 2 to 1, substantially lowering the objective value. Between 75 km and 150 km, there are no
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significant changes in the objective value. This is because the increase in range is insufficient to reduce

the number of EBs or fast chargers. The most cost-effective point is at 75 km, with a total cost of

352,419.1. Beyond this point, total costs rise due to the higher cost of making more capable batteries.

Finally, no fast chargers are needed for EBs with 200 and 300 km ranges. These EBs can complete all

trips and return to the depots to recharge for the next day.

Table 8: Sensitivity analysis on the maximum travel range of EBs for 30 trips

dmax (km) Battery capacity (kWh) Added cost ($) No. chargers EB OC ($) IC ($) Obj ($) Total cost ($)

45 55.8 0 2 9 47782.1 34067 399846.1 399846.1
50 62.0 2850 1 9 52428.6 16307 386732.6 386922.6
55 68.2 5700 1 9 51873.8 16307 386177.8 386557.8
60 74.4 8550 1 9 51483.2 16307 385787.2 386357.2
65 80.6 11400 2 8 49559.7 32174 364397.7 365157.7
75 93.0 17100 1 8 52308.1 16307 351279.1 352419.1
100 124.0 31350 1 8 51844.6 16307 350815.6 352905.6
120 148.8 42750 1 8 51844.6 16307 350815.6 353665.6
150 186.0 59850 1 8 51800.8 16307 350771.8 354761.8
200 248.0 141360 0 8 63517.3 0 346181.3 355605.3
300 372.0 212040 0 8 63291.0 0 345955.0 360091.0

Table 9 indicates that with a maximum travel range of 45 km, EBs cannot feasibly cover all the

given trips. Therefore, EBs with a range exceeding 45 km are necessary. When the range is increased to

50 km, the situation becomes feasible with a requirement of 16 EBs and four fast chargers distributed

across the bus network to meet the EBs’ energy demands. Increasing the maximum range to 55 km

is expected to significantly lower the objective value and the total cost, as it reduces the need for fast

chargers from 4 to 3.

Table 9: Sensitivity analysis on the maximum travel range of EBs for 60 trips

dmax (km) Battery capacity (kWh) Added cost ($) No. chargers EB OC ($) IC ($) Obj ($) Total cost ($)

45 55.8 0 - - - - Infeasible Infeasible
50 62.0 2850 4 16 89768.1 66584 721680.1 721870.1
55 68.2 5700 3 16 91348.5 49736 706412.5 706792.5
60 74.4 8550 3 15 91954.4 49736 671685.4 672255.4
65 80.6 11400 3 15 91698.9 49736 671429.9 672189.9
75 93.0 17100 2 15 93031.2 33155 656181.2 657321.2
100 124.0 31350 1 14 105514.2 16307 616483.2 618573.2
120 148.8 42750 1 14 104831.6 15867 615360.6 618210.6
150 186.0 59850 1 14 104773.2 15867 615302.2 619292.2
200 248.0 141360 1 14 104773.2 15867 615302.2 624726.2
300 372.0 212040 1 14 104751.3 15867 615280.3 629416.3

A significant decrease in the objective value is observed when the range reaches 60 km. At this

point, the fleet requires 15 EBs, and the number of chargers remains the same. Another notable

reduction in objective value and total cost occurs when the range extends from 65 km to 75 km,

mainly due to a decrease in the total number of fast chargers. Increasing the range from 75 km to 100

km results in removing one EB from the fleet, further decreasing the objective value. From a 45 km

range up to 120 km, total costs gradually decline. However, total costs begin to rise beyond 120 km

due to the added cost of manufacturing higher-capacity batteries. In this scenario, the optimal range

for covering 60 trips is 120 km, with a total cost of 618,210.6. Beyond this range of up to 300 km,

there are no significant changes in the objective value, though total costs continue to increase.

In the sensitivity analysis for EBs’ maximum travel range, we observe a significant impact on the

objective value. As the maximum travel range increases, the objective value decreases, indicating that

higher battery capacities lead to more marginal savings. Tables 8 and 9 show that the total operating

costs of EBs vary. This is because of changes in costs related to transportation and waiting times.

These changes are affected by how far the EBs can travel on a single charge and how many charging
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stations are available. Interestingly, if the number of charging stations stays the same, but the buses

can travel further, the total costs will increase. Additionally, if the buses can cover greater distances,

fewer buses are required to manage the planned trips. This leads to a decrease in overall costs. As a

result, this analysis represents a trade-off between the increase in the maximum travel range and the

cost associated with increasing the capacity of EBs’ batteries.

6 Conclusion

Electric bus scheduling is a challenging problem due to the limited travel range of EBs and their time-

consuming charging process. Additionally, location planning of charging stations and scheduling the

charging events further complicates decision-making. To address these complexities, this study intro-

duced an arc-based model through a mixed-integer linear formulation for the electric bus scheduling

problem. Also, we suggested a path-based model through an integer-linear programming formulation.

To solve the arc-based model and path-based model, we used Cplex solver and developed a branch-and-

price algorithm to deal with larger instances. We evaluated the performance of these algorithms using

instances randomly generated in a practical setting. The proposed algorithm is compared with the

MILP solver of Cplex and extensive computational studies are conducted to assess their effectiveness.

We carried out multiple sensitivity analyses to validate the accuracy of the proposed model and to

examine how adjustments to the crucial parameters impact total costs. These sensitivity analyses offer

valuable insights and recommendations for transit authorities, helping them select the most suitable

EB type with specific parameters. Additionally, our examination of the maximum travel range of

electric buses can assist transit authorities in determining the optimal battery size for EBs. By doing

so, the operational costs can be effectively reduced in the long-term planning horizon.

The proposed study has the potential for several extensions. One key area for improvement is

to incorporate uncertainty into the model for EBs travel time and energy consumption. Travel time

for EBs is influenced by various factors such as passenger volume, driving behavior, traffic congestion,

road conditions, weather, and more. By considering stochastic travel time, the model can become more

robust and better suited to real-world situations. Similarly, energy consumption for electric buses also

varies depending on factors like passenger load, battery life, and road conditions. Future research

could consider these factors to improve the accuracy of the model.

Another area of interest to explore is the inclusion of different vehicle types in the proposed model.

Currently, the model assumes that all the EBs in the fleet are homogeneous, while many cities have
public bus transportation systems with heterogeneous fleets. Additionally, the model can be adapted

to account for different charging technologies with varying establishment costs, charging power, and

charging times. It may even be possible to enable the model to consider partial charging for electric

buses, making it more adaptable to real-world scenarios.

To enhance the public transportation operation planning for electric buses, several additional ele-

ments could be added to the proposed model in future studies. For example, the second stage of public

transportation planning, which is timetable development could be included as a decision variable, like

the first and third stages, which are network design and bus scheduling, respectively. This means that

departure times and trip frequencies could be optimized rather than being fixed parameters. Further-

more, since pantograph chargers have high electricity loads, it is important to consider the impacts

of locating such facilities in neighborhoods. Future works could investigate the power loss incurred in

connecting such infrastructure to the grid and their effects on energy sources.
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Appendix

A Mathematical formulation

The arc-based formulation in Section 4.1 is nonlinear due to the multiplication of binary variable,

xji to the continuous variable goj . We convert such formulations to linear ones by introducing a new

variable denoted by ho
ij , which is equal to xjig

o
j . Thus, the linear formulation of the first model will

be as follows.

min

∑
o∈O

∑
(j,i)∈A\A′

cojix
o
ji +

∑
o∈O

∑
(j,t)∈A′

cojtx
o
jt +

∑
b∈B

Vbzb

 (20)

s.t. ∑
o∈O

∑
j

(j,i)∈A

xo
ji =1 ∀i ∈ S (21)

∑
i

(j,i)∈A

xo
ji −

∑
i

(i,j)∈A

xo
ij =0 ∀j ∈ S, ∀o ∈ O (22)

∑
j
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xo
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∑
j

(j,t∈Tb)∈A′

xo
tj ∀b ∈ B, ∀o ∈ O (23)

goi =
∑

j:(j,i)∈A

(ho
ji + djix

o
ji) ∀i ∈ S, ∀o ∈ O (24)

ho
ji ≤dmaxx

o
ji (j, i) ∈ A, ∀o ∈ O (25)

ho
ji ≤goj ∀j ∈ S, ∀o ∈ O (26)

ho
ji ≥goj − (1− xo

ji)dmax (j, i) ∈ A, ∀o ∈ O (27)

got ≤(1− xo
jt)dmax (j, t) ∈ A′, ∀o ∈ O (28)

goi ≤dmax ∀i ∈ S, ∀o ∈ O (29)∑
o∈O

∑
i

(i,t∈Tb)∈A′

xo
it +

∑
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∑
i
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U∑
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xo,t+s
it ≤W ∀b ∈ B, ∀t ∈ T ′,∀o ∈ O

(30)∑
i

(i,t∈Tb)∈A′

xo
it ≤zb ∀b ∈ B, ∀o ∈ O (31)

xo
ji ∈{0, 1} ∀(j, i) ∈ A,∀o ∈ O

(32)

zb ∈{0, 1} ∀b ∈ B (33)

goj ≥0 ∀j ∈ S, ∀o ∈ O (34)
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