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document est accepté et publié, le pdf original est retiré si c’est
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Abstract : Incentive-based demand response aggregators are widely recognized as a powerful strategy
to increase the flexibility of residential community microgrid (RCM) while allowing consumers’ assets
to participate in the power system operation in critical peak times. This paper presents the computa-
tional investigation for an incentive-based residential community [1], where an incentive-based pricing
mechanism is adopted to encourage peak demand reduction and share the incentive demand curve with
the residential community through the aggregator. Nash Equilibrium strategies, which minimize the
total RCM energy cost functions, are found by applying mean field game theory. Computational inves-
tigations of the decentralized RCM electric energy problem via mean field game theory are presented
for the MG with controllable load household and connected to a main grid with an incentive-based
pricing strategy.

Keywords: Keywords: RCM, aggregator, demand response, Mean field game theory, dynamical game,
pricing mechanism, dynamical pricing, stochastic control
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1 Introduction

The smart grid is much automated and can be integrated into the main supply with distributed

generation (DG) sources (primarily renewable), energy storage systems (ESSs), and advanced metering

infrastructure. Due to using high technology devices in generation and distribution systems, the smart

grid represents an advanced digital system [2]. In addition, the smart grid functionalities, such as

real-time monitoring, load balancing, and accurate billing, require the granular collection of smart

metering data at frequent time intervals [3].

In this paper, we propose a computational game-theoretical investigation for the incentive-based

residential community microgrid with a load aggregator (RCMLG) via an application of Mean Field

Game theory (MFG). Mean field game theory is a mathematical framework that studies the behavior

of large populations of interacting agents. It combines concepts from game theory and statistical

physics to analyze situations where each agent aims to optimize its own objective function while

accounting for the aggregate behavior of the entire population. In mean-field games, the interactions

between agents are approximated by a mean field, representing the average effect of all other agents on

each individual’s decision-making process. This approach allows for the analysis of complex systems

with a large number of agents, making it applicable to various fields such as economics, biology, and

engineering. Mean field game theory has been extensively studied and developed since its introduction

by Lasry and Lions [4, 5, 6], and separately by Caines, Huang, and Malhame [7, 8] in 2006, leading to

valuable insights into the dynamics and equilibria of large-scale interactive systems.

This paper represents a continuation of the work in [1]. The energy network considered in this

framework consists of a main grid generation company (MA) that adopts an incentive-based pricing

mechanism to reduce peak demand and it shares the incentive demand curve with the residential mi-

crogrid (MG) through the aggregator. The aggregator’s objective is to maximize the welfare of the

microgrid by finding the optimal equilibrium electricity price in the microgrid. In the constructed MG,

household demand is divided into two types: (i) fixed, and (ii) controllable. Households communicate

with each other and the main grid through the aggregator and they aim to minimize their individual

electricity bill. The numerical outcomes of this research will lead to (i) A new general pricing method-

ology for the MG connected to an incentive-based pricing MA, (ii) the Nash-Equilibrium strategies for

the households and community MG aggregator, and (iii) real-time optimization resulting in a reduction

of both households’ energy bill and MA peak demand cost.

1.1 MG architecture [1] and paper objectives

Considering the block diagram in [1] represented in Figure 1, the community MG is composed of an

aggregator andN households, in the formulated gameN is a sufficiently large number. By construction,

the aggregator mediates the energy exchange between the microgrid and the main grid along with the

energy exchange within the microgrid (i.e. between the households themselves and the households and

the main grid).

1.2 Computational investigation for the MGO problem in literature

This subsection surveys mathematical techniques used in literature to model stochasticity in MGO

problems. It discusses classical mathematical algorithms, machine learning algorithms, and the MFG

computational approach.

• Classical Mathematical Algorithms: Various mathematical solvers improve Microgrid (MG) man-

agement capabilities. A general algebraic modeling system (GAMS) is used to evaluate linear

equations and handle uncertainties in generation [9]. Multi-scenario mixed-integer linear pro-

gramming MILP models were used in [10]. In addition, sparse nonlinear optimizer (SNOPT)

which is based on GAMS was used in [11] to address scheduling and optimization problems.

These algorithms demonstrate effectiveness in handling large-scale MILP problems.
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Minor agent 1 Minor agent 2 Minor agent i Minor agent N

Community Microgrid Aggregator 
(Major Agent) 

: Community MG : Energy Exchange

MacroGrid

Figure 1: Major-minor agent community microgrid block diagram

• Machine Learning Algorithms: Noyan et al. introduced stochastic methods to approximate the

probability distribution function (PDF) of random scenarios in [12]. Scenario-based generation,

using discrete distribution sets and Monte Carlo Simulation (MCS), handles uncertainties in

photovoltaic (PV) and wind turbines (WT) where introduced in [13]. Fuzzy theory and robust

optimization are applied to renewable energy resources (RERs) and address parametric uncer-

tainty was introduced in [14].

• MFG Computational Approach: Mean field games theory utilizes differential calculus to represent

players as a continuum. It simplifies the handling of player entries/exits and enables seamless

modeling of player generations. The introduction of a social dimension incorporates statistical

data on other players. Mean field games offer advantages over N-player games and provide initial

approximations to N-player solutions. MFG is a decentralized approach that requires minimal

communication between agents. Its offline-solving capability makes it promising for real-time

microgrid power network optimization.

1.3 Paper objective

In this paper, the objective is to optimize the cost of the energy exchanged in community MG which
is operating in a grid-connected mode where the MA adopts an incentive-based pricing mechanism.

The focus is on numerically optimizing the MG optimization problem (MGO). In this context and as

seen in Figure 1, the community MG is composed of a sufficiently large number of households and an

aggregator. Households that are located within the geographical area of the MG communicate and

exchange energy with each other and with the main grid through the aggregator of the community

MG. The objective of the aggregator is to maximize the social welfare of the MG households. The

aggregator sets the equilibrium price in the MG and sends the aggregated demand to the main grid

provider. The aggregator collects the price of electricity from the main grid and then forwards the MG

equilibrium price and the main grid electricity price to households. Households in the MG react to

the message and the prices provided by the aggregator. Households’ objective function is to minimize

their energy cost and their demand is assumed to be divided into two types:(i) fixed demand, and

(ii) controllable demand. Fixed demand represents all demand of all the appliances that cannot be

controlled. Controllable demand represents all appliances that can be monitored and controlled as

they are running.

The scope of this paper is to numerically solve the MGO via an application means of dynamical

game theory. The objective of the connected households is to minimize their total cost and the

aggregator to maximize the social welfare of the MG via means of major agent minor agents mean
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field game theory. This paper presents a high-level formulation of the load aggregated energy problem

and a proof of concept that major-minor agent mean field game theory is a plausible way to find the

optimal pricing mechanism deployed in the microgrid and the optimal load management strategies for

the micro-grid households in an incentive main grid formulation.

1.4 Paper outline

The rest of the paper is structured as follows: Section II presents a summary of the MGO system

dynamics presented in [1]. Section III focuses on the formulation MGO via an application of mean-

field game theory. Section IV discusses the algorithmic implementation of the MGO. Section V presents

the numerical simulation results for the MGO along with the numerical robust analysis for the proposed

algorithms. Finally, in section VI we conclude the paper.

2 MGO system dynamics

This section presents a high-level summary of the MGO problem system dynamics from [1]. For the

detailed formulation, we refer the readers to [1].

2.1 Main grid pricing mechanism

In this framework, the power network scheme studies a case MG in Montreal, Quebec where there is

only one main energy company generator, Hydro-Quebec (HQ). The current electricity market price

in this paper is denoted by pMA dollars per kWh. HQ is motivated to adopt an incentive-based pricing

mechanism. Currently, HQ is offering two portfolios for households to choose from:

(a) Winter Credit Option (WCO),

(b) Rate Flex Dynamic Pricing (RFD)

The aim of these portfolios is to reduce peak costs. For the scope of this paper, Portfolio (a) will be

studied. Portfolio (a) works as follows: the day before a peak demand event, households will receive

a notification about the peak event, and during an event, households are entitled to a 0.5$/kWh for

every kilowatt-hour (kWh) curtailed (i.e. that is, not consumed compared with your usual energy use).

Figure 2 depicts the main grid pricing scheme for the WCO portfolios, the readers can infer that

the peak threshold credit line is denoted by τ and here τ = 4Kwh; and thus, during a peak event, if

the household’s demand is less than 4KWh, the household will be credited MA credit = 0.5$/Kwh.

0

1

2

3

4

5

6

7

8

9

10

0:00-6:00 6:01-9:00 9:01-16:00 16:01-20:00 20:01-23:59

Incentive Price Regular Price

Figure 2: Winter Credit Option (WCO)–Pricing scheme

http://www.hydroquebec.com/residential/customer-space/rates/winter-credit-option.html
http://www.hydroquebec.com/residential/customer-space/rates/rate-flex-d.html
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2.2 MG equilibrium price: PMG

The microgrid price will be divided into two components: (i) the base price [15], the Walrasian equi-

librium price that maximizes the social welfare, and (ii) the incentive/penalty during peak time. For

more details about the Walrasian equilibrium, we refer the readers to [15] and for the incentive/penalty

component, we refer the reader to [1]. Denote by pwMG(t) the Walrasian equilibrium MG price, pwMG(t)

is proportional to ▽Cu(GMG(t)) where Cu is the price function which is concave with respect to

GMG(t) where GMG(t) is the aggregated load in the MG i.e.

GMG(t) =

i=N∑
i=1

yi(t) = N × E{y(t)} = N

∫
Ωy

yµy(y, s)dy (1)

where Ωy is the range of y(t) for all 0 ≤ t ≤ T .

The AG will adopt the Walrasian Equilibrium during the off-peak-event time, and as its base

price during the peak event. The AG will set an incentive and penalty credit during peak events to

guarantee the grid functioning in the winter credit incentive threshold. During peak-event, the MG

will be considered as one entity and the aggregated threshold is T = τ ×N . The aggregated credited

saving of the MG at time t is λ(t) where

λ(t) =

(
T −

N∑
i=1

(
γi(t)− ri(t)

))
(2)

The AG aims to guarantee fairness and to set pMG as Nash-Equilibrium during the peak-event.

• Incentive credit:

ιi(t) =

{
(τ + ri(t))×MA credit ri(t) ≥ 0&γi(t) = 0

(τ − γi(t))×MA credit ri(t) = 0&γi(t) ≤ τ
(3)

• Penalty credit for household i when γi(t) ≥ τ & ri(t) = 0

ιi(t) = (τ − γi(t))×MA credit, (4)

where ri(t) and γi(t) represents the amount of energy sold or bought by household i at time t.

2.3 Household generation and operation cost dynamics

In this framework, we consider the scenario where households are homogeneous i.e. same technology

for generation and storage is deployed at the household’s site. The generated energy Θi by household

i at time t is governed by the following stochastic differential equation [15]:

dΘi = P i
PV dt+ ϵiΘdW

i
Θ, (5)

where W i
Θ, 1 ≤ i ≤ N are N independent Wiener process (i.e. Brownian Motion). Denote the

probability density function governing the energy generation by µθ(θ, t). For the scope of this paper, the

propagation of the probability density function for the generation function will be found by analyzing

the data collected over the span of 5 years for an MG consisting of 300 households.

The generation cost is mainly due to the operation and maintenance costs (O&M) of the PVs and

the cost of storage. Assuming the cost of operation and maintenance O&M isKO&M = 0.0535($/kWh)

for generation and CB,M = 0.001($/kWh) for storage; the cost of generation for household i is given

to be:

Ci(t) = KO&M ×Θi(t) + CB,M × Cmax × dt, (6)

where Cmax is the battery maximum capacity which is assumed uniform for all households i, 1 ≤ i ≤ N

and dt is the time increment.



Les Cahiers du GERAD G–2023–56 5

2.4 Energy load management

For simplicity, we assume that household i, 1 ≤ i ≤ N has a time-varying energy demand profile

denoted by yi(t). Households in this framework are assumed to possess a smart house technology with

two types of demand: (i) fixed demand denoted by yif (t), and (ii) controllable demand denoted by

yic(t). Household i demand yi(t) is given by:

yi(t) = yif (t) + yic(t) (7)

Denote by µyf
(yf , t) the probability density function representing the fixed load appliances. Simi-

larly to the generation density function, the probability density function governing the fixed demand

will be calculated from collected data over the span of 4 years for 300 households.

For the controllable load, households monitor the electricity price and accordingly, they set the

mode of operation for the controllable appliances.

Using such modes of transition between modes of operation in the controllable appliances, the

nature of controllable appliances, and the fact that a load of each mode of operation depends on

external conditions (such as external temperature, appliance insulation, etc.), the increment stochastic

differential equation will be deployed to model the propagation of the controllable load at time t for

each appliance. Thus the total controllable load yc(t) will be represented by the following equation:

dyc = uc(t)dt+ ϵcWc(t); (8)

where uc(t) represents the increment control vector action for each controllable appliance and Wc(t) is

a Brownian motion covering the stochastic nature of the controllable appliances, and yic(t) is bounded

by Y c
min ≤ yic(t) ≤ Y c

max for all 1 ≤ i ≤ N . In this framework, households are assumed to be identical,

hence Y c
min and Y c

max are considered uniform for all households and represent the boundary conditions

for the controllable load to be in the household’s comfort mode of operation. In other words, Y c
min

and Y c
max represent the minimum load and maximum load respectively for the controllable appliances

to function within the minimum mode and maximum mode of their respective comfortable mode of

operation.

2.5 Household energy profile[1]

Each household has an energy profile consisting of load, generation, storage, energy withdrawn, and

energy sold. Θi(t) and yi(t) are the amount of energy generated by household i and the load of

household i at time t respectively. The set of decision variables, ui
c(t), u

i
r(t), and ui

γ(t), represent

the controllable load, the discharging control action (i.e. the amount of energy sold by household i,

and the charging control (i.e. the amount of energy withdrawn from the MG to charge the battery of

household i) respectively. Define

δi(t) := Θi(t) + bi(t)− yi(t) (9)

as the net energy after meeting the current demand. The dynamics of bi(t), ri(t) and γi(t) are as

follows:

bi(t+ dt) =bi(t) + P i
pv(t)dt− ui

c(t)dt− dyf (t)dt+ ϵθdWθ − ϵcdWc − ri(t) + γi(t) (10)

ri(t) =

{
ui
r(t)δ

i(t)

s.t. ui
r(t) = 0 when δi(t) ≤ 0 & 0 ≤ ui

r(t) ≤ 1
(11)

γi(t) =


ui
γ(t)Cmaxdt if δi(t) ≤ 0

ui
γ(t)

(
Cmaxdt− δi(t)

)
if δi(t) > 0

s.t. 0 ≤ uγ(t) ≤ 1 for all 0 ≤ t ≤ T

(12)
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where 0 ≤ bi(t) ≤ Cmax for all t and where Cmax is the storage battery capacity for household i. Two

scenarios to be considered; (i) scenario one (SC1) where δi(t) ≤ 0 i.e. there is a shortage at household

i and household i is a pure consumer, and (ii) scenario two (SC2) where δ(t) ≥ 0 where household i

is a prosumer i.e. household i has the potential to sell his overflow energy or charge his battery for

future use.

In SC1, we have δ(t) ≤ 0 then u∗
r = 0, 0 ≤ u∗

γ and:

db = Cmaxuγdt+ PPV dt− ucdt− dyfdt+ ϵbdWb (13)

denote by function f := PPv − uc − dyf then db is can be written as follows:

db = (Cmaxuγ + f)dt+ ϵbdWb (14)

On the other hand scenario SC2 where δ(t) > 0 will be divided into two sub-cases:

Case 1: It is optimal to sell (i.e. u∗
γ = 0):

db =
1− u∗

r

1 + u∗
r

fdt+ ϵbdWb (15)

Case 2: It is optimal to recharge (i.e. u∗
r = 0):

db =
1− u∗

γ

1 + u∗
γ

fdt+
u∗
γ

1 + u∗
γ

Cmaxdt+ ϵbdWb (16)

Assuming PPV and y are piece-wise continuous and differentiable and using (13), (15) and (16) the

readers can prove that db is continuous and differentiable and that uγ and ur are continuous.

3 MGO: Dynamical game formulation

The objective of this framework is to develop a decentralized control synthesis under large population

conditions such that each player’s strategy uses only limited information. In particular, we assume

that the aggregator’s decisions are communicated to the households, while the state of each household

is always known to itself but can be estimated by the aggregator using the mean field framework.

The key feature of the MFG approach is finding the closed-loop solutions formed by the Mean Field
Hamilton Jacobean Bellman equation (MF-HJB) and the Mean Field Fokker Planck Kolomogrov

Equation (MF-FPK).

3.1 Mean field Fokker Planck equation

The aggregator in the constructed framework will be solving the Fokker Planck Kolomogrov equa-

tion affiliated with the controllable load and the generated energy and will find the propagation of

µ(yc, θ, t) with respect to t. The aggregator at any time t is able to find the probability density

function µ(yc, yf , θ, t) := µ(yc, θ, t)× µyf
(yf , t). Recall Equations (5) and (8) representing the partial

differential equation for the generation θ and the controllable load yc the mean field Fokker Plank

Kolomogrov (MF-FPK) equation will be presented in the following equation:

∂µ(yc, θ, t)

∂t
=− ∂

∂θ
PPV µ(yc, θ, t) +

1

2

∂2

∂θ2
(ϵ2θµ(yc, θ, t)) (17)

− ∂

∂yc
[ucµ(yc, θ, t)] +

1

2

∂2

∂y2c
(ϵ2cµ(yc, θ, t))
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3.2 Mean field Hamilton Jacobean Bellman equation

The microgrid connection to the main grid has two modes of operation: (i) peak event, and (ii) off-peak

demand. For the off-peak scenario, we will use the MFG formulation in [15] with one modification

where we include the controllable load and the controllable appliances. The equilibrium price in this

scenario is the Walrasian equilibrium, we need to note that the incentive and penalty control actions

are inactive during the off-peak event. Regarding the second scenario, the peak-event, the cost function

L(b, y, θ, γ, r, t) for a generic house i in the microgrid is represented as follows:

L(•) :=E

∫ Tf

0

(γ(t) (w1(t)PMG(t) + w2(t)PMA(t))

− r(t)PMG(t) + ιi(t) + CO&M (t))dt (18)

where w1 and w2 denote the fraction of demand consumed from the MG and the main grid respectively.

From [1], w1 and w2 in Equation (18) are as follows:

w1(t) =min

{
1,

∑N
i=1 r

i(t)∑N
i=1 γ

i(t)

}
w2(t) =1− w1(t) (19)

The cost function in (18) becomes:

L(•) =
∫ Tf

0

(CO&M +N∇Cu

(∫
Ωy

yµydy

)
(γw1 − r)

+ γ(t)w2PMA + ι)dt (20)

Hence, the cost to go J(b, y, θ, γ, r, s) is given by:

J(•) =E

[∫ Tf

s

L(bt, yt, θt, γt, rt)dt

]
s.t. (21)

bs = b, ys = y, θs = θ, γs = γ, rs = r

and accordingly the value function v(•) is given by:

v(b, y, θ, γ, r, s) = inf
uγ ,ur

J(b, y, θ, γ, r, s) (22)

The generic household i cost function will be subject to two cases: (i) energy shortage case (i.e. δi ≤ 0)

and (ii) energy surplus case (i.e. δi(t) ≥ 0). Assuming that all functions are sufficiently smooth then

the mean field Hamilton-Jacobi-Bellman equations (MF-HJBs) for each scenario are:

• SC1: δ(t) ≤ 0, u∗
r = 0 and the MF-HJB-SC1 is:

−∂v

∂t
=− CO&M + PPV

∂v

∂θ
+

ϵ2θ
2

∂2v

∂θ2
(23)

+ inf
uγ

{
γ (w1PMG + w2PMA) + Cmaxuγ

∂v

∂b
− ι

}
+ inf

uc

{
uc

∂v

∂yc
+

ϵ2c
2

∂2v

∂y2c

}
where ι(t) = (τ − γ(t))×MA credit and thus u∗

γ and u∗
c are given by the following equations:

u∗
γ = inf

uγ

{
Cmaxuγ

(
∂v

∂b
+MA credit

)}
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⇒ u∗
γ =

{
0 if ∂v

∂b +MA credit ≥ 0

1 if ∂v
∂b +MA credit < 0

(24)

u∗
c = −sgn

(
∂v

∂yc

)
(25)

• SC2: δ(t) > 0 i.e. household can either sell the surplus, fill the battery or do nothing. The

MF-HJB-SC2 is:

−∂v

∂t
=CO&M + PPV

∂v

∂θ
+

ϵ2θ
2

∂2v

∂θ2
(26)

+ inf
uγ ,ur,uc

{γ (w1PMG + w2PMA)− rPMG − ι}

+ inf
uγ ,ur,uc

{(
1− uγ

1 + uγ
+

1− ur

1 + ur

)
(PPV − dy)

∂v

∂b

}
+ inf

uγ ,uc

{
uγ

1 + uγ
Cmax

∂v

∂b

}
+ inf

uc

{
uc

∂v

∂yc
+

ϵ2c
2

∂2v

∂y2c

}
thus:

{u∗
γ , u

∗
r} = inf

uγ ,ur

(
1− uγ

1 + uγ
+

1− ur

1 + ur

)
(PPV − dy)

∂v

∂b

+
uγ

1 + uγ
Cmax

∂v

∂b
(27)

u∗
c =− sgn

(
∂v

∂yc

)
(28)

The optimal solutions for the MF-HJB-SC2 equation in (26) are derived. The optimal solutions

are presented in Table 1.

Table 1: Optimal solution considering SC2

Scenario PPV − dy ∂v
∂b

+MA credit

u∗r = 1 ≥ 0 ≥ 0
uγ = 0

u∗r = 0 > 0 < 0
uγ = 0

u∗r = 0 < 0 ≥ 0
uγ = 0

u∗r = 0 ≤ 0 < 0
uγ = 1

3.3 Mean field loop

The mean field loop aims to find the fixed point convergence i.e. the pair of the probability density

function and its corresponding set of optimal control actions. Recall the equations representing the

MF-FPK and MF-HJB in (17), (23), and (26), the MFG loop can be summarized by the following

diagram:

µ(yc, θ, t)
(1,3,4)−−−−→ pMG(t)

(23,26)−−−−→v(b, y, θ, γ, r, t) (29)

↖ ↙
↖ ↙

u∗
c(t), u

∗
γ(t), u

∗
r(t)
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The loop in Equation (29) summarizes the MFG approach, the coupling in the MF-HJB and MF-

FPK, and the coupling in the cost functions and system dynamics of the generic agents and aggregators.

The uniqueness of the MFG approach is represented by the converging solution of MF-FPK and control

actions represented by µ(yc, θ, t) and [u∗
c , u

∗
γ , u

∗
r ] of the loop (29).

4 Algorithmic implementation for the MGO via MFG

In this section, we will present the computational procedures that address the MF-HJB equation in

both scenarios: (i) a day with no peak event, and (ii) a day with peak event.

4.1 Boundary specifications and discretization techniques

To solve the MFG equations (HJB and FPK) using numerical methods, two aspects need to be deter-

mined: 1) the boundary conditions and 2) the approximation techniques employed to discretize the

partial differential equations.

4.1.1 Boundary specifications

The following are the prescribed boundary specifications for implementing the MFG algorithm on the

contructed MGO problem:

• 0 ≤ t ≤ T , where T is to be quantified.

• 0 ≤ ur, uγ ≤ 1 and the load control is uc := [−1, 1].

• Power is assumed to be positive and bounded i.e.

0 ≤ PPV ≤ Pmax
PV , where Pmax

PV is to be quantified.

• Controllable load yic(t) is bounded for all 1 ≤ i ≤ N , i.e. Y c
min ≤ yic(t) ≤ Y c

max, where Y c
min and

Y c
max are defined.

• µθ(θ, t) and µy(y, t) are specified and known to the households.

• Final cost is zero i.e. v(θ, b, y, γ, r, T ) = 0.

• Final household i account balance bi(T ) = 0 for all 1 ≤ i ≤ N .

• Cmax is uniform for all households and is to be quantified.

• During peak events, MA credit, and the demand curve threshold τ are to be quantified and

communicated to households through the microgrid aggregator.

4.1.2 Discretization techniques

To achieve numerical solutions for the partial equations, it is imperative to meet these requirements and

employ the designated approximation techniques. The time, energy, household balance, and demand

are represented by ∆t, ∆θ, ∆b, and ∆y, respectively, as step sizes. For the numerical algorithms to

converge effectively, these step sizes must fulfill the essential conditions outlined in [16], which ensure

the convergence of the Fixed Point Argument Method. Specifically, in this scenario, the conditions are

as follows:

|Pmax
PV |∆t

(∆θ)2
≤ 1

2
;

∆t

(∆y)2
≤ 1

2
; (30)

|Υ|∆t

(∆b)2
≤ 1

2
;
|Y c

max|∆t

(∆yc)2
≤ 1

2

where Υ := max [Cmax,max (PPV − δy)]. The methods employed to discretize the first and second-

order derivatives of a function g with respect to the variable ρ are outlined below:
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1st order derivative:

Forward in ρ :
∂g(., ρ)

∂ρ
=

g(., ρ+∆ρ)− g(., ρ)

∆ρ
(31)

Backward in ρ :
∂g(., ρ)

∂ρ
=

g(., ρ)− g(., ρ−∆ρ)

∆ρ

2nd order derivative:
∂2g

∂ρ2
=

g(., ρ+∆ρ)− 2g(., ρ)− g(., ρ−∆ρ)

(∆ρ)2
(32)

4.2 Algorithmic procedure for the uniform households

The presented numerical algorithm focuses on the constructed residential community microgrid where

statistical information is derived from historically collected data. In this framework, we are assuming

that the households possess knowledge of the statistical information, denoted by µθ(t, θ) and µy(t, y).

The MFG algorithmic implementation provides a numerical solution for the converging solution for

mean-field equations presented in the MFG-loop in Equation (29). Algorithm 1 constitutes an iterative

method for finding a a fixed point solutionfor the loop in Equation (29) with a converging error ϵf to

be defined:

Algorithm 1 MFG-FPK and MFG-HJB numerical solution

Input: µ0(θ, y) Cmax θmin θmax Y c
min Y c

max T ϵf

Initialization:
Solve (17) by assuming u0

r = 0, u0
γ = 0, u0

c = −1 and denote the solution by µ0
t (θ, y) and assign k = 1

Loop: At iteration k, execute the following:
Substitute µk−1

t (θ, y) in (23) and (26) and solve the MF-HJB in both scenarios in the backward direction and denote
the solution by vk(θ, y, t)
Find the optimal controls uk

r,γ,c using the following equations (24), (25), (27), and (28) and Table 1

Substitute uk
r,γ,c in (23) and (26) and find µk

t (θ, y) by solving the MF-FPK in (17) in the forward direction

If |µk
t (θ, y)− µk−1

t (θ, y)| < ϵf , let µk
t (θ, y) = µt(θ, y) and exit the loop.

Output: µt(θ, y)

Algorithm 2 is employed to generate an optimal strategy for an individual household within the MG,
here optimality is defined as the best response strategy. It is important to note that each household,

denoted as i (where 1 ≤ i ≤ N), possesses complete information about their respective state variables

and system dynamics, as indicated in the input section of Algorithm 2. Furthermore, household i

also observes the values of γi(t) and ri(t), and has control over ui
γ(t), u

i
r(t), and ui

c(t). The generic

household best response algorithm is as follows:

5 Numerical result and robustness analysis: Montreal MG case
study

In this section, we examine the computational results of the proposed algorithms for solving the

constructed MGO problem, using the Montreal Microgrid case study as the basis. The residential

microgrid considered in this study assumes that all households have uniform generations and load

potentials. In other words, each household deploys similar solar panel systems and utilizes similar

household appliances.
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Algorithm 2 Computation of a generic agents’ best response control along a sample path during both off-peak event day
and peak-event days

For a generic household of the community MG 1 ≤ i ≤ N :
Input: Convergent probability density functions (i.e. µθ(t, θ), µy(t, y) from Algorithm 1), PMA(t) ∀t,
Cmax, Ωθ := [θmin, θmax], Ωyf := [yfmin, y

f
max],

and Ωyc := [Y c
min, Y

c
max]

Off-Peak Event Input: MA credit is set to zero, threshold τ(t) = 0, and incentive and penalty ιi(t) is set to zero.
Here PMG is found via (1)

Peak Event Input: MA credit, and threshold τ(t) are defined and communicated to the MG households via the
aggregator. ιi(t) is found using (3) and (4) in case of incentive and in case of penalty respectively. Subsequently
P i
MG(t) is found.

Initialization:
Generate two Brownian Process W i

θ & W i
c for both θi(t) and yic(t) respectively.

Set k = 0, t = T , v(T ) = b(T ) = 0, ui
γ(T ) = 0,

ui
r(T ) = 0, and ui

c(T ) = 0.

Loop: At iteration k, execute the following:
Substitute ppv(t) in (5) and calculate θi(t)
Using (9) find δi(t) and using (11), (12), and (8) find γi(t), ri(t), and yc(t) respectively.
Calculate: Λθ =

∫
Ωθ

θµθ(t, θ)dθ, Λy =
∫
Ωy

yµy(t, y)dy,

Using (19) find w1(t) and following that w2(t) = 1− w1(t) and using (1) find PMG(t)

If δi(t) ≤ 0 then consider Mf-HJB-SC1 in (23) and thus u∗,i
r (t − ∆t) = 0 and u∗,i

γ (t − ∆t) is found using (24) and

u∗,i
c (t−∆t) is found using (25)

Else, consider MF-HJB-SC2 in (26) and calculate dyf =
yf (t+∆t)−yf (t)

∆t
and using (27), and (28), and the results in

Table 1 find u∗,i
r (t−∆t), u∗,i

γ (t−∆t), and u∗,i
c (t−∆t)

Increment k
If T −∆t× k ≤ 0 exit the loop.

Output: vi(t), θi(t), PMG(t), ui
r(t), u

i
γ(t), & ui

c(t)

5.1 Numerical results

The initial probability density function µ0(θ, y), represented in Figure 3, is assumed to be known to

all agents. Applying Algorithm 1, the convergent solution µt(θ, yc) to the MF-FPK equation (17) is

shown in Figure 4.

Figure 5 depicts the solution to the MF-HJB for the overall population in the normal day event.

Here, we focused on presenting the probability density function during the time of the day where

θ(t) > 0 i.e. from 8h:00 to 20h:00.

Figure 6 depicts the results of Algorithm 2 for the generic agent i where bi(0) = 2.8 and θi(0) = 0

and for this experiment Cmax = 5, θmin = 0, θmax = 3kWh yc = [0.5, 2.5] and T = 24. The generic

agent i is fed the converging results of Algorithm 1 (i.e. µ(θ, yc, t)) which allows the generic agent i to

find the equilibrium solutions of pmg(t), w1(t) and w2(t) for all t where 0 ≤ t ≤ T .

Figure 7 depicts the generic agent i energy profile during peak-event. In this figure, we can see

that during peak-event the controllable load optimal decision is to stay within the minimum mode of

operation. In addition, the numerical results prove that the energy cost over the peak event day to a

normal day has a reduction of 20.27%. The energy cost for the same generic agent during a normal

day was 1.31$ compared to 1.09$ during the peak event day.
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Figure 3: Controllable load and generation probability density function at t = 0

Figure 4: Propagation of the µ(θ, yc, t) versus time

5.2 Algorithms computational performances

Table 2 presents the algorithms’ computational performance for the uniform cases, where ϵf = 10−4,

where ϵf signifies the stopping condition for the numerical implementation of the finite difference

method. The number of iterations represents the number of iterations required for executing Algo-

rithm 1.

The specifications of the computer on which the simulation was held are 1) Processor Intel(R)

Core(TM) i5-6300U CPU @ 2.40GHz, 2496 Mhz, 2 Core(s), 4 Logical Processor(s), 2) RAM: 8GB and

3) system type: 64-operating system, x64-based processor.
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Figure 5: Propagation of the v(θ, yc, t) versus time
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Table 2: Algorithms performance for the uniform household case

Scenario # Iter. Run.-Time sec Memory KB Dim.

Normal Day 7 263.271 32,422 4

Peak-Event Day 15 452.56 42,044 4
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6 Conclusion

The paper introduces multiple algorithms that address the optimization problem in residential mi-

crogrid power network problems. These algorithms aim to find Nash Equilibrium strategies for all

the households in the MG using the decentralized MFG methodology. The study analyzes various

scenarios, including uniform households in both peak event and off-peak event scenario where the MG

is in grid-connected mode and where the main grid deploys an incentive base pricing mechanism. In

additionally, numerically we have demonstrated the following conclusions:

• The proposed MFG algorithm yields a convergent fixed point probability density function for

the MFG-loop in Equation (29).

• Numerically, the algorithm presented in this paper produced a Nash equilibrium strategy for the

constructed MGO problem resulting in reducing the energy bill for the households in the MG

and simultaneously reducing the peak-event for the main grid.

• In terms of running time and complexity, the costs associated with implementing the decentral-

ized mean field approach are lower compared to the centralized stochastic control case. Further-

more, these costs do not increase with the population size.

For future research, the algorithms introduced in this study can be expanded to address a broader

problem formulation in which the residential microgrid will be consisting of non-uniform households

that possess both controllable and shiftable loads, and the MG will be in a grid-connection mode where

the main grid deploy a more general dynamic pricing (for example; time of use pricing mechanism).
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