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recherche du Québec – Nature et technologies.
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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract : This paper develops an efficient hybrid algorithm to solve the credit scoring problem. We
use statistical mathematical programming to develop new classification models for the discriminant
analysis problems. The novelty of our approach can be summarized by the following: the combination
of two objective functions, the first minimizing the sum of misclassified points’ distances using linear
programming and the second minimizing the number of misclassified points using an efficient variable
neighborhood search heuristic based on jackknife resampling technique to improve the classification
performance. Our proposed scoring systems are often just as accurate as the most powerful black-box
machine learning models, but transparent and highly interpretable. The obtained results prove the
effectiveness of the proposed approach on real benchmark datasets.

Keywords : Classification, discriminant analysis, credit scoring, linear programming, variable neigh-
borhood search, jackknife resampling technique
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1 Introduction

Credit scoring models have played a vital role in credit granting by lenders and financial institutions.

Nowadays, our society is becoming a perfect consumer society, pushing individuals to seek alternative

financing solutions to cover their various expenses. For instance, loans, which present a possibly ideal

solution, still pose a risk to the lender because the applicant may fail to meet payment deadlines. To

mitigate this risk, credit scoring, which represents the operation of collecting and synthesizing data

through a combination of statistical, operations research and Machine Learning (ML) techniques to

distinguish between “good” and “bad” loans, is deployed. This process is made possible through the

rapid storage and treatment of borrowers’ information.

Credit scoring has been developed to explore the relationship between the dependent variable that

describes the risk of a consumer defaulting on a loan and the independent variables that characterize

the consumer [34] (e.g. age, number of previous loans, income, housing, etc.). In the literature, there

exists many scoring systems that use different classifications techniques. Linear discriminant analysis

was first introduced by Fisher in [8] and is a popular statistical technique in credit scoring [5]. Logistic

regression (LR) is among the most commonly used statistical techniques in credit scoring [20] and is

still widely used in practice [17]. K-nearest neighbor is also one of the prospective non-parametric

statistical methods applied to credit scoring. Henley et al. proposed in [14] an improved k-nearest

neighbor knn classifier and compared it with other statistical models. Recently, knn has been used in

credit scoring to build reliable classifiers [3]. Since its introduction by Breiman et al. [4], decision tree

(DT) has become a reference non-parametric method for the credit scoring problem. This interesting

method is still applied to build models for credit scoring [3, 18].

In the last decades, many effective credit scorecards have been developed via means of machine

learning techniques [6, 20]. Most of such developments include artificial neural networks [5, 16, 27],

support vector machines and least-squares support vector machines (LS-SVMs) [15, 20], and hybrid

models [38, 39]. ML techniques are not explainable and are considered as black boxes [24, 33]. Due

to banking regulation authorities, financial institutions in some countries are obliged to provide clear

explanations when a loan application is rejected [35]. Most ML algorithms, including deep learning

and ensemble models, are so complex that they cannot be directly interpreted by humans and suffer

from this limitation. This is exactly the opposite of the proposed approach and the statistical models

commonly used in credit scoring, such as linear discriminant analysis and logistic regression, in which

humans can refer to model coefficients to interpret the model and its predictions [13].

In addition, classifiers based on optimization techniques have been studied in the literature [29].

It has been shown that the application of optimization techniques helps to improve the performance

of machine learning methods [12]. Recently, many deep architectures have been adapted and shown

effectiveness in solving classification problems and have been applied especially to credit scoring [19].

The linear classification problem consists of separating two sets of points in real space Rn. The

primary objective proposed in the literature is to find the hyperplane that minimizes the sum of the

distances from all misclassified points to itself. A given hyperplane can easily be determined by Linear

Programming (LP) [2, 23]. When the two sets intersect and the overlapping points exist, perfect linear

separation is not possible. Consequently, the dataset can not be perfectly separated by the linear

classification model due to the inability of the objective of LP to be met. In an alternative approach

presented in [22], a discriminating hyperplane can be found by minimizing the number of misclassified

points. In this paper, we consider both objectives: (i) minimizing the number of misclassified points

and (ii) minimizing the sum of misclassification distances.

The purpose of the present paper is to develop an hybrid approach using the following two steps:

1. First, linear programming is used to find a performing solution to minimize the sum of misclas-

sification distances;
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2. Second, an efficient Variable Neighborhood Search (VNS) heuristic combined with Jackknife

Resampling Method is used to improve the solution obtained in the first step based on a well

balanced combination of the two objectives defined earlier.

The first step is easy to solve and gives a good approximation that can be used as a warm-start for

the second step. VNS is a metaheuristic proposed by Mladenovic and Hansen [26], which considers

multiple neighborhood structures in the search for an optimal (or near-optimal) solution. VNS has

been successfully applied to solve many hard combinatorial optimization problems such as the 0-1

Quadratic knapsack problem [36], the Pickup and Delivery Problem with Time Windows [32], the

vehicle routing problem with time windows [28] and the financial derivative problem [1], etc.

Jackknife resampling method has been successfully used to develop a statistical discriminant math-

ematical programming model[40]. The jackknife method was firstly proposed in [25, 30]. Since then,

the jackknife method has been the focus of much research, for instance in [7, 31]. Recently, several

papers, including [37] have used this procedure for assessing or calibrating predictive accuracy. The

jackknife procedure applied to discriminant models allows us to generate pseudo-parameters from pseu-

dodata by resampling the original observations and obtaining an accurate estimate of re-trained model

parameters.

This paper is organized as follows. Section 2 presents the credit scoring problem. Section 3 describes

the ingredients of VNS and presents a hybrid variant of VNS with JRM. Computational experiments

are reported in Section 4. Finally, conclusions are drawn in Section 5.

2 The credit scoring problem

2.1 General description of the problem and assumptions

Credit agencies must quickly assess the level of risk associated with granting a new loan to a customer.

To do this, they rely on past credit records at their disposal and use classification models that can

distinguish between good and bad loans. By construction, there are two well-defined groups of loans G1

and G2 (good and bad loans); hence, the credit scoring problem is a two-group classification problem.

Assuming a log of past records (input data) is known, each member of the two groups is characterized

by a set of attributes (information) X = (X1, X2, . . . , Xp) (age, account, job, income, residency etc.).

This information is recorded for different customers. The aim of this work is to provide the best

possible discriminant function using the input data by measuring p, the number of discriminatory

variables or attributes.

Given a sample E of n customers consisting of nG good customers and nB bad ones (possessing

good and bad loans respectively); i.e., n = nG+nB and E = G1∪G2. Denote by xi = (xi1, xi2, . . . , xip)

the p attributes of customer i. The classification model used by the credit institution should use these

attributes to score the customer. To do this, a weight wj , (j = 1, 2, 3, ..., p) is assigned to each attribute

to define a weight vector solution W = (w1, w2, . . . , wp), and a threshold c is calculated to separate

the good customers from the bad ones. If
∑p

j=1 wjxij ≥ c then customer i is classified good, otherwise

customer i is classified bad.

2.2 Linear programming approach

The Mathematical Programming (MP) approach has been first applied in classification by Magasarian

in [21]. Freed and Glover in [10] presented an evaluation of the linear programming approach (LP) in

discriminant analysis. A classification approach has been proposed based on the idea of reducing the

misclassification through the minimization of the overlaps / the maximization of the distance between

the two groups [9].

As will be proven in the following subsection, it is likely or even possible in practical cases, to

perfectly separate the good customers from the bad ones based solely on a LP approach. We generally
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tolerate eventual errors (violations) by introducing a positive value ai such that
∑p

j=1 wjxij ≥ c− ai
if customer i is a good one and

∑p
j=1 wjxij ≤ c + ai if customer i is a bad one. The objective will

then be to find the values of the weight vector w and the value of the separator c for which
∑n

i=0 ai is

minimal. Thus, the final model is:

Min f1(W ) =

n∑
i=1

ai (1)

s. t. :
p∑

j=1

wjxij ≥ c− ai ∀i ∈ G1 (2)

p∑
j=1

wjxij ≤ c+ ai ∀i ∈ G2 (3)

p∑
j=1

(nB

nG∑
i=1
i∈G1

xij − nG

nB∑
i=1
i∈G2

xij)wj = 1 (4)

ai ≥ 0 ∀i, c ∈ R and wj ∈ R∀j. (5)

The objective function f1 aims to minimize the distance between the misclassified customers and

the hyperplane WTx = c representing the discriminant function. Constraints (2) and (3) ensure that

each customer is either in group 1 (good loans) or group 2 (bad loans). Constraint (4) is a normalization

needed to avoid the trivial solution (wj = 0∀j, c = 0). Finally, constraints (5) define variables domains.

2.3 LP limits

To explain the shortcomings of the LP approach Figure 1 is introduced. Figure 1 presents a two-

dimensional dataset with 30 customers (I1; ...; I30) partitioned into two groups (represented by two

circles in the figure), each containing 15 customers. The area containing the points (I2, I3, I4, I6, I8, I13,

I16, I17, I19, I21, I22) represents the overlap of the two sets, and as seen in Figure 1, it is difficult

to separate these two groups with a single hyperplane. In Figure 1, “Hyperplane1” presents the

hyperplane provided by the LP method which minimizes the sum of the distances calculated for the

eight points (I2, I4, I6, I8, I16, I17, I19, I21) which are misclassified by “hyperplane1”. However, it is

possible to construct “hyperplane2” as another separator for the two groups with only 4 misclassified

points (I3, I4, I6, I16) whose sum of their distances is not minimal. Therefore, “hyperplane2” is not an

optimal solution for the LP model but it minimizes the number of misclassified points.

From Figure 1, the following can be inferred:

• Minimizing the sum of Misclassified Points Distances (SMD) is not the only criterion that should

be considered in the classification. The number of misclassified points is another important

criterion.

• The discriminant function based on LP model that provides the minimum SMD is not necessarily

the best classifier, (i.e. having the minimal number of misclassified points).

• Two separating hyperplanes can sometimes yield two classifiers with the same number of mis-

classified points with significantly different SMD values.

For the reasons mentioned above, another popular criterion to evaluate the performance of a clas-

sifier based on the Number of Misclassified Points (NMP) is introduced. For a given W , the number

of misclassified points corresponds to the cases incorrectly classified using the hyperplane.

Hence, the objective of the credit scoring problem considered in this paper is a combination of two

functions (f = f1+αf2, α ∈ R+): (i) f1 minimizes the sum of misclassified points’ distances and (ii) f2
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Figure 1: Different separating hyperplanes that best separate the data (in two groups)

minimizes the number of misclassified points. f1 is depicted by Equation (1) in the mathematical model,

on the other hand f2 is calculated using the training set. To calculate the number of misclassified points

for a given solution W , the following procedure is followed: (i) predict Yc, the class of all clients used,

(ii) compare Yc with DataY , the real class already known for each client, and finally (iii) calculate the

number of misclassified points. The pseudocode to calculate the function f2 is provided in Algorithm 1.

Algorithm 1

1: calculate Yc using W ;
2: compare Yc with DataY ;
3: return the number of misclassified points

Given the nature of f2, we must use a good methaheuristics like VNS to minimize f .

3 VNS using Jackknife Resampling Method

The algorithm developed in this paper is an efficient general variable neighborhood search hybridized

with JRM. In this section, the neighborhood structures are presented, followed by an explanation of

the classical components of VNS, namely the Variable Neighborhood Descent (VND) and the Shaking

functions, then, the deployment of jackknife resampling method used in our approach, and finally, the

introduction of the hybridization of VNS and JRM.

3.1 Neighborhood structures

The three neighborhood structures considered in this framework are denoted by N1, N2 and N3 re-

spectively. Let W = (w1, w2, ..., wp, c) be a given vector. The neighborhood N1 is based on a swap

operation which strips a value r, called a regenerator, from a component of W and adds it to an-

other component of the same vector and repeats this for all of the first p components. Formally,

N1(W ) = {(w1, ..., wi + r, ..., wj − r, ..., wp, c); 1 ≤ i < j ≤ p}. Figure 2 illustrates the construction of

the neighborhood N1.
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Figure 2: Neighborhood N1.

Example 3.1 : let W = (1, 2, 3, 4, 5) and r = 1,

N1(W ) = { (0, 3, 3, 4, 5), (0, 2, 4, 4, 5), (0, 2, 3, 5, 5), (0, 2, 3, 4, 6),
(2, 1, 3, 4, 5), (1, 1, 4, 4, 5), (1, 1, 3, 5, 5), (1, 1, 3, 4, 6),

(2, 2, 2, 4, 5), (1, 3, 2, 4, 5), (1, 2, 2, 5, 5), (1, 2, 2, 4, 6),

(2, 2, 3, 3, 5), (1, 3, 3, 3, 5), (1, 2, 4, 3, 5), (1, 2, 3, 3, 6),

(2, 2, 3, 4, 4), (1, 3, 3, 4, 4), (1, 2, 4, 4, 4), (1, 2, 3, 5, 4) }

The neighborhood N2 is obtained by adding a random regenerator r to the components of W .

Formally, N2(W ) = {(w1, . . . , wi + r, . . . , wp, c);∀i}. Figure 3 illustrates the construction of neighbor-

hood N2.

Figure 3: Neighborhood N2.

Example 3.2: again, let W = (1, 2, 3, 4, 5) and r = 1,

N2(W ) = {(2, 2, 3, 4, 5), (1, 3, 3, 4, 5), (1, 2, 4, 4, 5), (1, 2, 3, 5, 5), (1, 2, 3, 4, 6)}

The neighborhood N3 is practically identical to N1, only in this case the regenerator r is stripped

from a component of W , and half of it is added to two other components respectively. Consequently,

N3(W ) = {(w1, . . . , wk + r/2, . . . , wi − r, . . . , wj + r/2, . . . , wp, c),∀ 1 ≤ i ̸= j ̸= k ≤ p}. Figure 4

illustrates the construction of N3.

Figure 4: Neighborhood N3.

Example 3.3: let W = (2, 2, 3, 4, 5) and r = 2,

N3(W ) = { (0, 3, 4, 4, 5), (0, 3, 3, 5, 5), (0, 3, 3, 4, 6), (0, 2, 4, 5, 5), (0, 2, 4, 4, 6), (0, 2, 3, 5, 6),
(3, 0, 4, 4, 5), (3, 0, 3, 5, 5), (3, 0, 3, 4, 6), (2, 0, 4, 5, 5), (2, 0, 4, 4, 6), (2, 0, 3, 5, 6),

(3, 3, 1, 4, 5), (3, 2, 1, 5, 5), (3, 2, 1, 4, 6), (2, 3, 1, 5, 5), (2, 3, 1, 4, 6), (2, 2, 1, 5, 6),

(3, 3, 3, 2, 5), (3, 2, 4, 2, 5), (3, 2, 3, 2, 6), (2, 3, 4, 2, 5), (2, 3, 3, 2, 6), (2, 2, 4, 2, 6),

(3, 3, 3, 4, 3), (3, 2, 4, 4, 3), (3, 2, 3, 5, 3), (2, 3, 4, 4, 3), (2, 3, 3, 5, 3), (2, 2, 4, 5, 3) }
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3.2 VND procedure

3.2.1 LocalSearch function

The LocalSearch() function introduced in this paper improves the current solution by performing the

following steps. First, using one of the already defined neighborhood structures Nj(j = 1, 2, 3), it

creates the set of neighbors of the current solution Ŵ . Second, it chooses a better solution from the

one already found using one of two local search methods: 1) the first improvement method, which

compares the elements of Ŵ with W and returns the solution once it finds one better than W , or 2)

the best improvement method, which compares the elements of Ŵ with each other in order to find the

best element W ′ of this set and return it’s value. The LocalSearch() function takes Nj(j = 1, 2, 3) as

an input to create Ŵ then it returns W ′, the best solution found. Next, the algorithm compares W

with W ′ and updates W ’s value if W ′ is found better than W . The LocalSearch() function finds a

better solution among the neighbors compared to the current solution, thereby improving itself. The

pseudocode of the LocalSearch() function is provided in Algorithm 2.

Algorithm 2

1: Ŵ ← Neighberhood (Nj(W ))
2: W ′ ← argming(w)

w∈Ŵ
3: return W’

3.2.2 VND function

The VND function takes a current solution W as input and improves it. The next step is to use the

constructed neighbourhood structures Nj(j = 1, . . . , n), (i.e. N1, N2 and N3). As long as the V ND()

function is able to improve W , j takes the value 1 in order to use the neighbourhood structure N1 (the

iterations will continue as long as j is below the number of structures defined in the beginning). The

function LocalSearch() is then used to create, firstly, the sets of neighbors ofW using the N1 structure.

Secondly, it finds the best solution W ′ for this set (in this case, we adopt the best improvement

method in the LocalSearch() while ignoring the first improvement). If W ′ is better than W , then

W is updated to W ′ and j gets the the value 1 to restart as a new iteration with N1 as neighborhood’s

structure. If else, j is updated to j+1 to use the next neighborhood’s structure. If there is no possible

improvement, the algorithmic process is terminated. The pseudocode of the V ND(W ) function is
presented in Algorithm 3.

Algorithm 3

1: while there is a possible improvement do
2: j ← 1
3: while j <= 3 do

4: W
′ ← LocalSearch (Nj(W ))

5: if W
′
is better than W then

6: W ←W
′

7: j ← 1
8: else
9: j ← j + 1
10: end if
11: end while
12: end while
13: return W

3.3 Shaking() function

The Shaking() function escapes the valleys of local optima by diversifying the search in other regions.

The Shaking(k,Wbest) function allows to move “far“ away from the incumbent Wbest. It generates a
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new solution after applying m moves. Each move is generated randomly by using the kth neighborhood

of W . The value of m is tuned and made constant for all tests.

The pseudocode of the Shaking() function provided in Algorithm 4 is presented.

Algorithm 4

1: i← 1, W ←Wbest

2: while i <= m do
3: W ← randomly select one vector from Nk(W )
4: i← i+ 1
5: end while
6: return W

3.4 Jackknife procedure

Jackknife procedures have been successfully used to identify statistically significant parameter esti-

mates in the cases where the underlying sampling distribution are either unknown or have no analytical

solution. In [40], Ziari et al. developed a statistical discriminant model based on the jackknife proce-

dure, and proved it to be the most promising among the resampling estimation techniques examined.

In essence, the jackknife approach consists of partitioning the total sample of size n into t subsets

(k = 1, 2, . . . , t), each with an equal size of d elements (n = t× d). At each iteration, a given subset is

deleted from the whole training data and the effect of estimating the parameter Wk from the rest of

the sample is calculated using the formulas given in [40]. The principle result of the jackknife method

is to determine the weight vector Wk in each iteration (corresponding to the case of deleting the kth

subset).

The final vector will be the average of d resulting values of Wk from all iterations. The jackknife

delete-d procedure used to provide estimates of VND coefficient is as follows:

1. Estimate the first jackknife parameter W1 where W1 = (w1
1, w

1
2, ..., w

1
p, c

1) (where p is the number

of characteristics, which is the linear discriminant function coefficient using VND approach from

(n− d) sized remaining observation set.

2. Omit the second d observation set from the full sample and estimate the second jackknife pa-

rameter W2 where W2 = (w2
1, w

2
2, ..., w

2
p, c

2) is the linear discriminant function coefficient from

(n− d) sized remaining observation set.

3. Alternately omit the following d observations and estimate the linear discriminant function co-

efficient Wk, where Wk is the jackknife parameter estimated after deleting kth d observation set

from full sample. Thus, t delete-d jackknife sample are obtained consist of t vectors estimated

parameter W1,W2, . . . ,Wt

4. Calculate the jackknife parameter corresponding to linear discriminant function coefficient esti-

mate W ∗ = (w∗
1 , w

∗
2 , ..., w

∗
p, c

∗) where each coefficient is given by Efron in [7] as follow :

w∗
s =

t∑
i

wi
s

t
, s = 1, 2, . . . , p and c∗ =

t∑
i

ci

t
,

3.5 A hybrid VNS/JRM

In this section, we present a hybridization of VNS and the JRM (VNS/JRM) for the linear discrim-

inant analysis. JRM is used to study the effect of a particular subset of the population (sample)

on a parameter estimate (W in our case). The JRM approach consists of: 1) partitioning the total

sample into t subsets of equal size, where t is tuned by experimentation, 2) deleting a subset from the

population, 3) estimating the effect on the parameter (we use VND in our case to compute W using

the remaining population), and 4) repeating the above steps for every subset and averaging the results

(effects).
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3.5.1 LocalMinima function

The LocalMinima() function is a hybridization of the jackknife procedure that statistically distorts

the solution, and the V ND function that looks for the local minimums given an initial solution.

Applying this hybridization ensures the convergence towards a certain local minimum, as it is capable

of creating t data samples at each iteration of the jackknife function, to which the V ND function

finds a local minimum so that we obtain t local minimums. The function returns the mean of these

local minimums. The pseudocode of the LocalMinima() function is presented in Algorithm 5.

Algorithm 5

1: k ← 1
2: Partition the population into t subsets of equal size.
3: while k ≤ t do
4: Remove the kth subset from the population
5: Wk ← VND(W)
6: k ← k + 1
7: end while
8: return W ∗ =

∑t
k=1

Wk
t

3.5.2 General algorithm

The initial solution W 0 is generated by CPLEX using f1 (i.e. α = 0) for the V NS/JRM model,

then the neighborhood structures Nj(j = 1; . . . ;n) are defined, which, in our case, are N1, N2, N3.

While the algorithm is able to find an improvement for Wbest (using the objective function f), k gets

the values from 1 to Kmax (where Kmax is the number of neighborhoods) for shaking the current

solution using the Shaking() function. Afterwards, the LocalMinima() function is used to find the

local minimum W ′. Then, we check if W ′ is better than Wbest. If the condition is met, Wbest is

updated to W ′ and k is set to the initial value (i.e. k = 1), else increment k (i.e. k = k + 1) and

restart the Shacking() function in order to move away from the local minimum solutions. Finally, if

the Shaking() function runs Kmax times without any improvements, it is assumed that there isn’t any

improvement possible, thus the algorithm stops. The pseudocode of the proposed solution is presented

in Algorithm 6.

Algorithm 6

1: initialize W
2: Wbest := W
3: define a set of neighborhood structures Nj , (j = 1, 2, 3) of the current solution
4: while stopping condition is not met do
5: k ← 1
6: while k <= Kmax do
7: W ← Shaking (k,Wbest)
8: j ← 1

9: W
′ ← LocalMinima (W )

10: if W ′ is better than Wbest then
11: Wbest ←W ′

12: k ← 1
13: else
14: k ← k + 1
15: end if
16: end while
17: end while
18: return Wbest

To summarize, as demonstrated in Figure 5, the VNS/JRM algorithm contains two main phases:

(i) the construction of an initial solution W 0 by solving the linear program of Section 2.2 using

CPLEX, (ii) the improvement of Wbest (Wbest = W 0 in the beginning of phase 2 by combining VNS

and JRM using the objective f and tuning the parameter α. Each time the algorithm is able to find

an improvement of Wbest, it returns back to k = 1. The algorithm stops if there is no improvement.
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Figure 5: Block diagram of building VNS model using JRM

4 Numerical experiments

In the first subsection, we briefly describe all the datasets used in the computational results. To

evaluate the performance of the VNS/JRM classifier with CPLEX, a cross-validation (CV) training-

testing method (stratified 10-fold) was adopted. The same training set that is used by CPLEX in

phase 1, is also used by VNS/JRM to improve the current solution in phase 2. The VNS/JRM

classifier is then validated using the same testing set to assess its performance and compare it to the

solution obtained by CPLEX and to state of the art classifiers.

4.1 Datasets description

Three real datasets (the Australian, German, and Taiwanese datasets which are derived from the UCI

Machine Learning Repository and most used in the literature [13]) are used to evaluate the VNS/JRM

classifier. Table 1 summarizes the main characteristics of the datasets. The number of numerical

features is given by Nnum while the number of categorical features is given by Ncat.

Table 1: Datasets characteristics

DATASET Sample size No. features Nnum Ncat

Australian 690 14 8 6
German 1000 20 13 7
Taiwanese 30000 23 14 9

All the benchmark datasets that have been used to test the algorithm can be found at :

• https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

• https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)

• https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

4.2 Performance evaluation metrics

Different evaluation metrics have been used in the literature to evaluate the performance of classifica-

tion techniques. They include accuracy, sensitivity (or recall), specificity, precision, F1 score, G-mean,
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and area under the curve (AUC). In this study, all the aforementioned evaluation metrics, which are

most used in credit scoring [16], are considered and can be calculated based on a confusion matrix.

Accuracy (ACC) is a criterion for measuring the classification accuracy of a model, which can be

calculated by the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision is the proportion of all predictions that are correctly predicted as positive are true. It can

be calculated by the following equation:

Precision =
TP

TP + FP

Sensitivity or Recall shows how many positive examples in the dataset are predicted correctly and

can be calculated by the following equation:

Recall =
TP

TP + FN

Specificity shows how many negatives examples in the data set are predicted correctly and can be

calculated by the following equation:

Recall =
TN

TN + FP

F1-measure is a comprehensive evaluation metric based on precision and recall metrics, it is

calculated using the following expression:

F1−measure =
2(Precision ∗Recall)

Precision+Recall

G-mean is an evaluation method constructed with sensitivity and specificity. It can be interpreted

as the geometric mean of both measures, which is calculated by the following equation:

G-mean =
√
sensitivity ∗ specificity

Where FP (False Positive) is the number of customers mistakenly classified as “good”, and who

are actually “bad”, TN (True Negative) is the number of customers classified as “bad” and

who are indeed “bad” (well-classified), FN (False Negative) is the number customers mistakenly

classified as “bad” and who are actually “good”, and TP (True Positive) is the number of

customers classified as “good”, and who are indeed “good” (well-classified).

AUC refers to the area under the receiver operating characteristic curve (ROC), which is a compre-

hensive indicator reflecting the continuous variables of sensitivity and specificity. The range of

AUC is generally between 0.5 and 1. If a classifier has an AUC value equal to 1, it means that

two groups of cases can be completely separated by the classifier.

4.3 Computational results and discussion

4.3.1 Experimental evaluation of VNS/JRM

The main objective of VNS/JRM procedure is to optimize the model performance. Due to the fact

that real-world datasets are usually linear inseparable, it is hard for the LP approach to obtain the

best classifier. To highlight the limits of the minimizing process, an extended empirical study of VNS

process using jackknife procedure is employed.
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A : Evaluation of VNS/JRM using the function f1 as objective. In order to show numerically

the limits of the LP approach defined in Section 2.2, the VNS/JRM started with an initial solution

different than that of CPLEX (randomly generated) and the objective based on minimizing the sum

of misclassified points distances (SMD) is applied (i.e minimizing the function f1 ). In addition to

minimizing SMD, we are interested in identifying the impact of the proposed algorithm on the average

number of the well classified points which is defined by Accuracy. For this purpose, we evaluate

the performance of the corresponding scoring model in terms of SMD and we compute the Accuracy

simultaneously. The application of the jackknife procedure allows us to generate a number of Local

Minimums.

For a given iteration of the algorithm, the SMD and the Accuracy of the developed models by

LocalMinima procedure for the Australian, the German and the Taiwanese datasets are illustrated in

Figures 6, 7 and 8 respectively. Since the number of iterations generated by the algorithm for the

Taiwanese dataset is very large, we have added a curve which zooms in on a part of the Figure 8. For

each figure, five descents can be distinguished from the curve of SMD. However, the curve of Accuracy

shows fluctuating results and represents a different trend compared to the curve of the SMD. It can

be inferred from Figures 6, 7 and 8 that the SMD values decrease to reach a local minimum several

times while Accuracy presents a volatile curve and unstable behavior. From the above remarks, it can

be deduced that there is no consistency between a SMD minimal and an Accuracy maximal.

Figure 6: SMD and Accuracy of VNS/JRM for Australian dataset

B : Evaluation of VNS/JRM using the function f1 + αf2 as objective. The number of misclassified

points (NMP) denoted by the function f2 will be considered in the evaluation of the proposed method.

In this case, we study the combination of f1 (SMD) and the f2 (NMP) as defined in sect. 2.3. Different

tests were done to verify the new objective’s impact to the results considering the three datasets. For

each iteration, the new fitness function f1 + αf2 noted by (SMD & NMP) is computed for a given

value of the parameter α and the Accuracy of the developed scoring model is calculated. Many tests

have been done to determine the optimal value of α and the results have shown that the best value

for α are 100, 1000 and 100 for the Australian, the German and the Taiwanese datasets respectively.

Figures 9, 10 and 11 depict the SMD & NMP and Accuracy curves of each dataset. From these

figures, we can see that the combination of two objectives SMD and NMP has a significant impact

on the results of the VNS/JRM approach. It is observed that the Accuracy of the developed models

increases along with the minimizing process for all the datasets considered. Hence, the numerical

results show the proposed combination method to be effective for improving the accuracy for credit

scoring datasets.
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Figure 7: SMD and Accuracy of VNS/JRM for German dataset

Figure 8: SMD and Accuracy of VNS/JRM for Taiwanese dataset

C : Comparing results of CPLEX and VNS/JRM. Table 2 presents the results of CPLEX and

VNS/JRM over five performance metrics considering the three datasets. Firstly, the optimal solution

was obtained by minimizing only f1 which is the CPLEX results. Secondly, the outcome can be

improved using VNS/JRM which minimizes f1 + αf2, the fitness function for the three datasets. The
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Figure 9: SMD & NMP and Accuracy of models in many generations for Australian dataset

Figure 10: SMD & NMP and Accuracy of models in many generations for German dataset

Figure 11: SMD & NMP and Accuracy of models in many generations for Taiwanese dataset

VNS/JRM with CPLEX algorithm is more effective than CPLEX alone because it could reach the best

solutions for all the cases, as shows in Table 2. This comparison indicates that although minimizing

the f1 on its own is an efficient method to obtain a good solution, the outcome can be improved not

only by considering local optimal solutions, but also by reducing the number of misclassified cases.

Through this comparison, the VNS/JRM approach which considers f1+αf2 as fitness function is found

to be a viable alternative to the linear programming problem in credit scoring.
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Table 2: Comparison of Cplex and VNS/JRM over five performance metrics

Datasets.
CPLEX Solver

Accuracy Precision Recall F1-measure AUC

Australian 85.65 87.57 86.42 84.01 92.27
German 73.60 81.32 80.86 81.09 76.12
Taiwanese 76.06 84.65 84.61 84.63 70.87

Datasets.
VNS/JRM

Accuracy Precision Recall F1-measure AUC

Australian 87.53 84.64 87.95 86.26 91.61
German 76.40 79.67 89.00 84.08 75.82
Taiwanese 81.50 83.10 95.73 88.97 65.01

4.3.2 Finding the optimal number of moves m for shaking function

The Shaking() function is an essential element in the VNS/JRM approach as it is used to avoid the

local minima traps. It requires an input diversification parameter m which represents the maximum

moves in each shaking. In order to investigate the effects of the proposed algorithm, we record the

Accuracy, Specificity, Sensitivity and G-Mean of the feasible solutions obtained by varying the value

of parameter m. To ensure the representation of different regions of the search space different values

for the parameter m are set, ranging from 10 to 150.

Figures 12 and 13 show the Accuracy, Specificity and Sensitivity for each iteration in the tenfold

cross-validation procedure of the experiments. From Figure 12, the accuracy improves with an increase

in the number of m moves applied to a solution to jump from a local optimum. Good solutions

are obtained when m= 110 for the Australian dataset, and m=60 for the German dataset, while

for the Taiwanese dataset it is when m=150 and as m exceeds that value, the computation time of

VNS/JRM is more than 10 minutes with a slight variation of the performance of the model. It is worth

mentioning that the search strategy proposed in this paper is effective in improving the accuracy of

data classification.

The results of Figure 13 indicate that specificity and sensitivity fluctuate and tend to increase

slightly by varying the value of m. Moreover, the sensitivity and the specificity can be improved with

increasing values of m as shown earlier for the accuracy. The results shown in figures 12 and 13 reveal

that the number of moves in the shaking function is important for the VNS/JRM approach.

The metric G-mean is used to measure the balance between the classification performances on both

the majority and minority classes. Best values of G-mean obtained across various m for the Australian,

the German and the Taiwanese datasets were 87.62, 75.34, and 69.14 respectively. It can be concluded

that even if the Taiwanese dataset is the most imbalanced, the VNS/JRM model performs better

in this situation and yields better performance. The Australian dataset having the highest G-mean

followed by the German dataset confirms the existing balance between the two classes.

4.3.3 Comparing with other classifiers focusing on credit scoring

In this subsection, we compare the performance of VNS/JRM with that of the state of art methods in

machine learning, such as Linear Discriminant Analysis (LDA), Logistic Regression (LR), K-nearest

neighbor(knn), Decision tree (DT), Neural-Network Analysis (ANN), Support Vector Machines (SVM)

for both linear (Lin SVM) and RBF kernels (RBF SVM), and Least Square Support Vector Machines

(LS-SVM) for RBF kernels (RBF LS-SVM) for credit scoring. (LDA, LR, DT, knn are performed

by a manual search for setting parameters [11] and a grid search has been applied to the parameter

tuning of LinSVM, RBFSVM, RBFLS-SVM and ANN [13]). For each dateset, the results of the

evaluation measures obtained from each learning algorithm are found by performing ten experiments

and is averaged after a 10-fold cross-validation. The best results obtained are marked in bold font.
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Figure 12: Accuracy of VNS/JRM of each dataset for various m

Table 3 presents the average results of each classifier on the Australian dataset. Compared to all

other classifiers, JRM/VNS model obtains the best ranking results three times out of the five. As

shown in Table 3, the accuracy, precision and the F1-measure of the VNS/JRM excel all counterparts,

and its AUC achieves a average of 91.61% which is a better value compared to other classifiers.

Table 4 shows the average computational results on the German dataset. VNS/JRM achieves

the highest AUC of all classifiers and exhibits the second best accuracy and F1-measure with slight

difference. Moreover, among the models used in this study, VNS/JRM obtains good values for the

remaining measures.
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Figure 13: Sensitivity and Specificity of VNS/JRM of each dataset for various m

Table 3: Result of comparing performance of classifiers over Australian dataset

Model Accuracy (%) Precision (%) Recall (%) F1-measure (%) AUC

VNS/JRM 87.53 84.64 87.95 86.26 91.61
LDA 85.94 79.99 92.11 85.39z 92.98
LR 85.50 82.64 86.48 84.19 92.96
knn 80.14 82.22 71.11 75.79 87.63
DT 81.44 79.81 78.61 78.98 85.36
LinSVM 71.59 69.42 79.51 71.07 86.83
RBFSVM 85.50 78.91 92.78 85.08 92.13
RBFLS-SVM 86.52 83.56 87.92 85.36 92.68
ANN 84.63 82.81 83.32 82.68 91.37

Table 5 shows the results of the tenfold cross-validation of the Taiwanese dataset. VNS/JRM

performs better than all classifies except ANN in terms of accuracy, F1-measure, and AUC with slight

difference. Meanwhile, VNS/JRM achieves acceptable Precision and good Recall values compared to

most of its counterparts.

The running time did not exceed 10 minutes for the largest used dataset (Taiwan). The compar-

isons of the results of the three tables shows that VNS/JRM is able to produce significant results

in a reasonable amount of time. Hence, VNS/JRM presents a promising alternative for solving the

classification problem.
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Table 4: Result of comparing performance of classifiers over German dataset

Model Accuracy (%) Precision (%) Recall (%) F1-measure AUC

VNS/JRM 76.40 79.67 89.00 84.08 79.82
LDA 72.60 85.94 72.64 78.65 79.26
LR 75.80 79.44 88.39 83.55 79.07
knn 72.90 73.62 95.91 83.14 74.83
DT 70.60 77.71 81.16 79.30 68.18
LinSVM 75.50 78.33 90.11 83.67 79.09
RBFSVM 71.90 86.04 71.38 77.88 79.77
RBFLS-SVM 76.80 79.91 89.51 84.32 78.57
ANN 72.10 77.83 85.06 80.92 74.02

Table 5: Result of comparing performance of classifiers over Taiwanese dataset

Model Accuracy (%) Precision (%) Recall (%) F1-measure AUC

VNS/JRM 81.50 83.10 95.73 88.97 75.01
LDA 72.26 86.93 75.68 80.90 71.51
LR 80.96 81.73 97.26 88.82 72.07
knn 81.10 82.96 95.25 88.68 73.12
DT 73.79 82.90 83.55 83.22 65.65
LinSVM 77.81 77.81 100 87.51 55.12
RBFSVM 77.85 77.87 99.96 87.53 50.45
RBFLS-SVM 80.21 81.14 97.13 88.41 71.44
ANN 82.03 84.11 94.81 89.14 76.24

5 Conclusion

In this paper, we propose an efficient heuristic based on jackknife resampling technique to improve the

classification performance obtained by statistical Mathematical Programming for solving the credit

scoring problem. The novelty of our approach can be summarized by the following: (i) the combi-

nation of two objective functions, one which minimizes the sum of misclassified points’ distances and

the second which minimizes the number of misclassified points, and (ii) the reduction of the bias of

parameters using JRM.

Compared with machine learning methods, our credit scoring approach is more explainable, very

easy to interpret and to implement. From the numerical results presented in this paper, the proposed

VNS/JRM approach is often as accurate as the best performing black box machine learning models,

yielding the best risk default detection and improving the efficiency and effectiveness of the classifier.

Combining statistical learning, mathematical programming, and methaheuristics can add value to the

existing literature by yielding powerful tools in classification. For future investigation, the approach

presented here will be applied to higher dimensional linearly inseparable data. Additionally, it will be

applied to quadratic models used in more complicated classification problems.
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