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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2023-57
https://www.gerad.ca/en/papers/G-2023-57
https://www.gerad.ca/en/papers/G-2023-57


Asymmetric actor-critic with approximate information
state

Amit Sinha a, b

Aditya Mahajan a, b

a Electrical and computer engineering depart-
ment, McGill University, Montréal (QC), Canada,
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Abstract : Reinforcement learning (RL) for partially observable Markov decision processes (POMDPs)
is a challenging problem because decisions need to be made based on the entire history of observations
and actions. However, in several scenarios, state information is available during the training phase.
We are interested in exploiting the availability of this state information during the training phase to
efficiently learn a history-based policy using RL. Specifically, we consider actor-critic algorithms, where
the actor uses only the history information but the critic uses both history and state. Such algorithms
are called asymmetric actor-critic, to highlight the fact that the actor and critic have asymmetric
information. Motivated by the recent success of using representation losses in RL for POMDPs [1], we
derive similar theoretical results for the asymmetric actor-critic case and evaluate the effectiveness of
adding such auxiliary losses in experiments. In particular, we learn a history representation—called an
approximate information state (AIS)—and bound the performance loss when acting using AIS.

Keywords: Markov processes, stochastic optimal control, learning

Résumé : L’apprentissage par renforcement (RL) pour les processus décisionnels de Markov par-
tiellement observables (POMDP) est un problème difficile car les décisions doivent être prises sur la
base de l’historique complet des observations et des actions. Cependant, dans plusieurs scénarios,
les informations d’état sont disponibles pendant la phase de formation. Nous souhaitons exploiter la
disponibilité de ces informations d’état pendant la phase de formation pour apprendre efficacement
une politique basée sur l’historique à l’aide de RL. Plus précisément, nous considérons les algorithmes
acteur-critique, dans lesquels l’acteur utilise uniquement les informations historiques, mais le critique
utilise à la fois l’histoire et l’état. De tels algorithmes sont appelés asymétrique acteur-critique, pour
mettre en évidence le fait que l’acteur et le critique ont une information asymétrique. Motivés par le
récent succès de l’utilisation des pertes de représentation dans RL pour les POMDPs [1], nous obtenons
des résultats théoriques similaires pour le cas acteur-critique asymétrique et évaluons l’efficacité de
l’ajout de telles pertes auxiliaires dans les expériences. En particulier, nous apprenons une représentation
historique — appelée état d’information approximatif (AIS) — et limitons la perte de performances
lorsque nous agissant à l’aide de l’AIS.

Mots clés : Processus de Markov, contrôle optimal stochastique, apprentissage

Acknowledgements: This was supported in part by the NSERC International Catalyst Grant AALRP
571054–21.
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1 Introduction

Partially observable Markov decision processes (POMDPs) are a more powerful modeling tool than

Markov decision processes (MDPs) as they allow for the possibility of a hidden state which is not seen

by the decision maker. This feature is useful while modeling many real-world applications such as

autonomous driving [2], quantitative trading [3], energy systems [4], robotics [5] etc. However, this

modeling power comes at a cost, as solving POMDPs is computationally harder than solving MDPs [6–8].

Recently, reinforcement learning (RL) has emerged as a powerful tool to solve high-dimensional POMDP

models [9–16].

In many instances, the RL algorithm uses a simulation environment. In such settings, the state of

the system is available during the learning phase and can be used to speed up learning as long as the

learned policy does not use the additional state information. Typically, such additional information is

exploited in actor-critic class of algorithms by providing the additional information to the critic but not

the actor. Such algorithms are called asymmetric actor-critic due to the asymmetry of the information

available to the actor and critic. There have been a series of recent papers which have shown that

asymmetric actor-critic algorithms significantly speed up the learning process [12,13,17–22].

It was shown in [17, 19] that using critics with just the state information significantly improves

empirical performance. However, it was shown in [12] that the value functions defined in [17] are

generally ill-defined, and that even when they are well defined, then the policy gradient may be biased.

A stronger theoretical basis for incorporating state information into the critic was presented in [12],
where a variation of asymmetric actor-critic with well-defined value functions and unbiased policy

gradient was presented.

There have also been some recent results for vanilla actor-critic methods, which show that adding

representation learning losses as an auxiliary loss in RL for POMDPs improves learning [1, 23–26]. So,

a natural question is whether adding similar representation learning losses in asymmetric actor-critic

improves learning. We investigate this question in this paper.

Our main contribution is to develop a theoretical framework for characterizing the representation

loss in state-based dynamic programs for POMDPs. To do so, we propose a notion of approximate

information state (AIS), which is motivated by the notion of AIS presented in [1], but has some

differences because of the presence of state in the action-value function. We also provide an explanation

of why having additional information at the critic improves performance of actor-critic algorithms.

Such an explanation was missing from the literature. Finally, we propose an RL algorithm which uses

the AIS losses as auxiliary losses and present a detailed experimental study to compare the performance

of the proposed algorithm with vanilla asymmetric actor-critic. Our experiments show that there is no

significant improvement in performance due to the addition of AIS-losses. This suggests that unlike

symmetric actor-critic, where adding AIS losses provided significant performance improvement, adding

AIS losses does not provide significant improvement when the full state information is available to the

critic.

Notation Uppercase letters denote random variables (e.g. X,Y, etc.), lowercase letters denote their

realizations (e.g. x, y, etc.) and sans serif letters denote sets (e.g. X,Y, etc.). Subscripts (e.g. Xt, Yt,

etc.) denote a variable at time t. ∆(X) denotes the space of probability measures on a set X; P(·) and
E[·] denote the probability of an event and the expectation of a random variable, respectively. ∥x∥
denotes the norm of a vector x.

Given a set S and a function f : S → R, span(f) denotes the span of f , i.e., span(f) = sups,s′∈S |f(s)−
f(s′)| and ∥f∥∞ denotes the sup-norm of function f , i.e., ∥f∥∞ = sups∈S f(s). Given a metric space

(S, d) and a function f : S → R, Lip(f) to denote the Lipschitz constant of f , i.e.,

Lip(f) = sup
s,s′∈S

|f(s)− f(s′)|
d(s, s′)

.
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2 Background

2.1 Background on POMDPs

A partially observable Markov decision process (POMDP) is a tuple ⟨S,Y,A, P S, PY, r,T, γ⟩, where

• S denotes the state space, Y denotes the observation space and A denotes the action space.

Moreover, St ∈ S, Yt ∈ Y, At ∈ A denote the state, action and observation, respectively, at time t.

• P S : S× A → ∆(S) is the transition dynamics of the state, i.e., for any realization s1:t of S1:t, y1:t
of Y1:t, a1:t of A1:t and any Borel subset B of S, we have

P(St+1 ∈ B | S1:t = s1:t, Y1:t = y1:t, A1:t = a1:t) = P S(B | st, at).

• PY : S×A → ∆(Y) is the observation channel, i.e., for any realization s1:t of S1:t, y1:t−1 of Y1:t−1,

a1:t−1 of At−1 and any Borel subset B of Y, we have

P(Yt ∈ B | S1:t = s1:t, Y1:t−1 = y1:t−1, A1:t−1 = a1:t−1) = PY(B | st, at−1).

• r : S× A 7→ R is the per-step reward function. The reward at time step t is a random variable

Rt = r(St, At).

• T denotes the horizon for which the system runs.

• γ ∈ (0, 1] denotes the discount factor.

It is sometimes useful to work with the conditional distribution of observation given the state and the

actions, which we denote by P S,Y and which is given as follows: for Borel subset B of Y, we have

P S,Y(Yt+1 ∈ B | st, at) :=
∫
S

PY(Yt+1 ∈ B | st, st+1, at)P
S(dst+1 | st, at)

=

∫
S

PY(Yt+1 ∈ B | st+1, at)P
S(dst+1 | st, at).

The standard solution method for POMDPs is to construct a belief space and write a dynamic

program in terms of the belief space. It is well established that belief is a sufficient statistic for

optimality [6]. However, for our results, it is more convenient to work with the entire history instead of

the belief space. For that matter, let Ht = (Y1:t, A1:t−1) denote the history of observations and actions

until time t and let Ht = Yt × At−1 denote the space of realizations of all histories until time t. Let

π = (π1, . . . , πT) be any history dependent randomized policy, i.e., πt : Ht → ∆(A) and the action at

time t is chosen according to At ∼ πt(Ht). Let

V πt (ht) := E
π

[
T∑
τ=t

γτ−tRτ

∣∣∣∣∣Ht = ht

]
(1)

denote the performance of policy π from time t on wards, when starting at history ht ∈ Ht. The

function V π is also called the value function of policy π and it satisfies the following dynamic program:

V πT+1 ≡ 0 and for t ∈ {T, . . . , 1}, we have

Qπt (ht, at) =

∫
S

r(st, at)P(dst | ht) + γ

∫
S

∫
Y

V πt+1(ht+1)P
S,Y(dyt+1 | st, at)P(dst | ht), (2)

V πt (ht) =
∑
at∈A

π(at|ht)Qπt (ht, at). (3)

Let Π denote the set of all randomized history dependent policies. A policy π⋆ ∈ Π is called

optimal if

V π
⋆

1 (h1) ≥ V π1 (h1), ∀π ∈ Π,∀h1 ∈ H1.
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Let V ⋆t : Ht → R denote the performance of any optimal policy. The function V ⋆t is also called the

optimal value function and it satisfies the following dynamic program: V ⋆T+1 ≡ 0 and for t ∈ {T, . . . , 1},
we have

Q⋆t (ht, at) =

∫
S

r(st, at)P(dst | ht) + γ

∫
S

∫
Y

V ⋆t+1(ht+1)P
S,Y(dyt+1 | st, at)P(dst | ht), (4)

V ⋆t (ht) = max
at∈A

Q⋆t (ht, at). (5)

2.2 Background on integral probability metrics

Our results rely on a class of metrics on probability spaces known as integral probability metrics

(IPMs) [27].

Definition 1. Let (X,G ) be a measurable space and F denote a class of uniformly bounded measurable

functions on (X,G ). The integral probability metric (IPM) between two probability distributions

µ, ν ∈ P(X) with respect to the function class F is defined as

dF(µ, ν) := sup
f∈F

∣∣∣∣∫
X

fdµ−
∫
X

fdν

∣∣∣∣.
Our approximation results are stated in terms of the Minkowski functional of a function f with

respect to a function class F, which is defined as follows:

ρF(f) := inf{ρ ∈ R>0 : ρ−1f ∈ F}. (6)

A key implication of this definition is that for any function f (not necessarily in F),∣∣∣∣∫
X

fdµ−
∫
X

fdν

∣∣∣∣ ≤ ρF(f) · dF(µ, ν). (7)

Different forms of IPMs that can be used in this paper are as follows

1. Total variation distance: If F is chosen as FTV := {f : span(f) ≤ 1}, then dF is the total

variation distance. For this class ρF(f) = span(f).

2. Wasserstein distance: If X is a metric space and F is chosen as FW := {f : Lip(f) ≤ 1} (where

the Lipschitz constant is computed with respect to the metric on X), then dF is the Wasserstein

distance. For this class ρF(f) = Lip(f).

3. Maximum mean discrepancy (MMD) Let H be a reproducing kernel Hilbert space (RKHS)

of real valued functions on X and let F be chosen as FMMD := {f ∈ H : ∥f∥H ≤ 1}, then dF is the

maximum mean discrepancy. For this class ρF(f) = ∥f∥H.

3 Asymmetric actor-critic

3.1 Using state information in dynamic programs for POMDPs

First, we introduce value functions that use the state st along with the history ht in their dynamic

programs.

Ṽ πt (st, ht) := E
π

[
T∑
τ=t

γτ−tRτ | St = st, Ht = ht

]
, (8)

Q̃πt (st, ht, at) := E
π

[
T∑
τ=t

γτ−tRτ | St = st, Ht = ht, At = at

]
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= r(st, at) + γ

∫
Y

V πt+1(ht+1)P
S,Y(dyt+1 | st, at). (9)

We call Ṽ πt and Q̃πt as the augmented value and action-value functions. We can retrieve the original

value functions V πt and Qπt from the augmented ones, Ṽ πt and Q̃πt , as follows:

V πt (ht) =

∫
S

Ṽ πt (st, ht)P(dst | ht), (10)

Qπt (ht, at) =

∫
S

Q̃πt (st, ht, at)P(dst | ht). (11)

Similarly, the optimal value function Q⋆t can be obtained from Q̃⋆t as follows

Q⋆t (ht, at) =

∫
S

Q̃⋆t (st, ht, at)P(dst | ht), (12)

Q̃⋆t (st, ht, at) = r(st, at) + γ

∫
Y

V ⋆t+1(ht+1)P
S,Y(dyt+1 | st, at). (13)

The augmented value and action-value functions defined above are useful to understand the

asymmetric actor-critic algorithm, which we explain in the next section.

3.2 Asymmetric actor-critic algorithm

An actor-critic algorithm involves an actor function πθ with parameters θ which takes the history
as input and gives a probability distribution over actions as output; and a critic function Qζ with

parameters ζ which takes the history and action as input and gives a real number denoting the value as

an output [28,29]. In settings where the state information is available during training, an asymmetric

critic function Q̃ζ (which corresponds to the augmented action-value function defined in (9)) with

parameters ζ can be used which takes the state, history and action as input and gives a real number

denoting the value as an output. As proposed in [12], the actor loss Lactor
θ and the critic loss Lcritic

ζ

for the asymmetric actor-critic algorithm are optimized simultaneously using the following gradient

equations:

∇θLactor
θ (ht) = −

T∑
τ=t

Eπθ
[
γτ−t∇θ log πθ(Aτ | Hτ )Q̃ζ(Sτ , Hτ , Aτ ) | Ht = ht

]
(14)

and

∇ζLcritic
ζ (st, ht) = ∇ζE

πθ

[
Q̃ζ(St, Ht, At)−

T∑
τ=t

γτ−tRτ (Sτ , Aτ )

∣∣∣∣ St = st, Ht = ht, At = at

]2
. (15)

3.3 Benefits of using state-history critic over history critic

It is shown in [12] that the policy gradient used in actor-critic and asymmetric actor-critic are the

same in expectation. However, there is no discussion on why one expects asymmetric actor-critic to do

better than symmetric actor-critic. In this section, we provide such an explanation.

Let’s consider the training setup for a standard actor-critic implementation. The agent starts with

an initial policy and generates trajectories {sτ , hτ , aτ , rτ}Tτ=1 which are stored in a buffer. Next, an

empirical estimate of the policy gradient is constructed (as described below) and gradient descent on

the policy parameters θ is performed based on this estimate. This process of performing rollouts and

gradient descent happens iteratively till the policy converges.

When only observation and action history is used, the empirical policy gradient is constructed as

follows

∇V πθ
t ≈

M∑
m=1

γτm−t∇ log πθ(aτm | hτm)Qπθ
τm(hτm , aτm),
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where M is the size of the mini-batch. We call this estimate as history-only critic policy gradient

(HOPG).

When state information is available, the empirical policy gradient can be constructed as follows

∇V πθ
t ≈

M∑
m=1

γτm−t∇ log πθ(aτm | hτm)Q̃πθ
τm(sτm , hτm , aτm).

We call this estimate as state-history critic policy gradient (SHPG).

Note that we are not using the state information from the buffer for the HOPG expression, but

only in the SHPG expression. The TD(0) estimates for the Q-functions can be obtained as follows

Qπθ
τm(hτm , aτm) ≈ rτm(sτm , aτm) + γQπθ

τm+1(hτm+1, aτm+1),

Q̃πθ
τm(sτm , hτm , aτm) ≈ rτm(sτm , aτm) + γQ̃πθ

τm+1(sτm+1, hτm+1, aτm+1).

In both policy gradient expressions, we are sampling from a joint distribution of P(sτm , hτm). In the

HOPG expression, we discard the state information, so we marginalize sτm out and sample over P(hτm).

But now, to estimate the HOPG critic we need to sample the reward rτm(sτm , aτm), which indirectly

requires sampling the state through the reward. This means that we require sampling from P(sτm | hτm)
after we have already discarded state information from P(sτm , hτm) to get P(hτm). Effectively, we

are combining this distribution P(hτm) and the conditional distribution P(sτm | hτm) to get a joint

distribution P(sτm , hτm) which is just a reconstruction of the original distribution. But since we are

taking a practical batch size M which is not too large, it will be very unlikely that we will get more

than a single sample from each unique history trajectory. Thus the variance due to the single sample

estimate of P(sτm | hτm) will be very high which means the variance for the final policy gradient

expression which samples from P(sτm , hτm) will be very high. A high variance policy gradient update

can lead to slow or even unstable learning and would also be less sample efficient.

In contrast to this, we have the SHPG policy gradient expression which samples directly from

P(sτm , hτm). In this case, we pay the cost of requiring extra state information for each sample but this

removes the requirement of sampling from P(sτm | hτm) which is the main source of problems in the

HOPG case (single sample issue). It would not be a requirement to encounter the same histories over

different samples, since we are sampling from the joint distribution. There is no reconstruction of the
joint distribution P(sτm , hτm) required, and thus the variance from this directly sampled distribution

is lower. A lower variance policy gradient update can lead to faster and more stable learning since

there is less noise in the updates. It would also be more sample efficient since fewer samples would be

required to construct the batch gradient.

4 Representation loss for state-based dynamic program for POMDPs

In practice, one does not implement the history-based asymmetric actor-critic described in (14) and (15).

Rather, the history is compressed via a recurrent neural network, and the compressed version of the

history is used as a state. Using such a history compression leads to a loss in performance, which

we call representation loss. In this section, we present a bound of representation loss for state-based

dynamic programs.

4.1 Approximate Information State for POMDPs with state information

Next, we present an alternate form of the concept of an approximate information state (AIS) [1] that

incorporates state information.

Definition 2. Let Z be a pre-specified Banach space, F be a function class for IPMs and {ε, δZ, δS} be

pre-specified positive real numbers. A history compression function σ : Ht → Z, reward approximation
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function ˆ̃r : S× Z× A → R, approximate update kernel P̂ Z : S× Z× A → ∆(Z) and an approximate

state distribution kernel P̂ S : Z → ∆(S), is called a {ε, δZ, δS}-AIS generator if the process Zt = σ(Ht)

satisfies the following properties for all t ∈ {1, . . . ,T}:

(P1) Sufficient for approximate reward evaluation. For any realization st of St, ht of Ht and

any choice at of At, we have

|r(st, at)− ˆ̃r(st, zt, at)| ≤ ε.

(P2) Sufficient to predict itself approximately. For any realization st of St, ht ofHt and any choice

at of At, and for any Borel subset B of Z, define µZ
t (B) := P(Zt+1 ∈ B | St = st, Ht = ht, At = at)

and νZ(B) := P̂ Z(B | st, σ(ht), at); then,

dF(µ
Z
t , ν

Z) ≤ δZ.

(P3) Sufficient to generate the belief over the state approximately. For any realization ht ofHt,

and for any Borel subset B of S, define µS
t (B) := P(St ∈ B | Ht = ht) and ν

S(B) := P̂ S(B | σ(ht));
then,

dF(µ
S
t , ν

S) ≤ δS.

Using this {ε, δZ, δS}-AIS Zt, we can construct an approximate dynamic program that uses the

approximate functions and kernels associated with the AIS, which tries to approximate the functions and

kernels of the original dynamics. For all sT+1, zT+1 and aT+1, we initialize V̂T+1(zT+1), Q̂T+1(zT+1, aT+1)

and ˆ̃QT+1(sT+1, zT+1, aT+1) to zero and set:

V̂t(zt) := max
at∈A

Q̂t(zt, at), (16)

Q̂t(zt, at) :=

∫
S

ˆ̃Qt(st, zt, at)P̂
S(dst | zt), (17)

ˆ̃Qt(st, zt, at) := ˆ̃r(st, zt, at) + γ

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at). (18)

Next, given any AIS dependent time-homogeneous recursively updateable policy π̂(zt) = π̂(σ(ht)) =

π(ht), we can write down the associated value functions to evaluate the performance of that policy in

the approximated setup. For all sT+1, zT+1 and aT+1, we initialize V̂ π̂T+1(zT+1) Q̂
π̂
T+1(zT+1, aT+1) and

ˆ̃Qπ̂T+1(sT+1, zT+1, aT+1) to zero and set:

V̂ π̂t (zt) :=
∑
at∈A

π̂(at | zt)Q̂π̂t (zt, at), (19)

Q̂π̂t (zt, at) :=

∫
S

ˆ̃Qπ̂t (st, zt, at)P̂
S(dst | zt), (20)

ˆ̃Qπ̂t (st, zt, at) := ˆ̃r(st, zt, at) + γ

∫
Z

V̂ π̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at). (21)

It is relevant to discuss some common aspects between [30] and our work. The degree of approxima-

tion in the approximate representation, which we refer to as an approximate information state (AIS) [1],

can be quantified and performance guarantees can be obtained for the AIS representation, which are of

a different nature from the regret based bounds in [30]. The regret bounds still hold for the POMDP

model with the AIS representation considered in this paper.

4.2 An upper bound on loss when using an AIS

Theorem 1. Suppose we have for all st, ht and at, an AIS {Zt}Tt=1 that satisfies (P1), (P2) and (P3);

and any π̂ and π = π̂ ◦ σ, then

|Q⋆t (ht, at)− Q̂t(σ(ht), at)| ≤ αt, (22)
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|V ⋆t (ht)− V̂t(σ(ht))| ≤ αt, (23)

|Qπt (ht, at)− Q̂π̂t (σ(ht), at)| ≤ απ̂t , (24)

|V πt (ht)− V̂ π̂t (σ(ht))| ≤ απ̂t , (25)

|Q̃πt (st, ht, at)−
ˆ̃Qπ̂t (st, σ(ht), at)| ≤ α̃π̂t , (26)

where

αt =

T∑
τ=t

γτ−t
[
ε+ δSρF(ˆ̃r)

]
+ γτ−t+1δZρF(V̂τ+1) + γτ−t+1δSρF(V̊τ+1),

απ̂t =

T∑
τ=t

γτ−t
[
ε+ δSρF(ˆ̃r)

]
+ γτ−t+1δZρF(V̂

π̂
τ+1) + γτ−t+1δSρF(V̊

π̂
τ+1),

with V̊ π̂t+1(st) =
∫
Z
V̂ π̂t+1(zt+1)P̂

Z(dzt+1 | st, zt, at), and

α̃π̂t =

T∑
τ=t

γτ−t
[
ε+ γδZρF(V̂

π̂
τ+1)

]
.

Furthermore, if we have π̂ such that for all ht, supp(π̂(σ(ht))) ⊆ argmaxat∈A Q̂t(σ(ht), at), then

|Q⋆t (ht, at)−Qπt (ht, at)| ≤ 2αt, (27)

|V ⋆t (ht)− V πt (ht)| ≤ 2αt. (28)

See Appendix A for proof.

5 RL with representation losses

Following the main idea of [1], one may conjecture that adding the representation losses of Theorem 1

in the standard implementation of asymmetric actor-critic may improve performance. To test this

conjecture, we modify the asymmetric actor-critic algorithm described in Section 3.2 by adding

representation losses as an auxiliary loss. We describe this algorithm below.

5.1 Asymmetric actor-critic with AIS losses

The main idea is to add an “AIS-block” to the existing asymmetric actor-critic architecture, as shown

in Figure 1. The AIS-block consists of two parts: (i) an AIS generator σξ with parameters ξ, which

is a recurrent neural network such as an LSTM or a GRU and (ii) an AIS-predictor {ˆ̃r, P̂ Z, P̂ S}ψ
with parameters ψ, which is a feed-forward neural network. The loss of the AIS-block is chosen as

ε2 + (δZ)2 + (δS)2, where (ε, δZ, δS) are as defined in Definition 2. Note that δZ and δS depend on the

choice of an IPM. See [1] for a discussion on the choice of IPM. In our experiments, we choose MMD as

the IPM. For this choice, we have the following gradient for the AIS loss:

∇ξ,ψLAIS = Eπθ
[
(r − ˆ̃r)2

]
+ Eπθ

[
(E[νZt ]− 2Zt+1)

⊺E[νZt ]
]
+ Eπθ

[
(E[νSt ]− 2St)

⊺E[νSt ]
]
, (29)

where the expression for the last two terms follows from [1, Prop 35]. We update the AIS parameters

(ξ, ψ) by back-propagating the above gradient.

The AIS generator generates an approximate information state Zt. We use Zt as a compression for

the history in the auxiliary action-value function Q̃t and the policy π and update the parameters of the

critic and actor in a manner similar to (14) and (15).
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RNN: 𝜎𝜉 NN: { ̂̃𝑟 , �̂�𝖹, �̂�𝖲}𝜓
State: 𝑍𝑡−1

AIS Generator AIS Predictor

𝑍𝑡

AIS Block
𝐴𝑡

𝑆𝑡

𝑌𝑡

𝑅𝑡

𝐴𝑡−1

̂̃𝑟 𝑡

𝜈𝖹
𝑡

𝜈𝖲
𝑡

NN: ̃𝑄𝜁NN: 𝜋𝜃

𝑆𝑡

Asymmetric Critic

𝐴𝑡

Actor

Figure 1: Block diagram of the proposed RL algorithm

5.2 Numerical experiments

To test the performance of the asymmetric actor-critic with AIS losses described above, we compare

with the vanilla asymmetric actor-critic, as presented in [12]. We use the same environments as used

in [12].

We compare the following two algorithms:

1. asym-ac which is the asymmetric actor-critic as proposed in [12]. We use the code provided
in [12] to run our experiments.

2. asym-ac-ais which is the asymmetric actor-critic with AIS losses presented in Section 5.1.

We train the asym-ac-ais algorithm on six environments for 106 to 107 steps and compare with the

asym-ac baseline from [12]. Each experiment is repeated for 20 sample paths and the mean and

standard deviation are shown in Figure 2. The resuls show that adding AIS losses (or representation

losses) slightly slows down learning and does not lead to an improvement in the converged value. Based

on these results, there is no advantage (or rather, there is a slight disadvantage) in adding AIS losses

as an auxiliary loss in asymmetric actor-critic. This is in sharp contrast to the drastic improvement in

performance obtained by adding AIS losses in symmetric actor-critic demonstrated in [1]. These results

suggest that representation learning is not as important when full state information is available.

6 Conclusions

The main contribution of this work is to establish the theoretical guarantees on performance for the case

of asymmetric actor-critic using an approximate information state that is offered by Theorem 1. We

also provide an explanation for why asymmetric actor-critc performs better than actor-critic algorithms.

Motivated by recent successes in actor-critic algorithms for POMDPs [1, 23–26] which establishes



Les Cahiers du GERAD G–2023–57 9

(a) Heaven-Hell-3 (b) Heaven-Hell-4

(c) Shopping-5 (d) Shopping-6

(e) Car-Flag (f) Cleaner

Figure 2: Comparison of AIS-based A2C with history only critic and state-based critic for 6 benchmarking environments
used in [12] (for 20 random seeds).

similar bounds and provides experiments in RL, we aim to study the effectiveness of the concept of
approximate information state for the case of asymmetric actor-critic methods. This is mainly because

several situations arise where state information is available on a temporary basis (during training only)

following execution without this state information. Our empirical results perform comparably with

the existing state-of-the-art actor-critic method. However, the empirical validation of this theory is

of secondary importance and we do not claim that using an AIS with asymmetric actor-critic always

improves performance, rather we aim to provide a systematic rationale for RL algorithms for this

particular class of problems. Another benefit of using an AIS is that it allows us to learn a meaningful

common representation for the actor, critic and the AIS generator and predictor. Such a representation

also has utility in the form of interpretability in terms of why an autonomous decision maker makes

certain types of decisions. Future work involves formally showing that such an algorithm converges.
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A Proof of Theorem 1

A.1 Proof of (22) and (23)

First, note that

E[V̂t+1(Zt+1) | St = st, Ht = ht, At = at] =

∫
Z

V̂t+1(zt+1)P(dzt+1 | St = st, Ht = ht, At = at)

=

∫
Y

V̂t+1(zt+1)P
S,Y(dyt+1 | st, at). (30)

The proof follows by backward induction. At time T+1, the induction hypothesis is true. Now, consider

for time t

|Q⋆t (ht, at)− Q̂t(zt, at)|
(a)

≤
∣∣∣∣∫

S

[
r(st, at)P(dst | ht)− ˆ̃r(st, zt, at)P̂

S(dst | zt)
]∣∣∣∣ (31)

+ γ

∣∣∣∣∫
S

∫
Y

V ⋆t+1(ht+1)P
S,Y(dyt+1 | st, at)P(dst | ht)

−
∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P̂ S(dst | zt)

∣∣∣∣ , (32)

where (a) follows from (12), (17) and the triangle inequality. First, we consider (31) separately:

(31)
(b)

≤
∣∣∣∣∫

S

[
r(st, at)P(dst | ht)− ˆ̃r(st, zt, at)P(dst | ht)

]∣∣∣∣
+

∣∣∣∣∫
S

[
ˆ̃r(st, zt, at)P(dst | ht)− ˆ̃r(st, zt, at)P̂

S(dst | zt)
]∣∣∣∣

(c)

≤ ε+ δSρF(ˆ̃r),

where (b) follows from adding and subtracting
∫
S
ˆ̃r(st, zt, at)P(dst | ht) and the triangle inequality and

(c) follows from (P1) and (P3). Next, we consider (32):

(32)
(d)

≤ γ

∣∣∣∣∫
S

∫
Y

V ⋆t+1(ht+1)P
S,Y(dyt+1 | st, at)P(dst | ht)

−
∫
S

∫
Y

V̂t+1(zt+1)P
S,Y(dyt+1 | st, at)P(dst | ht)

∣∣∣∣ (33)

+ γ

∣∣∣∣∫
S

∫
Z

V̂t+1(zt+1)P(dzt+1 | st, ht, at)P(dst | ht)

−
∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P̂ S(dst | zt)

∣∣∣∣, (34)

where (d) follows from adding and subtracting (30) and the triangle inequality. Since the induction

hypothesis is true for t+ 1, we have

(33) ≤ γαt+1.

Finally, for the remaining part in (34), we have

(34)
(e)

≤ γ

∣∣∣∣∫
S

∫
Z

V̂t+1(zt+1)P(dzt+1 | st, ht, at)P(dst | ht)

−
∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P(dst | ht)

∣∣∣∣



Les Cahiers du GERAD G–2023–57 11

+ γ

∣∣∣∣∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P(dst | ht)

−
∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P̂ S(dst | zt)

∣∣∣∣
(f)

≤ γδZρF(V̂t+1) + γδSρF(V̊t+1),

where (e) follows from adding and subtracting a term and the triangle inequality and (f) follows from

(P2) and (P3). Thus, we have shown that

|Q⋆t (ht, at)− Q̂t(zt, at)| ≤ ε+ δSρF(ˆ̃r) + γαt+1 + γδZρF(V̂t+1) + γδSρF(V̊t+1) = αt.

To complete the induction argument at time t, notice that

|V ⋆t (ht)− V̂t(zt)| =
∣∣∣∣max
at∈A

Q⋆t (ht, at)−max
at∈A

Q̂t(zt, at)

∣∣∣∣
≤ max

at∈A
|Q⋆t (ht, at)− Q̂t(zt, at)| ≤ αt.

This proves (22) and (23).

A.2 Proof of (24) and (25)

The proof is similar to the proof of (22) and (23).

A.3 Proof of 26

If π̂ is such that supp(π̂(σ(ht))) ⊆ argmaxat∈A Q̂t(σ(ht), at), so that Q̂t(zt, at) = Q̂π̂t (zt, at), and also

π = π̂ ◦ σ, then (27) and (28) are obtained by the triangle inequality as follows

|Q⋆t (ht, at)−Qπt (ht, at)| ≤ |Q⋆t (ht, at)− Q̂t(zt, at)|+ |Qπt (ht, at)− Q̂π̂t (zt, at)|
≤ αt + απ̂t = 2αt.

To show 26, first note that

E[V̂ π̂t+1(Zt+1) | St = st, Ht = ht, At = at] =

∫
Z

V̂ π̂t+1(zt+1)P(dzt+1 | st, ht, at)

=

∫
Y

V̂ π̂t+1(zt+1)P
S,Y(dyt+1 | st, at). (35)

Consider

|Q̃πt (st, ht, at)−
ˆ̃Qπ̂t (st, zt, at)|

(a)

≤ |r(st, at)− ˆ̃r(st, zt, at)|

+ γ

∣∣∣∣∫
Y

V πt+1(ht+1)P
S,Y(dyt+1 | st, at)

−
∫
Y

V̂ π̂t+1(zt+1)P
S,Y(dyt+1 | st, at)

∣∣∣∣
+ γ

∣∣∣∣∫
Z

V̂ π̂t+1(zt+1)P(dzt+1 | st, ht, at)

−
∫
Z

V̂ π̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)

∣∣∣∣
(b)

≤ ε+ γαπ̂t+1 + γδZρF(V̂
π̂
t+1)

(c)

≤ απ̂t ,

where (a) follows from (9), (21), adding and subtracting (35) and the triangle inequality; (b) follows

from (P1), (P2) and (25); and (c) follows from adding a few extra positive terms.
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reinforcement learning for autonomous driving: A survey, IEEE Transactions on Intelligent Transportation
Systems, 23(6):4909–4926, 2021.

[3] B. An, S. Sun, and R. Wang, Deep reinforcement learning for quantitative trading: Challenges and
opportunities, IEEE Intelligent Systems, 37(2):23–26, 2022.

[4] A. Perera and P. Kamalaruban, Applications of reinforcement learning in energy systems, Renewable and
Sustainable Energy Reviews, vol. 137, p. 110618, 2021.

[5] J. Kober, J. A. Bagnell, and J. Peters, Reinforcement learning in robotics: A survey, The International
Journal of Robotics Research, 32(11):1238–1274, 2013.

[6] R. D. Smallwood and E. J. Sondik, The optimal control of partially observable markov processes over a
finite horizon, Operations research, 21(5):1071–1088, 1973.

[7] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, Planning and acting in partially observable stochastic
domains, Artificial intelligence, 101(1-2):99–134, 1998.

[8] C. H. Papadimitriou and J. N. Tsitsiklis, The complexity of optimal queueing network control, in Conference
on Structure in Complexity Theory. IEEE, 1994, pp. 318–322.

[9] M. Hausknecht and P. Stone, Deep recurrent q-learning for partially observable mdps, in AAAI Fall
symposium, 2015.

[10] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, Memory-based control with recurrent neural networks,
arXiv:1512.04455, 2015.

[11] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, Mastering diverse domains through world models,
arXiv:2301.04104, 2023.

[12] A. Baisero and C. Amato, Unbiased asymmetric actor-critic for partially observable reinforcement learning,
arXiv:2105.11674, 2021.

[13] A. Baisero, B. Daley, and C. Amato, Asymmetric DQN for partially observable reinforcement learning, in
Uncertainty in Artificial Intelligence. PMLR, 2022, pp. 107–117.

[14] D. Ha and J. Schmidhuber, World models, arXiv:1803.10122, 2018.

[15] P. Zhu, X. Li, P. Poupart, and G. Miao, On improving deep reinforcement learning for pomdps,
arXiv:1704.07978, 2017.

[16] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber, Solving deep memory POMDPs with recurrent
policy gradients, in Int. Conf. on Artificial Neural Networks. Springer, 2007, pp. 697–706.

[17] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel, Asymmetric actor critic for
image-based robot learning, arXiv:1710.06542, 2017.

[18] W. Yue, Y. Zhou, X. Zhang, Y. Hua, Z. Wang, and G. Kou, Aacc: Asymmetric actor-critic in contextual
reinforcement learning, arXiv:2208.02376, 2022.

[19] A. Dionigi, A. Devo, L. Guiducci, and G. Costante, E-vat: An asymmetric end-to-end approach to visual
active exploration and tracking, IEEE Robotics and Automation Letters, 7(2):4259–4266, 2022.

[20] A. Warrington, J. W. Lavington, A. Scibior, M. Schmidt, and F. Wood, Robust asymmetric learning in
pomdps, in International Conference on Machine Learning. PMLR, 2021, pp. 11 013–11 023.
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