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Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2023-31) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2023
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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l’accès au travail et enquêterons sur votre demande.
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Abstract : The emerging demand for electric bicycles in recent years has prompted several bike-
sharing systems (BSS) around the world to adapt their service to a new wave of commuters. Many
of these systems have incorporated electric bikes into their network while still maintaining the use
of regular mechanical bicycles. However, the presence of two types of bikes in a BSS network may
impact how rebalancing operations should be conducted in the system. Regular and electric bikes
may exhibit distinct demand patterns throughout the day, which can hinder efficient planning of such
operations. In this paper, we propose a new model that provides rebalancing recommendations based
on the demand prediction for each type of bike. Additionally, we simulate the performance of our model
under different scenarios, considering commuters’ varying inclination to substitute their preferred bike
with one of a different type. In one simulated scenario, our model successfully reduced lost demand
by approximately 40% compared to the current rebalancing strategy employed by the real-world BSS
studied. Moreover, it decreased the number of rebalancing operations conducted by approximately
12%, resulting in benefits not only in terms of cost reduction but also in reducing greenhouse gas
emissions.

Keywords: Bike-sharing, rebalancing, e-bikes, inventory management
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1 Introduction

In the last years, we have seen bike-sharing systems (BSS) gaining the spotlight in the transportation

scene due to their numerous advantages such as the absence of greenhouse gases emission, the promotion

of a healthy lifestyle, as well as easy and facilitated access. The history of this mobility service dates

back to the 60s and has continuously evolved over time (Si et al., 2019). The fourth BSS generation,

which we are currently experiencing, is marked by the inclusion of solar-powered docking stations,

real-time system data, mobile apps, flexible parking, and electric bikes, also known as e-bikes (Julio

and Monzon, 2022).

In comparison with regular bikes, e-bikes are faster, easier to ride, especially on hilly paths, and

overall they cause less fatigue (Ji et al., 2014). To make BSSs more attractive to a group of commuters

who are mainly interested in these advantages, BSSs around the world have introduced e-bikes into

their networks – e.g. BIXI (Montréal), Citi Bike (New York). Nonetheless, regular bikes still please

loyal commuters who search for health benefits or for a cheaper transportation mode. In (Zhu, 2021),

it is shown that the introduction of e-bikes in BSSs, alongside regular bikes, contributed significantly

to the augmentation of BSSs revenues. However, a network with two types of bikes indeed introduces

new challenges at every step of the service’s logistics.

This challenge is especially hard for dock-based BSSs where the docks at the stations must be

shared by both types of bikes. As such, too many bikes of a given type may lead to lost demand of

the second type, and vice-versa, given that the number of docks is limited at each station. Hence, at

the moment of rebalancing the inventory of a station, it is important to dynamically determine the

number of ideal available bikes of each type in the stations of the system to guarantee its effective

service.

Figure 1 presents the hourly average number of bikes rented on BIXI-Montreal in July 2022, where

we can observe that the demand for regular and electric bike trips bounces over the day. Figure 2

highlights the considerable variation in e-bike demand per station at BIXI. While we can identify

areas with high demand, it is notable that high-demand stations can be found adjacent to low-demand

stations. This shows that understanding bike demand at station level is a complex task – even more

in the presence of a heterogeneous bike offer. Additionally, the demand for bikes has undergone a

significant transformation in recent years, driven by the shifts in working habits brought about by the

COVID-19 pandemic (Hossain et al., 2023; Shaik and Ahmed, 2022).
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Figure 1: Hourly average number of rentals on BIXI-Montreal BSS in July 2022
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Figure 2: Average number of rented e-bikes per day at BIXI in July 2022

Besides, reallocating bikes through rebalancing operations can be quite expensive since it involves

fuel costs, truck maintenance, driver’s salary, etc. The trucks used for rebalancing are also responsible

for CO2 emissions and other polluting gases, which contradicts the BSS’s commitment to sustain-

ability. Therefore, it is important to optimize the effectiveness of rebalancing operations, updating

the inventories of stations that yield minimal lost demand in the system. Nonetheless, leaving to the

operator alone the task of understanding both demands and their correlations, while assuring that

the rebalancing operations respect the BSS’s limited resources, may lead to suboptimal rebalancing

decisions.

The primary objective of our paper is to underscore the significance of incorporating demand

predictions for both regular and electric bikes when making dynamic rebalancing decisions within a

station-based bike-sharing system (BSS). In light of this, we propose a model that identifies imbalanced

stations and determines the target inventory for each bike type. Essentially, our model provides

recommendations for when and how many bikes of each type should be added or removed during the

rebalancing process. By considering the expected demand for each bike type within a specific time

period and accounting for station capacity, our model aims to optimize the rebalancing performance.

To evaluate our model effectiveness, we collected data from BIXI-Montreal1 and conducted sim-

ulations to compare the inventory response between our proposed rebalancing strategy and the one

currently employed by BIXI. Furthermore, our simulations explore various policies regarding the option

of replacing one type of bike with another for a trip.

The paper is organized as follows. Section 2 reviews relevant literature on our research topic.

Section 3 describes the proposed model to compute inventory intervals and target inventory for both

1www.bixi.com
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regular and electric bikes. Section 4 presents the data, the tuning process, the inventory simulator,

and the results of our experiments. Finally, our final remarks are given in Section 5.

2 Related works

One key performance indicator to assess a BSS is its service level, which is computed as the ratio

between the number of satisfied trips and the total number of demanded trips (Schuijbroek et al.,

2017). It indicates whether a BSS is able to meet the commuters’ demand, which is paramount for

customer satisfaction.

The strategies to improve the service level in BSSs can be grouped into two main categories: network

planning and operational rebalancing. The first consists of designing an ideal network configuration

by optimizing the number of stations, docks and bikes, the location of the stations, initial inventories,

etc., to reduce the total lost demand in the system (Raviv and Kolka, 2013; Schuijbroek et al., 2017;

Datner et al., 2019). The second represents an intervention, that can be performed either by the BSS

operator or by the commuters, to redistribute the network’s assets, e.g. bikes or batteries, among the

stations (Bulhões et al., 2018; Lowalekar et al., 2017; Possani and Castillo, 2021; Forma et al., 2015;

Tan et al., 2021).

Table 1: Summary of strategies to improve the service level in EBSS

Strategy Research article Network Parking Methodology

Operational
rebalancing

(Fukushige et al., 2022) Modal Free-floating User-based approach for rebalancing
(Tan et al., 2021) Modal Parking locations Optimization of routes for battery exchange
(Zhou et al., 2022) Modal Free-floating Optimization of routes for battery exchange

Network
planning

(Zhu, 2021) Bimodal Station-based Optimization of bikes and e-bikes fleet
(Chen et al., 2020) Modal Station-based Optimization of bikes fleet and number of docks
(Zhou et al., 2020) Modal Parking locations Optimization of parking locations
(Martinez et al., 2012) Bimodal Station-based Optimization of stations locations
(Soriguera et al., 2020) Modal Station-based Optimization of e-bikes fleet, number of stations,

number of docks, and rebalancing rate

Many studies in the literature have proposed strategies to improve the service level in BSSs. How-

ever, works that consider systems with shared e-bikes, hereafter denoted EBSSs, have just recently

emerged. Table 1 summarizes the main works in the literature whose goal is to improve the service

level in EBSSs. They are classified according to the strategy to improve the service level (operational
rebalancing or network planning), the BSS network composition (modal or bimodal), the parking

configuration (capacitated station-based, uncapacitated parking locations or free-floating), and their

methodology.

The works of (Fukushige et al., 2022; Tan et al., 2021; Zhou et al., 2022) propose operational rebal-

ancing strategies since they both deal with the reallocation of resources in the system. In (Fukushige

et al., 2022) the authors study a user-based approach to better understand in which scenarios BSS

commuters are stimulated to return bikes to a desired location under financial incentives. In (Tan

et al., 2021; Zhou et al., 2022), both works present models that propose traveling routes for exchang-

ing discharged batteries for charged batteries among e-bikes in the system. Battery recharging is

directly related to the performance of the service provided since e-bikes with discharged batteries re-

main unused in the system. In our model, we assume that the battery recharging is performed during

the rebalancing process itself. This is not a strong assumption in reality. At Bixi-Montreal, almost

20% of the stations are powered, allowing battery recharging on site. The remaining references address

network planning strategies, i.e., they approach the problem of fleet dimensioning ((Zhu, 2021; Chen

et al., 2020; Soriguera et al., 2020)), dock dimensioning (Chen et al., 2020; Soriguera et al., 2020)),

locating the stations ((Zhou et al., 2020; Martinez et al., 2012)) and rebalancing rate, i.e., reallocated

bikes per hour ((Soriguera et al., 2020)).
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Our proposed model proposes to optimize the service level of a bimodal and station-based EBSS

using target inventory values and inventory intervals to assist in the rebalancing process. The target

inventory value represents the ideal number of bikes for a station and it is often used to establish

how many bikes that station should have in a given time period in order to maximize its service level

(Huang et al., 2020; Datner et al., 2019; Liu et al., 2016; Raviv and Kolka, 2013). The inventory interval

consists of an acceptable range in which the inventory can fluctuate while still meeting the expected

demand. They are usually used to select which stations from the network need to be rebalanced (Hulot

et al., 2018; Schuijbroek et al., 2017; Haider et al., 2018).

3 Proposed model

In this Section, we present the model developed to automatically generate target inventory values and

inventory intervals for bimodal BSS based on demand prediction.

3.1 Target inventory values

Addressing the challenge of generating target values for two different demands that share station docks

requires careful consideration to ensure that both demands are met without exceeding the station’s

capacity. So, to ensure the feasibility of the rebalancing recommendations provided by our target

inventory values, our model divides the number of docks for each demand based on their respective

service levels. Additionally, it establishes the optimal initial inventory within the allocated number of

reserved docks for each demand.

Our model starts by training a machine-learning model to predict hourly rentals and returns at

station-level for both types of bikes. In this work, we used the GBT-based predictive model introduced

in (Hulot et al., 2018) which considers historical data as well as exogenous features such as weather

conditions or holidays.

After forecasting the demand at each station of the BSS, we calculate their respective service levels.

In our study, considering the availability of two types of bikes, we chose to compute the proportion of

satisfied trips independently for each bike type. This approach allows us to assess the service level for

each type of bike individually, taking into account their specific demand patterns and availability.

To calculate the service level of a station, we model its inventory as a queue with a single server.

The capacity of this queue is set to match the number of available docks at that particular station.

Similar to other works that address the random rentals and returns of commuters in a BSS, such as

(Raviv et al., 2013; Schuijbroek et al., 2017; Hulot et al., 2018; Ghosh et al., 2017; Shu et al., 2013;

Kabra et al., 2020; George and Xia, 2011), we assumed that the trips follow a Poisson distribution, so

that the times between rentals and returns follow exponential distributions.

For a station s with an initial inventory of f and a specific number of docks, denoted as CR,

allocated for regular bikes out of the total capacity of Cs docks, the expected service level for regular

bikes during the time period [0, T ] can be computed as follows:

SLR
s (f, T, CR) =

∫ T
0 µR

s (t)(1− pRs (f, 0, t)) + λR
s (t)(1− pRs (f, CR, t))dt∫ T

0 µR
s (t) + λR

s (t)dt
, (1)

where pRs (f,N, t) is the probability that the station s stores N regular bikes at hour t, knowing that its

initial inventory is equal to f at time 0; µR
s (t) and λR

s (t) represent the predicted rental and return for

regular bikes at hour t and station s. Here, the superscript R refers to values that are specific to regular

bikes. Likewise, the service levels for e-bikes are computed as in Equation (1) by replacing µR
s (t), λR

s (t),

pRs (f,N, t) and CR by µE
s (t), λ

E
s (t), p

E
s (f,N, t) and CE , respectively, where the superscript E refers to

values regarding e-bikes only.

Indeed, Equation (1) depends on the number of docks CR allocated to regular bikes at the ana-

lyzed time period. This allocation may vary to optimize the performance of the system based on the
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anticipated trip demand. In our model, the number of docks allotted for regular and electric bikes at

station s for time period [0, T ], denoted CR
s (T ) and CE

s (T ), respectively, are determined as:

CR
s (T ) = argmax

C∈{0,...,Cs}

{
ΛR
s (T,C) + ΛE

s (T,C − Cs)
}
, (2)

and

CE
s (T ) = Cs − CR

s (T ), (3)

where function ΛR
s (T, x) (resp. ΛE

s (T, x)) is chosen as the maximum or the average value of SLR
s (f, T, x)

(resp. SLE
s (f, T, x)) for f ∈ {0, . . . , x}. The choice of the function as max or avg. influences the service

level we want to optimize (the best or the average-case, respectively).

Once the number of docks reserved for regular bikes and e-bikes are determined, our model proceeds

to compute the target inventory values for regular and e-bikes for time period [0, T ] as:

T R
s (T ) = argmax

f∈{0,...,CR
s (T )}

{SLR
s (f, T, CR

s (T ))}, (4)

and

T E
s (T ) = argmax

f∈{0,...,CE
s (T )}

{SLE
s (f, T, C

R
s (T ))}. (5)

The computed target values respect the capacity of the station and the number of docks reserved

for each type of bike. This ensures that the recommended rebalancing actions based on the target

inventory values are practical and feasible to implement.

3.2 Inventory intervals

Considering only the total rentals or returns without distinguishing between different types of demand

can obscure the identification of lost demand for a specific type of bike. Similarly, creating inventory

intervals tailored to each demand while assuming that the total number of docks is always available can

lead to undesirable situations. For instance, a station may become completely full without triggering

any alerts because neither demand (for regular or e-bikes) has exceeded its upper or lower bounds.

Therefore, it is crucial to take into account the station capacity when setting inventory intervals to

ensure optimal inventory management and prevent potential issues.

To calculate the inventory intervals, we begin by computing the maximum and minimum service

levels for each demand for time period [0, T ], which are given by

SLR
s (T ) = min

f∈{0,...,CR}
SLR

s (f, T, CR
s (T )), (6)

and

SL
R
s (T ) = max

f∈{0,...,CR}
SLR

s (f, T, CR
s (T )) (7)

for regular bikes. These values can be analogously obtained for e-bikes, by replacing the superscript

R by E .

Then, accepted service levels at station s for time period [0, T ] are calculated for each type of

bike as:

ΩR
s (T ) = SLR

s (T ) + βR(SL
R
s (T )− SLR

s (T )), (8)

and

ΩE
s (T ) = SLE

s (T ) + βE(SL
E
s (T )− SLE

s (T )), (9)

The model incorporates two hyperparameters, βR and βE , which are specific to each type of bike.

These hyperparameters provide flexibility for the operator to fine-tune the computed inventory intervals
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for a station based on the behaviour patterns of its user base. By separately adjusting the values of

βR and βE , the operator can also customize the inventory intervals to be more or less stringent for

each demand type throughout the day.

Finally, the inventory intervals for regular bikes and e-bikes at station s for time period [0, T ] are

computed as:

IR
s (T ) = {f ∈ {0, ..., CR

s (T )}|SLR
s (f, T, CR

s (T )) ≥ ΩR
s (T )} (10)

and

labeleq8IE
s (T ) = {f ∈ {0, ..., CE

s (T )}|SLE
s (f, T, C

E
s (T )) ≥ ΩE

s (T )} (11)

4 Computational experiments

In this section, we assess our model in comparison with the approach used by BIXI in 2022. First, we

will present the data used in our experiments. Then, we briefly explain our simulations to emulate the

inventories based on the rebalancing strategy applied. Next, we discuss the process for selecting the

best hyperparameters, βR and βE , for our model. At last, we present the results collected from our

experiments.

4.1 Data

In light of the fact that BIXI added a considerable amount of e-bikes to its network in 2022, we opted

to collect only the data from the aforementioned year. Thus, the data used in our experiments contain

hourly information from April to September 2022, being grouped into three categories: temporal,

weather, and trip data. The first category includes time features, such as hour, day, day of the week,

month, and holidays. The second category contains data describing the weather, such as temperature,

humidity, rain, and wind speed. Both temporal and weather data were collected from the official

website of the Government of Canada2 (except for the holiday feature which was manually noted).

The trip data is composed of the number of rentals and returns at each station and it was provided

by BIXI3. In addition to the data mentioned before, BIXI also provided the inventory intervals used

in 2022 and network information that includes the capacity of the 745 stations and the proportion of

regular bikes (≈ 75%) and electric bikes (≈ 25%) in their network.

The collected data was divided between train, validation, and test datasets. We chose to do a

chronological division of the datasets to resemble a real case, in which the training dataset has no

merged data with the test dataset. So, the training dataset is composed of data from April 2022 to

July 2022, the validation dataset contains data from August 2022, and the test dataset has data from

September 2022.

4.2 Experiment

Our proposed model, denoted hereafter shared-RE , is compared against a baseline approach, namely

B0, that corresponds to the strategy applied by BIXI operators in 2022. The inventory intervals

and target inventory values used to assist the rebalancing operations at BIXI were manually deter-

mined by their operators. These decisions were based on historical trip data at each station, without

differentiation between regular bikes and e-bikes.

4.2.1 Simulation of B0

Simulation B0 begins by initializing the inventories of regular and electric bikes at the stations with

their respective target inventory values. However, it is worth noting that BIXI employs a unique target

2https://climate.weather.gc.ca/
3https://bixi.com
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inventory value for each station during specific time periods. To decouple this single target inventory

value between regular bikes and e-bikes, a straightforward approach is to distribute it based on the

proportion of each bike type rented at the station during the observed period. This distribution can

be determined by analyzing the training dataset, which ensures that the distribution of bikes aligns

with the observed rental patterns.4

Then, at each simulated hour, the inventory of each station is updated with the historical rentals

and returns from BIXI data. At this point, the simulated inventory can detect cases of lost demand

due to either missing bikes or docks.

After updating the inventory, the simulation verifies which stations triggered a rebalancing alert,

that is, which stations surpass the bounds of their inventory interval. The simulation also keeps track

of the lost demand, i.e., how many bikes were missing during the rentals and how many bikes could

not be returned due to full stations by assuming that all rentals and returns happen simultaneously

at every simulated hour. Thus, we stress the network to capture its possible failures.

The simulation of B0 rebalances the inventories of all the stations that raise an alert. The amount

of rebalanced stations per hour while simulating B0 is then used as the maximal number of stations

that can be rebalanced when simulating our model shared-RE .

Figure 3 illustrates the simulation of the bike inventory of a station using B0. In the illustration,

the station raised an alert due to the shortage of bikes, i.e. its inventory (3) is below the inventory

lower bound (4). After rebalancing, the inventory of regular and e-bikes at the station is updated

according to the target inventory value and the station’s historical demand observed in the training

data.

Figure 3: Simulation of the inventory and rebalancing process in the model B0. Orange bikes represent regular bikes
whereas blue bikes represent e-bikes

4The target value of regular bikes is possibly rounded-up, while that of e-bikes is possibly rounded-down.
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4.2.2 Simulation of our model

shared-RE provides inventory intervals and target inventory values for each type of bike used in the

EBSS. Therefore, alerts are individually raised for each type of bike demand, and stations are rebal-

anced according to the associated target inventory values.

Similar to the simulation of B0, the simulation of shared-RE emulates the inventory based on

rentals, returns, and rebalancing operations conducted hourly. However, in this scenario, the target

inventory and inventory intervals are customized for each demand. This allows the rebalancing alerts

to identify and address inventory deficiencies or excesses specific to each demand, and calculate target

inventory values accordingly.

Since the inventory intervals generated by shared-RE are associated with each type of demand, it is

expected that a greater number of alerts will be raised, potentially resulting in increased rebalancing

activities. To address this concern, our model restricts the hourly rebalancing operations based on

the recorded rebalancing operations of B0. Consequently, if the number of alerts raised by shared-RE
within an hour exceeds the number of rebalancing operations performed in that same hour in the B0
simulation, we select stations at random for rebalancing among those that raised alerts.

During the simulation of our model, the rebalancing process is conducted to replenish the inventory

of a station, taking into account the target values for regular and electric bikes. These target values

are separately computed based on the demand for each type of bike, as explained in Section 3.2. This

approach enables the rebalancing process to be triggered by the demand of a specific bike type. In

Figure 4, for example, only the inventory of e-bikes drops below the lower bound of its inventory inter-

val. Subsequently, the rebalancing process focuses on restoring both the regular and e-bike inventories

to their respective target values. This reflects a more realistic operational scenario, as an employee is

already dispatched to the station for replenishment. In the given example, two e-bikes and one regular

bike are added to the station during the rebalancing process.5

Figure 4: Simulation of the inventory and rebalancing process in our model. Orange bikes represent regular bikes whereas
blue bikes represent e-bikes

5The code for both simulations, as well as the proposed model, can be accessed in the repository located at https:

//github.com/datascientistbss/Paper_Journal.git.

https://github.com/datascientistbss/Paper_Journal.git.
https://github.com/datascientistbss/Paper_Journal.git.
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4.3 Analysis of commuters preferences

Based on the commuters’ preferences, four different scenarios are emulated regarding bike substitutions:

• None: in this scenario, users never replace their desired bike with another type.

• All bikes: in this scenario, users are flexible in their preferences and will always accept any

available bike, regardless of their initial choice.

• Reg. bike → E-bikes: only users who seek regular bikes accept an e-bike if the first is unavailable.

• E-bike → Reg. bikes: only users who seek for an e-bike accept a regular bike if the first is

unavailable.

By simulating these different scenarios, we can analyze the impact of bike substitution preferences

on the overall bike availability and system performance. This provides insights into the feasibility and

desirability of allowing bike substitutions in a bike-sharing system and helps optimize the allocation

and utilization of bikes based on customer preferences.

4.4 Tuning

The values of βR and βE were tuned through simulations with the validation set with the objective

of minimizing the lost demand – recall that the number of rebalancing operations are limited by B0.
Table 2 presents the optimized hyperparameter values, where shared-REmax and shared-REavg refer to

the use of Λs(·) as the maximum or the average service level obtained for different values of the initial

inventory (see Section 3.1–Eq.2).

The relatively low values of βR and βE chosen for each simulation lead to wider inventory intervals.

This outcome is not surprising considering that shared-RE randomly selects stations for rebalancing

due to limited rebalancing capacity. In this context, wider inventory intervals serve as a stringent

filter, allowing alerts to be raised only for highly unbalanced stations. Conversely, narrow inventory

intervals result in a larger number of stations raising alerts, reducing the probability of selecting the

most unbalanced stations for rebalancing. Hence, the advantage of wider inventory intervals becomes

evident in this scenario, as they enhance the effectiveness of the rebalancing process by focusing on

the most unbalanced stations.

The analysis of Table 2 reveals a discernible pattern in the values of the hyperparameters βR

and βE based on the bike substitution policy implemented. When there are no bike substitutions or

restrictions on bike types, the values of both hyperparameters are fairly similar. However, in scenarios

where regular bikes can be substituted with e-bikes, the inventory intervals display greater stringency

towards e-bikes, leading to lower values of βR and higher values of βE . Conversely, in the scenario

where only electric bikes can be replaced by regular bikes, the hyperparameter results exhibit the

opposite trend. This demonstrates the model’s ability to prioritize each demand independently, as

wells as its capacity to adapt to the users preferences.

As can be observed from Table 2, there is a pattern in the hyperparameters βR and βE according

to the bike substitution policy applied. In the scenario in which there are no bike substitutions or any

type of bike can be replaced by the other bike, the values of both hyperparameters are fairly similar.

However, in the scenario in which regular bikes can be replaced by electric bikes, the inventory intervals

tend to be more exigent with e-bikes than regular bikes meaning lower values of βR and higher values

of βE . In the fourth scenario, in which only electric bikes can be replaced by regular bikes, the opposite

results are observed for the hyperparameters. Therefore, our model is able to prioritize each demand

independently and it easily adapts to the BSS’s different trip patterns.

4.5 Results

Our results compile the number of rebalancing operations and lost demand computed from the simu-

lations of the baseline and our proposed models. The inventory intervals and the target values for B0
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Table 2: Optimized hyperparameters values used in the tests

Bike substitution Model (βR
B ,βE

B)

None
shared-REmax (0.2,0.2)
shared-REavg (0.2,0.3)

All bikes
shared-REmax (0.2,0.4)
shared-REavg (0.3,0.3)

Reg. bikes → E-bikes
shared-REmax (0.2,0.4)
shared-REavg (0.2,0.4)

E-bikes → Reg. bikes
shared-REmax (0.3,0.1)
shared-REavg (0.3,0.1)

were provided by BIXI for the following time periods in a day: from 6 am to 9 am, from 9 am to 11

am, from 11 am to 4 pm, from 4 pm to 7 pm, and from 10 pm to 6 am. These same time periods were

used by shared-RE to compute inventory intervals and target values.

Table 3 presents the results regarding the number of rebalancing operations per hour and the

percentage of lost demand over the total served demand, for both regular and electric bikes, from the

simulations of models B0, and shared-RE and its different settings of bike substitution. The results

from shared-REmax and shared-REavg are averaged over 10 iterations due to the random aspect of its

rebalancing procedure.

Table 3: Results regarding the simulated models: the average number of rebalancing operations per hour and the lost
demand (in % with respect to the total served demand)

Simulated model Bike substitution
Lost demand

(regular bikes) %
Lost demand
(e-bikes) %

Rebalancing
operations

B0
None

1.94 2.45 49.19
shared-REmax 2.35 0.89 46.74
shared-REavg 2.41 0.86 47.08

B0
All bikes

1.34 0.95 52.79
shared-REmax 1.09 0.58 45.13
shared-REavg 1.07 0.56 45.19

B0
Reg. bikes → E-bikes

1.32 2.54 51.79
shared-REmax 1.09 0.87 45.25
shared-REavg 1.06 0.84 45.32

B0
E-bikes → Reg. bikes

1.96 0.93 50.02
shared-REmax 2.31 0.59 46.80
shared-REavg 2.39 0.57 47.10

In summary, the results show that:

• The performance of both shared-REmax and shared-REavg indicates a minimal difference in

terms of lost demand and rebalancing operations when implementing the dock division at a

station based on either the best or average service level provided.

• Our model demonstrates superior performance compared to BIXI in three different scenarios

involving user preferences, except for that where commuters seeking e-bikes are willing to rent

regular bikes instead – – which is the most unlikely scenario in fact. Additionally, the inventory

intervals and target inventory generated by our model consistently reduce the amount of lost

demand for e-bikes compared to BIXI’s rebalancing strategy. This indicates that our models,

shared-REmax and shared-REavg, effectively identify and adapt to the increasing demand for

e-bikes better than theB0.

• When comparing the various configurations of user preferences, the results align with our ex-

pectations across all models. The scenario where no bike substitution is allowed generates the

highest lost demand, while the scenario where any substitution is accepted yields the lowest



Les Cahiers du GERAD G–2023–31 11

demand loss. The remaining scenarios fall somewhere in between these extremes. Notably, the

scenario where only regular bikes can be replaced by electric bikes results in less lost demand

than the reverse scenario. This can be attributed to the considerably higher demand for regular

bikes observed in our simulation data, which can be partially attributed to the fact that 2/3 of

BIXI’s bikes are regular ones. Consequently, the majority of lost demand cases computed in our

simulations involve regular bikes.

• By introducing the option to replace regular bikes with electric bikes, the occurrences of lost

demand can be significantly reduced. This is due to the potential to fulfill the demand for

regular bikes with available electric bikes, thereby mitigating lost opportunities for riders.

• Across all simulated scenarios, the models shared-REmax and shared-REavg consistently re-

quired significantly fewer rebalancing operations compared to theB0 strategy. This reduction in

rebalancing operations directly contributes to a lower environmental impact of the Electric Bike

Sharing System (EBSS), particularly in terms of carbon emissions. This aligns with the growing

emphasis on environmentally friendly practices in transportation systems.

5 Conclusion

Rebalancing bike-sharing systems is a multifaceted task that encompasses numerous factors such as

demand variability, time sensitivity, and user preferences. To address this challenge, we propose

a model capable of providing targeted rebalancing recommendations for station-based Electric Bike

Sharing Systems (EBSS) with a bimodal network comprising both regular and e-bikes. Our model

leverages predicted demand for the upcoming hours to tailor recommendations specific to each type of

bike demand. By doing so, the model aims to assist operators in the intricate decision-making process

of rebalancing BSSs, with the goal of maximizing user satisfaction while simultaneously minimizing

operating costs and mitigating environmental impact.

Our model, called shared-RE , offers an automated division of docks per station based on predicted

demand while allowing for customization according to the operator’s requirements for each demand.

One significant advantage is that our model independently adjusts the inventory intervals for each

bike type. This flexibility is crucial as it accommodates the varying preferences of BSS users. The

reported results of our study demonstrate that our proposed model outperforms the real-world use case

under examination in terms of its ability to adapt to diverse trip patterns and commuters’ preferences.

In the two scenarios with the greatest difference in performance compared to B0, shared-REmax and

shared-REavg managed to reduce between 25% to 40% the cases of lost demand. Additionally, our
model successfully reduced between 4% to 15% the number of rebalancing operations in all scenarios,

which can have a substantial impact on the long-term expenses of a BSS.

The results demonstrate the importance of comprehending commuters’ preferences and their will-

ingness to substitute their initial bike choice when designing a rebalancing strategy. This understanding

enables operators to make informed decisions regarding the supply of each bike type, ensuring the pro-

vision of a high-quality service. Additionally, our results show that actively encouraging commuters

to consider alternative bikes when their desired option is unavailable can have a significant impact on

reducing the lost demand. This effect was particularly pronounced when the initially preferred bike

type exhibits higher demand compared to the other. By promoting bike substitution, operators can

effectively mitigate the occurrence of lost demand, leading to improved service reliability and user

satisfaction.

It is important to acknowledge that due to the use of actual trip data in our experiments, we have not

considered information about trips that were not undertaken due to bikes or docks unavailability (i.e.,

unobserved demand). In future research, we plan to address this limitation by conducting experiments

using synthetic data. This will enable us to explore a wider range of scenarios and accurately quantify

demand losses, allowing for a more comprehensive evaluation of the rebalancing recommendations.
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Finally, the rebalancing recommendations provided by our model can be seamlessly integrated

into optimization routing models. This integration would allow for the optimization of the entire

rebalancing process in a unified manner, maximizing the effectiveness and efficiency of the system as a

whole. This direction holds promise for future research and offers potential for further improvements

in the field of bike-sharing system management.
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