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Abstract : We study the integration of multi-period assignment, routing, and scheduling of care
workers for home health care services. In such a context, it is important to ensure service consistency,
where a designated care worker must visit each patient at a specific time and in a consistent manner
based on an established route and schedule. The challenge in maintaining service consistency and
quality lies in the fact that a care agency must determine consistent and efficient schedules of visits to
patient locations for multiple care workers despite uncertainty in travel and service times. To this end,
we extend the home health care routing and scheduling problem (HHCRSP) presented in the literature
and introduce a stochastic optimization model to incorporate service level constraints under stochastic
travel and service times. We propose the solution framework based on two representations: a discrete
scenario set and an extreme value theory-based (EVT-based) approximation. To tackle instances of
practical size, we employ branch-and-check (B&Ch), a variant of the logic-based Benders decomposition
(LBBD) method, where the subproblem is efficiently solved using constraint programming (CP). The
results show that the stochastic approaches, especially with the EVT-based approximation model, can
efficiently handle practical benchmark instances while producing schedules with significantly higher
service levels than the deterministic approach. We also demonstrate the effectiveness of scenario-based
and EVT-based models under different types of uncertainty.

Keywords : Service consistency, home health care routing and scheduling, stochastic travel and
service times, logic-based Benders decomposition, constraint programming
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1 Introduction

Due to aging populations and governments’ plans to decrease hospitalization costs (Lanzarone and

Matta 2014, Restrepo, Rousseau, and Vallée 2020), home health care (HHC) has received significant

attention during the past decade and has become a highly active area of research (Wang et al. 2022b,

Xie et al. 2023). For example, in Canada, Deloitte (2021) estimates an increase in HHC needs by

615,479 cases by 2031, which corresponds to a 53% increase in demand since 2019. These include a

broad range of health-related services, from basic ones, such as housekeeping, to professional ones,

such as medical care at people’s homes. In HHC, the quality of service plays an important role, and

service consistency is necessary to ensure proper follow-ups and monitoring of patients (Freeman and

Hughes 2010). Woodward et al. (2004) studied the importance of service consistency in HHC and its

aspects by interviewing home care clients and their care workers. They state that consistency in care

is supported by personnel consistency and consistent timing. Notwithstanding the preeminent role of

consistency in HHC, very few works in HHC scheduling consider it in their studies (Yang, Ni, and

Yang 2021).

Personnel consistency means assigning the same care worker or a limited number of different care

workers to each client during their presence in the HHC system. By doing so, the clients and their

assigned care workers develop trust over time, increasing the quality of their communication. In

addition, consistent timing means that service delivery to clients occurs at regular times at each visit.

Receiving the service regularly is essential to some clients, especially those who need time-sensitive

services, such as insulin injections, or, generally, ones with time-specific routines.

Many operation research (OR) problems are defined around HHC planning issues in each strategic,

tactical, and operational decision. One of the central and challenging problems at the operational

level is the home health care routing and scheduling problem (HHCRSP) (Cissé et al. 2017). In the

HHCRSP, a health institution must decide the routes and times of providing health services at clients’

homes for their care workers. This problem is a practical extension of the vehicle routing problem

(VRP) (Di Mascolo, Espinouse, and Hajri 2017). In the planning phase of HHCRSP, due to its

complexity, decision-makers often assume deterministic values for travel and service times (TST) even

when they face uncertainty in TST in the execution phase due to traffic congestion, weather conditions

and unpredictable treatment times (Shi, Boudouh, and Grunder 2019). Ignoring the uncertainty of

TST could result in inefficient (or even infeasible) schedules and service delays. In HHCRSP, with

visit time consistency, a service delay could result in their dissatisfaction or even be risky for patients’

health, whose timely treatments are necessary. For example, patients who require medication provision
at specific times could be severely hurt by late service (Fikar and Hirsch 2017).

This is illustrated in Figure 1. It shows the routes and schedules for a care worker generated by

deterministic and stochastic models. The deterministic model generates the same route and schedules

even when there is a higher uncertainty level in travel times between nodes. However, the stochastic

model adapts the routes and schedules to uncertainty levels, providing more robust solutions. The

average probability of delay for solution (1) when the uncertainty is the same as case (2) is 23.4%,

whereas when the uncertainty is the same as case (3), the average probability of delay is 33%. In

contrast, the stochastic solution can keep its performance in both cases (2) and (3) below 1%. To our

best knowledge, despite the importance of incorporating TST uncertainty in HHCRSP with service

consistency, such research topics have not received significant attention.

This paper considers an HHCRSP with personnel and visit time consistency under travel and

service time uncertainties. The problem is similar to the one presented by Heching, Hooker, and

Kimura (2019), but we extend the scope of the problem to incorporate service level constraints under

stochastic travel and service times. The main goal of this research is to investigate the interactions

between uncertainty in TST and consistency in the context of Home Health Care. Specifically, the

contributions are as follows: (1) We propose a chance-constrained stochastic programming approach

to model TST uncertainty for an HHCRSP with hard personnel and visit time consistency. In other
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Figure 1: Robustness of routes and schedules generated by stochastic model The square shape indicates the care worker.
The circle represents a patient. Additionally, the numbers in the circles indicate node numbers, whereas the numbers in the
brackets indicate the scheduled visit times.

words, routes to serve patients must respect the consistency requirements in personnel and visit time

with the probability of service delay not exceeding the guaranteed service level. (2) We present two

mathematical formulations to deal with the complex uncertainty of arrival time arising from dependent

sequences of each route (due to the fact that the service cannot begin before the starting time of the

designated time window): one based on a discrete scenario set and another based on a distributional

approximation via extreme value theory (EVT). (3) To efficiently solve these formulations, we propose

a tailored Branch-and-Check (B&Ch) framework, a variant of the logic-based Benders decomposition

(LBBD), in which the subproblem is formulated as a constraint programming (CP) model that allows

us to handle the nonlinear EVT-based model. (4) We numerically validate the performances of the two

modeling frameworks and the benefits of considering uncertainty at the planning level by comparing

the service quality and optimal value between the deterministic model based on the work of Heching,

Hooker, and Kimura (2019) and stochastic ones. Our experiments demonstrate that the solutions

from the stochastic models can guarantee high service quality, while the stochastic framework does

not require a significantly greater computational effort than the deterministic one. The EVT-based

model can generally produce high-quality solutions more efficiently than the scenario-based one, which

suffers from scalability issues when the number of scenarios is very large.

The remainder of this paper is organized as follows. Section 2 discusses the recent literature on this

topic. Section 3 presents mathematical formulations and solution approaches to solve the stochastic

HHCRSP. Section 4 presents the experimental results. Finally, a summary and conclusion of our work

are provided in Section 5.

2 Literature review

The HHCRSP models differ from each other based on the features considered in them. Although

there is no standard version of the HHCRSP, it is closely related to the VRP (Grenouilleau, Lahrichi,

and Rousseau 2020, Di Mascolo, Espinouse, and Hajri 2017). The service consistency feature in the

HHCRSP makes the model similar to a consistent vehicle routing problem (ConVRP) (Kovacs et al.

2014). Nevertheless, in the HHCRSP (Heching, Hooker, and Kimura 2019), one must consider specific

cases where skill-requirement constraints, health care personnel, and visit time consistency should be

guaranteed for each patient in the rolling schedule, which is updated periodically. In this section, we

survey papers dealing with consistent VRP and HHCRSP with consistency considerations. Table 1

summarizes relevant papers reviewed in this section. For the papers dealing with uncertain parameters,
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we indicate the stochastic parameters in the Stochastic Information column where ”-” indicates that

the paper considers a deterministic solution approach with no uncertain parameters.

Table 1: Summary of related literature on ConVRP and HHCRSP

Consistency Solution Type Stochastic

Author(s) Time Personnel Exact Heuristic Information

Groër, Golden, and Wasil (2009) Hard Hard - RTR1 -
Sungur et al. (2010) - Soft - TS2 Customer and Service Time
Tarantilis, Stavropoulou, and Repoussis (2012) Hard Hard - TS -
Kovacs, Parragh, and Hartl (2014) Hard Hard - ALNS3 -
Kovacs et al. (2015) Soft Hard - LNS4 -
Spliet and Gabor (2015) Hard - BPC5 - Demand
Kovacs, Parragh, and Hartl (2015) Soft Soft ϵ6 MDLNS7 -
Jabali et al. (2015) Soft - - TS/LP8 Travel Times
Subramanyam and Gounaris (2018) Hard - Decomp9 - -
Subramanyam, Wang, and Gounaris (2018) Hard - Decomp - Demand and Travel Times
Goeke, Roberti, and Schneider (2019) Hard Hard CG10 LNS -
Heching, Hooker, and Kimura (2019) Hard Hard LBBD/B&Ch - -
Yang, Ni, and Yang (2021) Soft Soft - Artificial bee colony Travel and Service Times
Wang et al. (2022a) Hard Hard CG10 - Demand
Cappanera and Scutellà (2022) Hard Hard - Pattern-based Demand
This paper Hard Hard B&Ch - Travel and Service Times

1 Record-To-Record, 2 Tabu Search, 3Adaptive Large Neighborhood Search, 4 Large Neighborhood Search, 5 Branch-
Price-and-Cut,6 ϵ-constraint,7 Multi-Directional LNS,8 Linear Programming, 9 Decomposition,10 Column Generation

In routing problems in which customers require services periodically over time, consistency in visit

time can play a significant role in improving service quality. Groër, Golden, and Wasil (2009) intro-

duced a new variant of the periodic VRP in which service consistency is incorporated into the problem

and called it ConVRP. In this multiday VRP, in addition to the constraints on vehicle capacity and

route length, there are additional consistency requirements, i.e., each customer must be served by

the same driver (personnel consistency) at approximately the same time on each day (time consis-

tency) when the service takes place. Several studies, e.g., Groër, Golden, and Wasil (2009), Tarantilis,

Stavropoulou, and Repoussis (2012), and Kovacs, Parragh, and Hartl (2014), proposed heuristics to

determine a template-based solution with consistency considerations in which a set of template routes

(also called priority routes) including only customers requiring service on multiple days (frequent cus-

tomers) is generated. Then, for each day, the daily routes are constructed by removing the customers

who do not ask for service on that day and by inserting customers who require service on only that

day (non-frequent customers). A generalized consistent vehicle routing problem, GenConVRP, was in-

troduced by Kovacs et al. (2015) in which the maximum difference in arrival times is penalized in the

objective function instead of it being considered a hard constraint. To solve their problem, they pro-

posed a large neighborhood search (LNS) heuristic, which outperforms the template-based heuristics

of Groër, Golden, and Wasil (2009), Tarantilis, Stavropoulou, and Repoussis (2012), and Kovacs, Par-

ragh, and Hartl (2014) in terms of both travel cost and time consistency. A multi-objective ConVRP

that combines consistency and cost objectives was considered by Kovacs, Parragh, and Hartl (2015),

and they proposed a multi-directional large neighborhood search heuristic to solve it. Goeke, Roberti,

and Schneider (2019) proposed an efficient exact solution approach based on a column-and-cut gener-

ation (CCG) procedure to solve the ConVRP with driver and time consistencies. They also developed

an LNS heuristic to tackle large instances. Recently, Wang et al. (2022a) considered the ConVRP with

route consistency and proposed an exact solution approach based on set partitioning-based models

and CCG techniques to solve it.

Most of the studies in the ConVRP consider the deterministic case when all the parameters are

assumed to be perfectly known. In other words, information related to customer demands, customer

presence, service times, and travel times is often considered fully available prior to optimization. There

are, however, a few papers that explore the approaches under stochastic information. For example,

Sungur et al. (2010) studied a variant of VRP with soft time windows (VRPTW), called the courier

delivery problem (CDP), in which customers’ presence and their service times are uncertain. They

modeled uncertainties in service times and the presence of customers through robust optimization
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and scenario-based stochastic programming approaches. Nevertheless, they did not consider service

consistency explicitly, but such a consistency is encouraged by maximizing the similarity of routes

across multiple scenarios. A tabu search heuristic was employed to solve this problem.

A similar VRP variant to ConVRP is the time window assignment vehicle routing problem

(TWAVRP) (Spliet and Gabor 2015). In this problem, the authors assumed that demands are not

known when the decision-maker assigns time windows (with fixed-size width) to their customers. Once

the demand is realized, they decide on a vehicle routing schedule to satisfy the demand of each cus-

tomer at the assigned time window. In the TWAVRP, however, personnel consistency is not considered,

and only time consistency is imposed. Later on, Subramanyam, Wang, and Gounaris (2018) extended

the uncertainty vector to incorporate demand and travel time uncertainties through a set of discrete

scenarios. They employed a two-stage stochastic programming framework in which the first-stage de-

cisions comprise time window assignments, and the second-stage decisions comprise routes to serve

customers based on the assigned time windows. They adapted the decomposition algorithm of Sub-

ramanyam and Gounaris (2018) to solve their TWAVRP in an exact manner. Jabali et al. (2015)

studied a self-imposed TWAVRP in which the provider decides the time window for customers. In

this case, time windows are considered endogenous to the routing problem. They called this problem

a vehicle routing problem with self-imposed time windows. Their model assumes that travel times are

uncertain when time windows are assigned. They applied a buffer allocation model in order to protect

scheduled time windows against travel time uncertainty. To solve this problem, they applied a tabu

search heuristic to determine routing decisions. Afterward, they used a linear programming model

to optimize the schedules for customers based on the routing decisions previously determined in the

first step.

Consistency is one of the main features considered in HHCRSP models. Despite its practical

importance, it has not been extensively studied in the literature, and it only started gaining attention

from 2018 (Di Mascolo, Martinez, and Espinouse 2021). Personnel consistency, which is often referred

to as continuity of care (Borsani et al. 2006), has been studied in the literature more than time

consistency (Cappanera and Scutellà 2022). Di Mascolo, Martinez, and Espinouse (2021) emphasize

the lack of approaches concerning consistency in time. In other words, there are only a few papers

that study HHCRSP models with both personnel and time consistency simultaneously.

Heching, Hooker, and Kimura (2019) studied a home health care delivery problem and they pro-

posed an exact optimization method, called LBBD, to maximize the number of new patients accepted

while respecting service consistency for existing patients. The problem they addressed concerned up-

dating a home hospice care company’s weekly schedule in response to patient population changes to

predict their staffing needs. Nevertheless, Heching, Hooker, and Kimura (2019) assumed determin-

istic TST. However, the routes and schedules determined by the deterministic model could lead to

significant delays in services and treatments in the presence of travel and service times uncertainty. In

our work, we aim to extend this context to consider stochastic TST and demonstrate the value of the

stochastic optimization approach, which can improve the service level for patients through reduced

risks of service delays.

To the best of our knowledge, no literature on HHCRSP tackles the challenge of stochasticity

in TST. Cappanera and Scutellà (2022) addressed both time consistency and personnel consistency

for home care services optimization when demand uncertainty is present. They solved this problem

through a pattern-based heuristic framework. This framework determines the scheduling decisions by

using the concept of patterns, which are possible templates used for scheduling multiple visits over

a planning horizon. Yang, Ni, and Yang (2021) considered a multi-objective consistent home health

care routing and scheduling problem with uncertain travel and service times in which consistencies

were enforced through soft constraints. Three objectives were considered in this work: minimizing

routing cost, increasing service consistency, and improving workload balance. The authors solved this

problem heuristically via a multi-objective artificial bee colony algorithm. In addition to the fact that

our focus is on the exact algorithmic framework, one distinct aspect of the problem considered in our
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work versus the problem in Yang, Ni, and Yang (2021) is that we incorporate complex uncertainty of

arrival times that arise from hard time window restrictions in our stochastic framework.

3 Consistent HHCRSP formulation and solution framework

The problem considered in this work is an extension of the deterministic problem presented by Heching,

Hooker, and Kimura (2019), which was derived from a real-world HHCRSP. In a given week comprising

five weekdays, a set of patients P must be scheduled throughout the week. Since a rolling schedule

is executed every week, there exists a set of existing patients who are already scheduled for visits.

In addition, the planner can accept and add new patients to the schedule. To respect the service

consistency for existing patients, their assigned care workers and scheduled service days must be kept

unchanged. In contrast, the exact visit time to each of the existing patients can be modified as long

as the modified visit remains consistent. For newly admitted patients, the planner must assign a

responsible care worker, visit days, and visit times to them. The number of required visit days for

all patients is in the set {1, 2, 3, 4, 5}. In case a patient asks for multiple visits (between 2 to 5 days)

in a week, they must be served at the same time each day (time consistency) and by the same care

worker (personnel consistency). For patients with less frequent visits, such as two or three times a

week, there could be some restrictions on the visit days assigned to them. For example, for a patient

with two weekly visits, close visits like Mondays and Tuesdays must be avoided through a separation

constraint. We incorporate such constraints into our mathematical formulation, and we elaborate on

them in Section 4. The time constraint is hard, i.e., the service cannot start earlier than the visit

time, and the care worker must wait in case of early arrival (Bertels and Fahle 2006). Respecting given

time windows for care workers and patients and the maximum weekly working time for care workers

are two other important constraints in the model that influence the number of accepted patients in

the objective function. The ultimate objective of this problem is to maximize the number of newly

admitted patients while respecting consistency and service level constraints.

Table 2: Description of the notation used in the consistent HHCRSP model

Set Description

P Set of all patients
Pnew Set of new patients

Pexisting Set of existing patients
A Set of care workers
D Set of days
Qp Set of required qualifications to serve patient p
Qa Set of qualifications of care worker a
Dp Set of pre-assigned days to patient p
Kp Set of vectors of a feasible combination of visit days to patient p

Parameter Description

wp Number of visits required for patient p
[rp, dp] Time window of patient p

s̄p Nominal duration per visit for patient p
ap Pre-assigned care worker to patient p

[ra, da] Time window of care worker a
la Location of care worker a
Ua Maximum work time over the week of care worker a
t̄i,j Nominal travel time between location i and j
L Maximum allowable delay
α Minimum acceptable service level
Pr Probability function

In the following section, a mathematical formulation for this problem is presented. The descriptions

of the sets and parameters are provided in Table 2. The formulation is described by a master problem

(MP) that comprises patient acceptance, care worker assignment, and visit days assignment decisions
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and a set of subproblems (SPs) in which each SP comprises visit time and routing decisions for each

care worker.

3.1 Master problem (MP)

In the master problem, three sets of decision variables are defined: binary variable δp to determine

whether patient p is accepted, binary variable xa,p to determine whether patient p is assigned to the

care worker a, and binary variable ya,p,d to determine whether patient p is visited by care worker a

on the day d. Additionally, y is a vector of variables ya,p,d that is described by a feasible set Kp. The

master problem can be stated as follows:

MP : max
∑
p∈P

δp (1)

s.t.
∑

a∈A|Qp⊆Qa

xa,p = δp ∀p ∈ P, (2)

ya,p,d ≤ xa,p ∀a ∈ A,∀p ∈ P,∀d ∈ D, (3)∑
a∈A

∑
d∈D

ya,p,d = wpδp ∀p ∈ P, (4)

δp = 1 ∀p ∈ Pexisting, (5)

xa,p = 1 ∀p ∈ Pexisting, a = ap, (6)

ya,p,d = 1 ∀p ∈ Pexisting, a = ap,∀d ∈ Dp, (7)

y ∈ Kp ∀p ∈ P, (8)∑
d

∑
p∈PSPa,d

(1− ya,p,d) ≥ 1 ∀a ∈ A, (9)

δp, xa,p, ya,p,d ∈ {0, 1} ∀a ∈ A,∀p ∈ P,∀d ∈ D. (10)

The objective (1) maximizes the number of accepted patients. Constraints (2) ensure that, if a

new patient is accepted, one dedicated care worker will be assigned to that patient. Constraints (3)

enforce that patients are only visited by care workers assigned to them. Constraints (4) ensure that the

number of visits required by each accepted patient is satisfied. Constraints (5), (6), and (7) impose the

inclusion, care worker assignment, and visit days assignment, respectively, for existing patients based

on existing consistency requirements. Constraints (8) enforce that visits to patients must respect the

feasible visit days described by set Kp. Note that this constraint is consistent with presented by

Heching, Hooker, and Kimura (2019), and we explain in Section 4 how it can be described using a set

of linear inequalities. Constraints (9) are no-good cuts that eliminate infeasible routing and scheduling

decisions. These constraints will be generated by solving the SPs iteratively in the B&Ch procedure.

Here, PSPa,d
includes the set of assigned new patients to care worker a on day d that makes their

schedule infeasible.

3.2 Subproblem (SP)

The subproblem generates a feasible schedule of visits that is compatible with time windows, maximum

work time, and service level constraints for each care worker based on the assignment decisions made

in the MP. The SP is modeled as a constraint satisfaction problem (CSP) with (non-linear) service

level constraints. We use constraint programming techniques to solve the SP, as CP algorithms can

tackle such a complex feasibility problem efficiently.

Given a solution vector y determined by the MP, we define a set of patients assigned to a care

worker a on the day d as P̄a,d. The cardinality of P̄a,d (defined as na,d) equals the number of patients

that care worker a will visit on day d. Integer variable πd,v denotes patient vth who is visited on day d.
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For each patient p the variables ap, vp, and ssp represent the arrival time, assigned visit time, and

actual starting time of the service, respectively. If the SP determines that there is no feasible solution,

we add no-good cuts (9) to the master problem to eliminate the current solution from the feasible

space of the MP. Note that the bar signs above parameters sπd,v
and tπd,v,πd,v+1

indicate the expected

values of these parameters. The SP for care worker a can be defined as follows:

SPa : max 0 (11)

s.t. P̄a,d = {p| ȳa,p,d = 1} na,d = |P̄a,d| ∀d ∈ D, (12)

πd,1 = la, πd,na,d+2 = la ∀d ∈ D, (13)

all-different{πd,v|v = 1, ..., na,d + 2} ∀d ∈ D, (14)

rp ≤ vp ≤ dp − s̄p ∀p ∈ P̄a,d, (15)

vπd,v
+ s̄πd,v

+ t̄πd,v,πd,v+1
≤ vπd,v+1

∀d ∈ D, v = 1, ..., na,d + 1, (16)∑
d∈D

(vπd,na,d−1
+ s̄πd,na,d−1

− vπd,2
) ≤ Ua, (17)

ssp ≥ vp ∀p ∈ P̄a,d, (18)

Pr{ap ≤ vp + L} ≥ α ∀p ∈ P̄a,d, (19)

ap, vp ∈ R, πd,v ∈ P̄a,d ∪ la ∀p ∈ P̄a,d,∀d ∈ D, v = 1, ..., na,d + 2. (20)

The objective (11) is zero because we only search for a feasible solution. Constraints (13) state that the

care worker always starts from their corresponding node of origin and returns to this node at the end

of the day. Constraints (14) are global constraints in CSP which indicate that the value of each πd,v

variable must be distinct from other values in the variable set (Heching, Hooker, and Kimura 2019).

We also adopt constraints (15), (16) and (17) which are used by (Heching, Hooker, and Kimura 2019)

to impose that the expected travel and service time constraints must be satisfied. This is to ensure

that the model will satisfy the same TST constraints as the deterministic model. More specifically,

constraints (15) impose that the assigned visit time must respect the time window of the patient.

Expected travel and service times constraints are considered in constraints (16). Constraint (17) limits

the maximum expected work time of the care worker. Constraints (18) ensure that the service does not

happen sooner than the assigned visit time. Service level constraints are defined in constraints (19) and

will be described in the subsequent sections. Finally, constraints (20) define the variables’ domains.

Note that, constraints (19) take the form of probabilistic chance constraints, which limit the risk

of delays at an acceptable level based on the decision maker (Gendreau, Jabali, and Rei 2014). More
specifically, constraints (19) guarantee that, for each patient, care worker a will arrive on time with

a minimum probability α. Therefore, (1 − α) is the maximum level of risk of arriving late that the

decision-maker can accept. The parameter L represents an acceptable buffer of delay. In other words,

an actual arrival after vp + L is considered a delay. Note that this term is used to provide additional

flexibility, and L can indeed be set to 0 when the arrival must be strictly within vp. To respect time

consistency, care workers can not start their service sooner than the assigned visit time, as patients

may not be available before their scheduled visit time. We propose to model the chance constraint

using a scenario-based model and an EVT-based model, which are described in the next subsections.

3.2.1 Scenario-based model

In the scenario-based model, we assume the uncertainty can be represented using a discrete set of

scenarios, N , which can be generated from travel and service time distributions through a Monte Carlo

sampling approach. This approach allows us to deal with dependencies in the uncertain parameters

due to the fact that the realized values of the uncertain parameters can be calculated independently

for each scenario. Since optimization is agnostic to the scenario generation approach in this model, one

can incorporate complex scenario generation methods that also consider dependencies and correlations

among the uncertain parameters (i.e., travel and service times in our case). In the SP, we substitute



Les Cahiers du GERAD G–2023–45 8

constraints (19) with the sample average approximation (SAA) from the samples generated using this

method.

To do so, we define a new variable for arrival time and the start-service time for patient p in

sample n, that is, anp and ssnp when n ∈ N . Given TST realization for each scenario, we can check

whether or not the inequality anp ≤ vp +L is satisfied. To keep track of the number of on-time arrivals

for patient p, the binary variable γn
p is set to one when we arrive on time; otherwise, it is set to

zero. For patient p, we find the sample average of γn
p , which is equal to or greater than α, that is,

1
|N |

∑
n∈N γn

p ≥ α ∀p ∈ P̄a,d. In integer programming, to find the value of binary variables (γ), we

need to use big-M in the following way:

anp ≤ vp + L+M(1− γn
p )

However, thanks to CP logical constraints, we can readily find the value of binary variables (γ) by

applying inference algorithms (Hooker 2002) without needing to use big-M in the following way:

anp ≤ vp + L ⇒ γn
p = 1,

anp > vp + L ⇒ γn
p = 0.

Despite the generalizability and flexibility of a scenario-based model, the model can suffer from

scalability issues when the number of scenarios becomes large. To tackle large-scale instances more

efficiently, we propose another modeling framework that does not directly rely on a discrete set of

scenarios but rather on the (parametric) approximation of the underlying probabilistic distributions

of TST in the next subsection.

3.2.2 EVT-based model

In VRP under stochastic travel and service times with hard time windows, service is not allowed to

start prior to the beginning of the time window of each patient. As a consequence, the arriving care

worker must wait until the beginning of the time window in case of early arrival. Unlike the case of

soft time windows (e.g., see Hoogeboom et al. 2021), since the probability distributions of the arrival

times at customers are truncated with the presence of waiting times, it is not directly possible to

derive formulae for the convolution of the arrival time distributions (Gendreau, Jabali, and Rei 2014).

Indeed, the distribution of ap depends not only on travel times of the arcs traversed and service times

of patients visited before arrival at the patient’s location p but also on waiting times at prior patients.

As a result, to find the mean and variance of ap, applying the convolution of distributions such as

normal or gamma to sum the means and variances of the service times of the nodes and travel times

of the arcs traversed before p is not directly applicable. By leveraging extreme value theory, Ehmke,

Campbell, and Urban (2015) proposed a method to approximate each customer’s start-service time

and arrival time distributions when waiting times must be considered under the hard time window

constraints. Even though the derivation is based on the assumption that travel times are stochastic

and follow normal distributions independently, the method is also applicable to instances with non-

normal travel time distributions. This EVT-based method is then integrated as part of our stochastic

optimization framework.

In our problem, each patient is assigned a consistent visit time vp when patients are scheduled for

the care worker. If the care worker arrives at patient p before vp, they must wait until vp to begin

service. Otherwise, if they arrive later than vp, they will begin the service immediately. Recall that

ap and ssp represent the arrival time and the starting time of service for patient p, respectively. In

the EVT-based model, the travel times between patients are assumed to be statistically independent.

This is in line with the empirical results presented by Park and Rilett (1999) and Ehmke, Campbell,

and Urban (2015), which demonstrated low correlations between arc travel times.

To ensure that the probability of on-time arrival time at each patient p by vp + L is greater than

or equal to an acceptable level α, we need to derive a probabilistic distribution of ap for each patient.



Les Cahiers du GERAD G–2023–45 9

The distribution of ap depends on the likelihood that the care worker had to wait at prior patients.

As a consequence, the arrival time at patient p equals the sum of the random travel times of the arcs

traversed before the arrival at p, the random waiting times, and the random service times of all the

prior patients. An illustration of different arrival time distribution possibilities when the visit time

window limits the start of service can be found in Figure 2. The first case at the top shows the case

when the arrival time distribution is very likely within the time window of the patient, and, hence,

there is a low probability that a care worker must wait at a patient’s location. The second possibility

is the case in which a care worker arrives too early and very likely needs to wait at a patient’s location.

Finally, the last subfigure shows the case when part of the arrival time distribution is prior to the

starting time window and the remaining part is within the time window. Indeed, the arrival time

variance at a patient p can be derived after determining the service time of patient p − 1 and travel

time between p− 1 and p. Correspondingly, the arrival time distribution of the next patient ap+1 can

be calculated from the sum of the random parameters ssp, sp, and tp,p+1.

Figure 2: Arrival time distribution possibilities in the presence of visit time window (adapted from Ehmke, Campbell, and
Urban (2015))

To demonstrate how the EVT-based approach based on the study of Ehmke, Campbell, and Urban

(2015) works, we provide an example as follows. To serve the first patient, the care worker requires

t0,1 time to travel from their address to this first patient. The start-service time for patient p equals

max{t0,1, v1}. This max operator makes the calculations of the mean and variance of patients’ start

of service time complicated. However, we can find the mean and variance of the maximum of two

normally distributed variables X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2), X = max{X1, X2} using extreme

value theory. In our example, X1 = t0,1 ∼ N(µ0,1, σ
2
0,1) and X2 = v1. Once the value of the

assignment variable v1 is determined, the mean and variance of the start-service time for patient 1 can

be expressed as:

E(x1) = µ0,1Φ[(µ0,1 − v1)/σ0,1] + v1Φ[(v1 − µ0,1)/σ0,1] + σ0,1ϕ[(µ0,1 − v1)/σ0,1] (21)

V (x1) = (µ2
0,1 + σ2

0,1)Φ[(µ0,1 − v1)/σ0,1] + v21Φ[(v1 − µ0,1)/σ0,1]+

(µ0,1 + v1)σ0,1ϕ[(µ0,1 − v1)/σ0,1]− [E(x1)]
2

(22)

where Φ[...] and ϕ[...] denote the cumulative distribution function and the probability density function

of the standard normal distribution, respectively.
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To calculate the arrival time distribution at the subsequent patient, patient 2, we first determine

the distribution of the starting time for patient 1, ss1 ∼ N(E(x1), V (x1)), the service time for patient

1, s1 ∼ N(µs1 , σ
2
s1), and the travel time from patient 1 to patient 2, t1,2 ∼ N(µt1,2 , σ

2
t1,2). Although

ss1 is originally not a normally distributed variable because it takes the maximum of two random

variables, it is approximated using a normal distribution in order to derive an approximation for

arrival time distribution at patient 2; a2 = ss1 + s1 + t1,2 (Ehmke, Campbell, and Urban 2015).

More specifically, for any patient p, we can find the arrival time distribution based on the start-

service time distribution of the previous patient, the normally distributed service time of the previous

patient, and the normally distributed travel time from the previous patient to the patient p. Therefore,

µap
= µssp−1

+µsp−1
+µtp−1,p

, and σ2
ap

= σ2
ssp−1

+σ2
sp−1

+σ2
tp−1,p

. The approximate mean of the start-

service time distribution for patient p can be determined using the following equation:

E(X) = µ1Φ[(µ1 − µ2)/θ] + µ2Φ[(µ2 − µ1)/θ] + θϕ[(µ1 − µ2)/θ] (23)

where µ1 = µap
, µ2 = vp, and θ = σap

.

Similarly, to approximate the variance of the start-service time distribution, we have:

V (X) = (µ2
1 + σ2

1)Φ[(µ1 − µ2)/θ] + (µ2
2 + σ2

2)Φ[(µ2 − µ1)/θ]

+(µ1 + µ2)θϕ[(µ1 − µ2)/θ]− [E(X)]2
(24)

where µ1 = µap
, σ1 = σap

, µ2 = vp, σ2 = 0, and θ = σap
.

Considering that vp in equations (23) and (24) is a decision variable, these equations are nonlinear.

However, CP handles complex problems involving nonlinear constraints, logical statements, or non-

convex solution space (Wang, Meskens, and Duvivier 2015). To impose the chance constraint P (ap ≤
vp + L) ≥ α, we impose the following constraint for each patient p in the SP:

µap + zασap ≤ vp + L (25)

where zα is the α-quantile of the standard normal distribution.

3.3 Branch-and-Check algorithm

We describe the B&Ch procedure, which is applied to solve both the scenario-based and EVT-based

models. In our B&Ch framework, no-good cuts (9) are added to the master problem during the

branch-and-bound (B&B) process. This approach is a variant of LBBD (Hooker and Ottosson 2003)

in which the LBBD cuts are added in a branch-and-cut fashion during the B&B procedure of the

master problem. It has been shown that B&Ch can be more efficient than standard LBBD when the

master problem is harder to solve than the subproblem (Hooker 2000, Heching, Hooker, and Kimura

2019). In this approach, when a feasible solution candidate for the MP is found at a node of the B&B,

the SP is called to validate the feasibility of this given solution candidate. If the subproblem finds the

solution infeasible, one or more Benders cuts (9) are generated and added to the B&B tree. Otherwise,

this solution is considered truly feasible and then the B&B continues. The same process is repeated

at all nodes in the B&B tree when a feasible solution candidate for the MP is found until the B&B

terminates. By using the B&Ch algorithm to solve our stochastic problem, we can tackle instances of

practical size because the SP, which comprises non-linear chance constraints, can be efficiently solved

for each care worker using CP. If the SP of the care worker based on assignment decisions determined

by the MP is infeasible, a no-good cut of the form
∑

d

∑
p∈P̄a,d|p∈{new patient}(1− ya,p,d) ≥ 1 is added

as a global inequality to eliminate this infeasible assignment for the care worker from the MP. This

cut hinders the master problem from assigning the same set of patients, which results in an infeasible

schedule for the care worker a in the subsequent iterations in the B&B process.

3.4 Time window inequalities

Inequalities derived from a relaxation of the subproblem could be added to the master problem to
enhance computational performance. Heching, Hooker, and Kimura (2019) demonstrates that using
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time window relaxation can reduce computational time significantly. This type of relaxation is based

on forward and backward intervals. A forward interval for patient p begins with the start of their

time window and ends with the termination of the care worker’s time window. In addition, for patient

p, a backward interval begins with the start of the care worker’s time window and ends with the

termination of the patient’s time window. For each patient p assigned to the care worker a on day d,

forward and backward augmented durations (p′, p′′) are calculated using following equations:

p′a,p,d = s̄p +min{minq∈Pa,d
{t̄p,q}, t̄p,la},

p′′a,p,d = s̄p +min{t̄la,p, minq∈Pa,d
{t̄q,p}}

where Pa,d is the set of patients that are already assigned to care worker a on the day d.

For patient p ∈ Pa,d, the sum of forward augmented durations of patients in P [rp, da], which is the

set of patients whose time windows are in the forward interval of p, must observe the forward interval’s

width of p. It is the same for the patient’s p backward interval. The following inequalities can be

added to the MP: ∑
p∈P [rp,da]

p′a,p,dya,p,d ≤ da − rp, p ∈ Pa,d, (26)

∑
p∈P [ra,dp]

p′′a,p,dya,p,d ≤ ra − dp, p ∈ Pa,d. (27)

4 Experimental results

This section presents our computational results obtained by three models, that is, deterministic,

chance-constrained with scenario generation, and chance-constrained with the approximation of start-

service and arrival time distributions, on different instances based on real data provided by a home

care agency from the US (Heching, Hooker, and Kimura 2019).

4.1 Experimental setting

Each instance contains new and existing patients assigned to the care workers whose visit days have

been decided. For existing patients, the assigned care worker and visit days assignment must remain

the same to ensure service consistency, but we can reschedule their visit times. In other words, we

optimize the decisions to accept and assign new patients in conjunction with modifications of the

rolling schedule, which has previously been determined for existing patients. For each care worker, the

revisions of the schedule to visit existing patients are done if there is a change (addition or removal) in

the list of patients assigned to them. Otherwise, we keep their schedules unchanged. In this instance

set, there are eight care workers available to serve patients, and the planning horizon is five working

days. To accept any new patients, the decision-maker must ensure that there is a feasible schedule

that considers service level and other service requirement constraints as described in Section 3. We run

the models for the different numbers of new and existing patients in the ranges of [8, 18] and [10, 17],

respectively.

In our instances, some patients ask for multiple visits per week. When they require two visits

per week, there must be a minimum gap of two days between consecutive visits, and when there are

three weekly visits, there must be a minimum gap of one day between consecutive visits. With this

information, we can replace constraints (8) with the following linear inequality constraint (Heching,

Hooker, and Kimura 2019):

ya,p,d + ya,p,d+i ≤ 1 ∀a, p with wp ∈ {2, 3},
∀i, d with 1 ≤ i ≤ 4− wp, 1 ≤ d ≤ 5.
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We implemented the models in Python 3.8.10. The experiments were performed on Compute

Canada Servers with 8 Gb RAM and one core for each instance. To solve the master problem, we

used Gurobi 9.5.0, and to solve the subproblems, we used the constraint programming solver of Cplex

22.1.0. The maximum computation time was set to 7200 seconds per instance.

To evaluate the performance of the models, we ran simulations with 10, 000 scenarios for service

times and travel times. Service times follow a normal distribution in which the mean is set equal to

the deterministic service times, and the coefficient of variation (CoV) of the service time (denoted by

CoVs) was set to 10, 25, or 50 percent of the mean service times in different instances. Travel times

follow normal, shifted-gamma, and shifted-exponential distributions. We considered three probabil-

ity distributions with different skewness (i.e., skewness = 0 in a normal distribution, skewness = 1

in shifted-gamma, and skewness = 2 in shifted-exponential) to study the effect of skewness on the

performance of the models. The mean of travel time between each two locations equals the nominal

value in the original instance set. The CoV of travel times was set to 10, 25, or 50 percent of the

mean travel times to represent different travel conditions (we refer to CoV for travel times as CoVt).

The allowable delay parameter (L parameter) was set to 10, 20, or 30 minutes. This implies that we

consider a late arrival a delay only when a care worker arrives later than the assigned visit time plus

the allowable delay. Additionally, we considered service levels, α, 95% and 98% (zα = 1.64, 2.05) to

investigate the impact of different service levels. Finally, to study the effects of increasing the number

of scenarios in the chance-constrained model with scenario generation, we used the following different

numbers of scenarios: 10, 50, 100, 300, and 500.

4.2 Performance of the stochastic optimization approach for HHCRSP

We evaluate the performance of the models using several criteria. First, we compare different models in

terms of solving times in seconds. In Table 3, the deterministic model adapted from Heching, Hooker,

and Kimura (2019) can always solve instances faster than approximation and scenario models, which is

to be expected. When we compare approximation and scenario models, we can see that when using 100

or more scenarios, the approximation model outperforms the scenario model in all instances. However,

using only 10 scenarios, the scenario model solves instances faster. Both are comparable when using

50 designs.

Table 3: Solution times (in seconds) until optimality for different models based on simulations

α = 0.98, L = 10, CoVt = 25%, CoVs = 10%, distribution = normal

New
Patients

Total
Patients

Deterministic Approximation
Scenario

10 50 100 300 500

8 25 4.7 26.4 12 22.7 92.3 207.4 429
10 26 6.2 26.4 19.3 43.6 167.3 296.4 1011
12 26 30.2 70.9 35.2 67.2 119.9 452.9 1291.8
14 26 91.9 175.5 169.3 370.6 663.5 2375.2 3087.3
16 27 111.5 196.9 202.9 502.4 1026.8 3464.5 5570.1
18 28 150.5 664.7 362.3 771.8 2435.4 ⋆ ⋆

⋆ Computational time exceeded two hours

The difference between the deterministic and stochastic models concerns service level constraints

embedded in the latter. Therefore, we investigate the effects of incorporating these constraints into the

model on the actual service levels for patients based on the simulation results. To do so, we compare the

results of two criteria: minimum service level (MinS) between all scheduled patients and average service

level (AvgS) between different models. According to Table 4, the deterministic approach produces

solutions that do not meet the acceptable service level, 98%. However, using as few as 10 scenarios, the

service quality could be improved considerably, indicating the effectiveness of entering uncertainties

into the model. Furthermore, the approximation model generally outperforms the scenario model,

especially when the number of scenarios is smaller than 300. Although the approximation model could
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solve all the instances within two hours, for many scenarios, the scenario model sometimes exceeded

the time limit of two hours.

Table 4: Service level comparisons between different models based on simulations

α = 0.98, L = 10, CoVt = 25%, CoVs = 10%,distribution = normal

New
Patients

Deterministic Approximation Scenario
(10)

Scenario
(50)

Scenario
(100)

Scenario
(300)

Scenario
(500)

MinS AvgS MinS AvgS MinS AvgS MinS AvgS MinS AvgS MinS AvgS MinS AvgS

8 0.449 0.762 0.985 0.994 0.670 0.903 0.948 0.981 0.974 0.991 0.978 0.997 0.977 0.995
10 0.440 0.754 0.981 0.993 0.670 0.906 0.948 0.988 0.976 0.995 0.981 0.997 0.993 0.999
12 0.440 0.784 0.979 0.994 0.670 0.917 0.930 0.990 0.958 0.995 0.987 0.997 0.971 0.996
14 0.486 0.786 0.987 0.995 0.670 0.925 0.904 0.985 0.962 0.992 0.977 0.995 0.993 0.998
16 0.454 0.739 0.980 0.994 0.670 0.928 0.930 0.985 0.974 0.991 0.989 0.998 0.975 0.996
18 0.484 0.739 0.980 0.990 0.670 0.919 0.948 0.989 0.967 0.991 ⋆ ⋆ ⋆ ⋆

⋆ Computational time exceeded two hours

In addition to service level metrics, we must consider the number of accepted new patients in the

objective function. However, studying only the number of accepted new patients without considering

the number of those who get service on time, at least α percentage of times, fails to provide us with a

comprehensive view of the performance. In this regard, in Table 5, we compare the models in terms of

not only the number of accepted patients (NA) but also on-time-served newly accepted patients with

the satisfied service levels (ON).

Table 5: Comparison of models in terms of the number of accepted new patients and accepted new patients with satisfied
service levels based on simulations

α = 0.98, L = 10, CoVt = 25%, CoVs = 10%, distribution = normal

New
Patients

Deterministic Approximation Scenario
(10)

Scenario
(50)

Scenario
(100)

Scenario
(300)

Scenario
(500)

NA ON NA ON NA ON NA ON NA ON NA ON NA ON

8 8 1 7 7 7 1 7 5 6 5 7 7 5 5
10 9 2 8 8 8 2 8 7 7 7 8 8 6 6
12 11 4 10 10 10 4 10 9 10 9 10 10 9 8
14 13 3 12 12 13 7 12 10 12 10 12 12 11 11
16 16 3 14 14 15 6 14 11 14 12 14 14 13 12
18 18 2 16 16 17 6 17 15 17 16 ⋆ ⋆ ⋆ ⋆

⋆ Computational time exceeded two hour

According to Table 5, although the deterministic solutions generally accept more new patients than

the solutions from the stochastic approximation model, most of the patients could not be served on

time. Furthermore, the maximum difference in the number of accepted patients between the solutions

from these two approaches is two patients. In contrast, the stochastic approximation model can achieve

a satisfactory service level for all accepted patients. As for the scenario model, the metrics depend on

the number of scenarios used in the model. With an increase in the number of scenarios, the number

of accepted new patients decreases, such that with 500 scenarios, the scenario model accepts fewer

patients than the approximation model.

4.3 Sensitivity analysis

We investigate the effects of parameter changes on the performance of the models. The sensitivity

analyses were conducted to analyze the changes in allowable delay (L), CoVs, CoVv, types of the

probability distribution for travel times, and acceptable service levels (α).

Table 6 shows that, by increasing the value of the allowable delay, the number of accepted new

patients can be increased in the stochastic approximation model. Additionally, increasing the allowable
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delay can improve the deterministic model’s service level metrics and the number of on-time-served

new patients, but the results are still inferior to the stochastic models.

Table 6: Sensitivity analysis of the allowable delay parameter

α = 0.98, CoVt = 25%, CoVs = 10%, distribution = normal

New
Patients

L
Deterministic Approximation Scenario (10) Scenario (100)

NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS

8 10 8 1 0.449 0.762 7 7 0.985 0.994 7 1 0.670 0.903 6 5 0.974 0.991
8 20 8 2 0.642 0.888 7 7 0.982 0.993 7 2 0.670 0.915 6 6 0.976 0.993
8 30 8 3 0.786 0.950 8 8 0.976 0.993 7 4 0.670 0.955 6 6 0.967 0.996

10 10 9 2 0.440 0.754 8 8 0.981 0.993 8 8 0.670 0.906 7 7 0.976 0.995
10 20 9 2 0.631 0.882 8 8 0.982 0.992 8 3 0.670 0.915 7 7 0.976 0.995
10 30 9 5 0.773 0.946 9 9 0.977 0.993 8 4 0.670 0.941 7 7 0.976 0.997

12 10 11 4 0.440 0.784 10 10 0.979 0.994 10 4 0.670 0.917 10 9 0.958 0.995
12 20 11 6 0.631 0.905 11 11 0.983 0.993 11 6 0.670 0.938 10 8 0.943 0.991
12 30 11 7 0.773 0.957 11 11 0.976 0.994 11 7 0.853 0.971 10 8 0.958 0.993

14 10 13 3 0.486 0.786 12 12 0.987 0.995 13 7 0.670 0.925 12 10 0.962 0.992
14 20 13 4 0.669 0.907 13 13 0.980 0.993 13 10 0.670 0.933 12 12 0.976 0.997
14 30 13 9 0.805 0.961 13 13 0.977 0.993 13 7 0.670 0.954 12 11 0.967 0.996

16 10 16 3 0.454 0.739 14 14 0.980 0.994 15 6 0.670 0.928 14 12 0.974 0.991
16 20 16 4 0.620 0.873 15 15 0.977 0.992 15 5 0.670 0.930 14 13 0.950 0.995
16 30 16 7 0.745 0.941 16 14 0.962 0.990 15 8 0.670 0.942 14 13 0.971 0.997

18 10 18 2 0.484 0.739 16 16 0.980 0.990 17 6 0.670 0.919 17 16 0.967 0.991
18 20 18 3 0.669 0.878 17 17 0.980 0.992 17 7 0.544 0.904 17 17 0.976 0.995
18 30 18 7 0.808 0.984 17 16 0.972 0.991 17 7 0.654 0.923 17 17 0.971 0.997

According to Table 7, when the uncertainty in travel time CoVt is lower, service levels for customers

generally improve. The approximation model can always satisfy the service level requirements for all

newly accepted patients. However, when the CoVt is lower, the approximation model can accept more

patients. Moreover, although the CoVt parameter does not have any effect on the number of accepted

patients in the deterministic model, a higher value can cause worse performance. As for the scenario

models, we can say that higher CoVt requires more scenarios to find high-quality solutions in terms of

service level satisfaction. This pattern can be observed in Table 8.

To investigate whether a non-normal probability distribution of travel times can affect the solution

quality of the approximation model, we performed this sensitivity analysis and reported the results in

Table 9. When shifted-gamma or shifted-exponential is the actual probability distribution for travel

times, the minimum service level metric is not perfectly satisfied but very close to the acceptable

service level α.

In the stochastic approximation model, CoV values of the travel times between nodes are input

parameters. To specify a valid value concerning travel CoV of the actual data, we investigate the

performance of the approximation model when we use CoV values that are smaller than, equal to, or

larger than the actual CoV in the simulation in the problem (Table 10). When we use a smaller value

for CoV in the approximation, we underestimate the actual variation in travel times. Therefore, more

new patients may be accepted, but not all of them can be served at the acceptable service level. In

contrast, an overestimation happens when we consider a larger value for CoV in the approximation

model. As a result, we might accept fewer new patients than we should since the solution can be overly

conservative. Thus, it is essential to properly estimate the CoV values used in the approximation model.
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Table 7: Travel CoV effects on the performance of the models

α = 0.98, CoVs = 10%, L = 10, distribution = normal

New
Patients

CoVt
Deterministic Approximation Scenario (10) Scenario (100)

NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS

8 0.1 8 2 0.569 0.846 8 8 0.983 0.993 8 5 0.871 0.975 7 7 0.992 0.998
8 0.25 8 1 0.449 0.762 7 7 0.985 0.994 7 1 0.670 0.903 6 5 0.974 0.991
8 0.5 8 0 0.316 0.662 5 5 0.976 0.990 7 2 0.623 0.857 5 5 0.962 0.991

10 0.1 9 3 0.576 0.856 9 9 0.982 0.993 9 5 0.799 0.966 8 8 0.992 0.998
10 0.25 9 2 0.440 0.754 8 8 0.981 0.993 8 2 0.670 0.906 7 7 0.976 0.995
10 0.5 9 1 0.329 0.643 7 7 0.979 0.993 8 2 0.673 0.889 6 6 0.958 0.988

12 0.1 11 4 0.576 0.869 11 11 0.982 0.993 11 7 0.893 0.960 11 11 0.983 0.998
12 0.25 11 4 0.440 0.784 10 10 0.979 0.994 10 4 0.670 0.917 10 9 0.958 0.995
12 0.5 11 1 0.329 0.688 9 9 0.982 0.991 11 2 0.773 0.914 8 6 0.958 0.989

14 0.1 13 4 0.602 0.865 13 13 0.984 0.995 13 7 0.799 0.962 13 13 0.932 0.995
14 0.25 13 3 0.486 0.786 12 12 0.987 0.995 13 7 0.670 0.925 12 10 0.962 0.992
14 0.5 13 0 0.358 0.682 10 10 0.981 0.992 13 2 0.622 0.854 10 10 0.962 0.994

16 0.1 16 3 0.569 0.822 15 15 0.981 0.995 15 10 0.799 0.954 15 15 0.991 0.998
16 0.25 16 3 0.454 0.739 14 14 0.980 0.994 15 6 0.670 0.928 14 12 0.974 0.991
16 0.5 16 0 0.316 0.645 13 13 0.980 0.992 14 2 0.637 0.901 12 9 0.962 0.991

18 0.1 18 4 0.591 0.819 17 17 0.980 0.993 17 12 0.771 0.950 17 16 0.975 0.996
18 0.25 18 2 0.484 0.739 16 16 0.980 0.990 17 6 0.670 0.919 17 16 0.967 0.991
18 0.5 18 0 0.363 0.647 14 14 0.983 0.992 16 3 0.673 0.877 14 10 0.930 0.984

Table 8: Service CoV effects on the performance of the models

α = 0.98, CoVt = 25%, L = 10, distribution = normal

New
Patients

CoVs
Deterministic Approximation Scenario (10) Scenario (100)

NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS

8 0.1 8 1 0.449 0.762 7 7 0.985 0.994 7 1 0.670 0.903 6 5 0.974 0.991
8 0.25 8 1 0.407 0.687 4 4 0.978 0.992 6 3 0.784 0.957 4 4 0.976 0.995
8 0.5 8 1 0.370 0.628 3 3 0.984 0.993 4 1 0.759 0.933 3 3 0.980 0.995

10 0.1 9 2 0.440 0.754 8 8 0.981 0.993 8 2 0.670 0.906 7 7 0.976 0.995
10 0.25 9 2 0.4 0.701 5 5 0.983 0.994 7 4 0.837 0.962 6 6 0.981 0.994
10 0.5 9 2 0.370 0.654 4 4 0.982 0.992 5 1 0.853 0.945 4 3 0.971 0.994

12 0.1 11 4 0.440 0.784 10 10 0.979 0.994 10 4 0.670 0.917 10 9 0.958 0.995
12 0.25 11 3 0.4 0.722 6 6 0.984 0.991 9 3 0.784 0.953 7 7 0.977 0.995
12 0.5 11 2 0.372 0.668 4 4 0.982 0.991 6 2 0.759 0.949 4 4 0.962 0.987

14 0.1 13 3 0.486 0.786 12 12 0.987 0.995 13 7 0.670 0.925 12 10 0.962 0.992
14 0.25 13 1 0.434 0.709 7 7 0.978 0.992 11 5 0.784 0.958 8 8 0.976 0.994
14 0.5 13 1 0.377 0.640 5 5 0.984 0.993 7 4 0.759 0.957 5 5 0.962 0.991

16 0.1 16 3 0.454 0.739 14 14 0.980 0.994 15 6 0.670 0.928 14 12 0.974 0.991
16 0.25 16 3 0.403 0.67 10 10 0.987 0.996 13 5 0.787 0.953 10 10 0.976 0.993
16 0.5 16 3 0.362 0.619 ⋆ ⋆ ⋆ ⋆ 9 3 0.838 0.943 7 7 0.962 0.991

18 0.1 18 2 0.484 0.739 16 16 0.980 0.990 17 6 0.670 0.919 17 16 0.967 0.991
18 0.25 18 2 0.424 0.668 12 12 0.985 0.995 15 5 0.756 0.943 13 13 0.976 0.992
18 0.5 18 2 0.355 0.617 ⋆ ⋆ ⋆ ⋆ 10 6 0.746 0.930 ⋆ ⋆ ⋆ ⋆

⋆ Computational time exceeded two hour
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Table 9: Performance of the approximate model based on different types of distributions

α = 0.98, L = 10, CoVt = 25%, CoVs = 10%

New
Patients

Normal Shifted-gamma Shifted-exponential

NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS

8 7 7 0.985 0.994 7 7 0.974 0.988 7 5 0.968 0.983
10 8 8 0.981 0.993 8 7 0.973 0.987 8 5 0.968 0.983
12 10 10 0.979 0.994 10 10 0.967 0.988 10 8 0.959 0.984
14 12 12 0.987 0.995 12 12 0.974 0.989 12 9 0.968 0.985
16 14 14 0.980 0.994 14 14 0.968 0.989 14 12 0.963 0.985
18 16 16 0.980 0.990 16 13 0.968 0.983 16 10 0.962 0.979

Table 10: Proper travel CoV value for approximation model

α = 0.98, L = 10, CoVt = 25%, CoVs = 10%, distribution = normal

New
Patients

approx CoV (0.15) approx CoV (0.25) approx CoV (0.35)

NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS

8 7 6 0.943 0.977 7 7 0.985 0.994 7 7 0.985 0.997
10 8 6 0.907 0.978 8 8 0.981 0.993 8 8 0.985 0.997
12 11 7 0.944 0.977 10 10 0.979 0.994 10 10 0.985 0.998
14 13 10 0.944 0.982 12 12 0.987 0.995 11 11 0.985 0.997
16 15 10 0.911 0.977 14 14 0.980 0.994 14 14 0.985 0.997
18 17 9 0.907 0.969 16 16 0.980 0.990 15 15 0.993 0.998

Finally, the effect of acceptable service level α on the performance of models are investigated in

Table 11. Indeed, the α does not affect NA, MinS, and AvgS for the deterministic model, but it can

increase the ON metric when α has a lower value. In addition, decreasing the assigned service level

can sometimes increase the number of accepted new patients in the approximate model.

Table 11: Effects of service level on the performance of the models

L = 10, CoVt = 25%, CoVs = 10%, distribution = normal

New
Patients

α
Deterministic Approximation Scenario (10) Scenario (100)

NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS NA ON MinS AvgS

8 0.98 8 1 0.449 0.762 7 7 0.985 0.994 7 1 0.670 0.903 6 5 0.974 0.991
8 0.95 8 2 0.449 0.762 7 7 0.953 0.983 7 2 0.670 0.903 6 6 0.941 0.986

10 0.98 9 2 0.440 0.754 8 8 0.981 0.993 8 2 0.670 0.906 7 7 0.976 0.995
10 0.95 9 2 0.440 0.754 8 8 0.948 0.979 8 4 0.670 0.906 7 7 0.941 0.989

12 0.98 11 4 0.440 0.784 10 10 0.979 0.994 10 4 0.670 0.917 10 9 0.958 0.995
12 0.95 11 4 0.440 0.784 11 11 0.948 0.982 10 5 0.670 0.917 10 10 0.941 0.993

14 0.98 13 3 0.486 0.786 12 12 0.987 0.995 13 7 0.670 0.925 12 10 0.962 0.992
14 0.95 13 4 0.486 0.786 13 13 0.948 0.981 13 9 0.670 0.925 12 12 0.941 0.994

16 0.98 16 3 0.454 0.739 14 14 0.980 0.994 15 6 0.670 0.928 14 12 0.974 0.991
16 0.95 16 3 0.454 0.739 15 15 0.948 0.982 15 10 0.670 0.928 14 14 0.941 0.987

18 0.98 18 2 0.484 0.739 16 16 0.980 0.990 17 6 0.670 0.919 17 16 0.967 0.991
18 0.95 18 3 0.484 0.739 16 16 0.954 0.982 17 11 0.670 0.919 17 16 0.938 0.984

4.4 Performance for the case with correlated travel times

To evaluate the performance of the models in actual service levels for patients when travel times

are correlated to each other, we present Table 12. The existence of correlations between parameters

has negative effects on the performance of deterministic and approximation models. However, the
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scenario-based model can still perform well when the number of scenarios is 100 or more. This clearly

demonstrates the benefits of the scenario generation model, which is agnostic to the sampling method

and can thus be used to solve the instances in which samples are generated from distributions with

dependent parameters.

Table 12: Performance of models with correlated travel times

L = 10, CoVt = 25%, CoVs = 10%, distribution = normal

New
Patients

Corrolation
Deterministic Approximation Scenario (100) Scenario (300)

MinS AvgS MinS AvgS MinS AvgS MinS AvgS

8 no 0.449 0.762 0.985 0.994 0.974 0.991 0.978 0.997
8 yes 0.148 0.546 0.903 0.961 0.970 0.992 0.987 0.997

10 no 0.440 0.754 0.981 0.993 0.976 0.995 0.981 0.997
10 yes 0.139 0.507 0.903 0.963 0.970 0.993 0.983 0.997

12 no 0.440 0.784 0.979 0.994 0.958 0.995 0.987 0.997
12 yes 0.139 0.581 0.871 0.961 0.965 0.993 0.984 0.996

14 no 0.486 0.786 0.987 0.995 0.962 0.992 0.977 0.995
14 yes 0.139 0.572 0.903 0.964 0.968 0.993 0.974 0.995

16 no 0.454 0.739 0.980 0.994 0.974 0.991 0.989 0.998
16 yes 0.123 0.518 0.887 0.966 0.962 0.991 0.972 0.993

18 no 0.484 0.739 0.980 0.990 0.967 0.991 ⋆ ⋆

18 yes 0.133 0.528 0.880 0.945 0.954 0.990 ⋆ ⋆

⋆ Computational time exceeded two hours

5 Conclusions and future research

In this paper, we provide a stochastic solution framework to solve a home health care routing and

scheduling problem with service consistency consideration when travel and service times are uncertain.

This problem can be considered a variant of the consistent vehicle routing problem that incorporates

personnel and time consistency as hard constraints. A chance-constraint model is proposed to deal

with the uncertain parameters for the first time in the HHCRSP with hard service consistency and TST

uncertainty. The chance constraint is reformulated using two different methods: a set of discrete sce-

narios and approximations of start-service and arrival time distributions using EVT analysis. In both

stochastic approaches, an exact method called branch-and-check, a variant of LBBD, is implemented.

This method decomposes the original problem into a master problem and multiple subproblems, in

which the master problem is solved by mixed integer linear programming and subproblems by CP.

Different metrics are evaluated through simulation to compare the efficiency of our proposed

stochastic models with the deterministic model proposed by Heching, Hooker, and Kimura (2019)

to investigate the value of stochastic solutions. Our computational experiments demonstrated that the

deterministic model can not reach an acceptable service level while the stochastic models can easily

do so. In addition, the number of newly accepted patients in the stochastic solutions is generally not

much lower than the one obtained using the deterministic model while the stochastic model guaran-

tees a much higher service quality. Furthermore, we can achieve more efficient computing performance

by adopting the nonlinear stochastic approximation function, which can be handled efficiently using

constraint programming.

This paper can be extended in different directions. For example, given that we have studied the

problem in a static setting, its dynamic variants could be promising in future studies. Although hard

service constraints are more difficult to solve exactly, it would be interesting to develop new models
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and methods for a soft constraint version of service consistency, where personnel consistency and/or

time consistency constraints can be relaxed and penalized in the objective function.
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