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recherche du Québec – Nature et technologies.
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Abstract : An innovative simultaneous stochastic optimization approach is proposed that combines
actor-critic reinforcement learning and stochastic mathematical programming techniques to determine
infill drilling locations in a mining complex. In strategic mine planning under uncertainty, the long-term
production schedule is designed to define the extraction sequence, destination policy, and processing
stream that maximize net present value and minimize deviations from production targets. The op-
timized decisions are driven by the inputs; a set of stochastic orebody simulations that describe the
materials in the ground; and the design of the engineering system used to transform extracted mate-
rials into valuable products. The following work investigates the value of information by determining
if additional infill drilling would lead to changes in the long-term production schedule by adapting the
schedule using simultaneous stochastic optimization. Additional data is collected by infill drilling and
the samples are used to update the stochastic simulations of the material attributes. A case study at
a copper mining complex is completed to test the simultaneous stochastic approach for selecting infill
drilling locations and demonstrates a 5.7% increase in net present value given a $1 M budget.

Keywords : Additional drilling, simultaneous stochastic optimization, reinforcement learning, mining
complex, value of information
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1 Introduction

An industrial mining complex is a multifaceted engineering system where raw materials are extracted

from several mines, processed, and transported to be sold to customers and the market. Recent ad-

vancements in stochastic mathematical programming have demonstrated the ability to simultaneously

optimize the long-term production schedule of a mining complex under uncertainty (Goodfellow &

Dimitrakopoulos, 2016, 2017, 2015; Montiel & Dimitrakopoulos, 2015, 2018). The production schedule

defines the long-term extraction sequence, destination policy, and processing stream decisions using a

single mathematical model that maximizes net present value and manages risk. The production sched-

ule that is obtained using simultaneous stochastic optimization requires two significant components:

first, a mathematical model of a mining complex that transforms raw materials into saleable products

and second, the input stochastic orebody simulations that provide a geostatistical representation of

the materials in the ground. The input stochastic orebody simulations are a critical aspect of the

optimization as the location, uncertainty, and quality of the material in the ground is the primary

driver of the optimization.

A major challenge in the mining industry is determining whether it is worthwhile to drill in certain

areas to gather additional information and update the input stochastic orebody simulations prior

to optimization. Collecting information about a mineral deposit is commonly accomplished by infill

drilling. Data collected from unsampled locations is used to update the stochastic orebody simulations.

However, determining the value of different drilling locations and configurations is challenging. This is

because in long-term strategic mine planning additional drilling information is only valuable if it results

in changing the schedule to improve financial forecasts and overcomes the cost of collecting data by

adapting the schedule with new information. This work investigates an extension of the simultaneous

stochastic optimization framework that combines actor-critic reinforcement learning and stochastic

mathematical programming to select infill drilling locations that will lead to changes in the long-term

production schedule and increase the value of a mining complex.

An actor-critic reinforcement learning approach with deep neural networks (Lillicrap et al., 2016;

Sutton & Barto, 2018) is used to find a policy for selecting infill drilling locations given a set of features

obtained directly from the long-term production schedule. The neural network policy, an input-output

mapping, guides the optimization process to relevant drilling locations with a stochastic search of

the solution space, learning through continuous trial-and-error. Each time a drillhole is selected, the

long-term production schedule is simultaneously optimized using the additional drilling information

collected by sampling a single simulation of the mineral deposit. The process is repeated using different

simulations to ensure that stable drilling areas are found independent of the simulations selected. A

reward is computed by calculating the objective function of the stochastic mathematical program

used for simultaneously optimizing the production schedule given additional information. Then, the

objective of the original schedule is recalculated using the additional information and the difference is

found. The difference in the objective function is the numerical reward. The reward is used to update

the neural network parameters by strengthening those actions that improve performance. Several

recent works have demonstrated the successful performance of deep neural networks for a variety of

problems by providing a rich representation of the input features for action selection (Kumar et al.,

2020; Lillicrap et al., 2016; Mnih et al., 2015; Silver et al., 2017). This is the primary reason for

investigating the selection of infill drilling locations using a deep neural network.

The method proposed considers the effect of local grade variability and uncertainty on the long-

term production schedule using stochastic orebody simulations. Several approaches for optimizing

infill drilling locations have used stochastic simulations of the material grades, each with a different

objective. Dirkx and Dimitrakopoulos (2017) define an optimal infill drilling pattern in a stockpile

based on changes to material classification using a multi-armed bandit approach. Boucher et al.

(2005) use simulations of correlated variables to observe the impact of drilling on the profits obtained

and evaluate different stockpiling options. Alternate approaches, without the use of geostatistical

simulations, suggest using a random search to convert inferred resources into indicated resources or
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indicated into measured based on a geometric criterion (Jewbali et al., 2017). The common limitation

of each of these methods is that they do not consider the relationship between the new information

collected and the resulting optimized long-term production schedule. Instead, conversion indicators,

material misclassification, and resource/reserve impacts are considered that do not address potential

changes to the long-term schedule and related financial forecasts. Froyland et al. (2018) discuss this

relationship and highlight that the value of information can only be realized if changes are made to the

long-term schedule. The simultaneous stochastic optimization framework for drillhole selection must

consider how it changes the schedule to ensure future value can be obtained, as misclassification and

other indicators may not lead to differences in the schedule leading to unnecessary drilling expenses.

This work presents a simultaneous stochastic optimization approach that combines actor-critic rein-

forcement learning with stochastic mathematical programming and extends the simultaneous stochastic

optimization to consider the selection of infill drilling locations in a mining complex. In the following

sections, the actor-critic reinforcement learning framework and combined simultaneous stochastic op-

timization approach is described. This is followed by a case study at a copper mining complex that

demonstrates the impact of selecting a set of infill drilling locations using this innovative approach.

Lastly, conclusions and recommendations for future work are provided.

2 Method

The extended simultaneous stochastic optimization approach for selecting infill drilling locations is

presented in Figure 1. The method is described in a sequence of steps. First, a set of stochastic orebody

simulations are used as input into a simultaneous stochastic optimization framework to represent

the uncertain supply of material (Boucher & Dimitrakopoulos, 2009; Godoy, 2002). An optimized

long-term production schedule is obtained including the extraction sequence, destination policy, and

processing stream decisions that maximize net-present value and manage technical risk. For further

details on the simultaneous stochastic optimization of a mining complex interested readers are referred

to the following reference (Goodfellow & Dimitrakopoulos, 2016).

Figure 1: Primary workflow (i) generate a set of equiprobable stochastic simulations; (ii) simultaneous stochastic opti-
mization of a mining complex; (iii) sample drillhole from stochastic simulation (iv) ensemble Kalman filter update; (v)
informed drilling locations and resulting schedule

After producing the simulations and optimal schedule given the current information, the long-term

production schedule is used to obtain a set of criteria for action selection. Further information can be

taken from operational data and the simulated orebody realizations. The information is presented to a

trained neural network (an actor) that decides which additional drilling locations are likely to increase

the performance of the long-term production schedule using a learned input-output mapping. Given
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the drilling location selected, samples are obtained from a stochastic simulation of the mineral deposit.

These samples are used to update the simulations by applying ensemble Kalman filter (EnKF) as

additional information becomes available (Benndorf, 2020; Evensen, 1994, 2003; Kumar & Srinivasan,

2019). The simultaneous stochastic optimization approach is then used to generate a new informed

production schedule and provides the final output; a set of drillhole locations that maximize the

value of additional information under the constraint of a budget. Further details of each step in the

optimization process are discussed subsequently. In addition, it should be noted that several different

stochastic simulations are used to represent the drilling data to ensure similar locations are drilled in

a series of separate runs of the framework.

2.1 Criteria for action selection

The criteria for selecting infill drilling locations are based on features derived directly from the op-

timized production schedule, orebody simulations, and readily available information on site. The

reinforcement learning framework is provided a numerical representation of previously drilled loca-

tions, the period of extraction that the drillhole will intersect, and areas of higher or lower grade

variability. These features are mapped to an output drillhole location using a neural network function

approximator. Through continuous trial and error and policy updates, the most beneficial drilling

locations can be learned by optimizing the parameters using a stochastic gradient method and a per-

formance function (Kingma & Ba, 2015). During training, the actor learns which aspects from the

input criteria affect the position of the selected drillhole. The input criteria for drillhole selection

are generalized to determine relevant areas to drill within the mining complex based on the material

uncertainty not in the blocks themselves but on the distribution of the metal generated downstream at

the processing facilities during each period of production. This incorporates scheduling aspects that

may not be specific to a block but, also relate to the spatial distribution of grades within the deposits

to be mined in a single production period, which may indicate areas to target for infill drilling. For

example, years with higher material variability in terms of metal production may be targeted more or

less heavily depending on how this impacts the production schedule performance.

2.2 Updating simulations using Ensemble Kalman Filter (EnKF)

An EnKF updating framework is applied. Simulations are updated using new information collected

from drilling and the prior stochastic orebody simulations (Figure 2). The magnitude of the update

is based on the error between the simulated realizations and observed drillhole data. Benndorf (2020)

describes the EnKF updating framework for mineral resource applications in detail. Drilling infor-

mation is generated by sampling a randomly selected stochastic simulation of the mineral deposit at

the drillhole location selected; the simulated data is used to represent the drilling sample data in a

real deposit. A different randomly sampled simulation of the mineral deposit is used to represent the

drillhole data over several runs ensuring that within each run of the optimization the drillholes selected

are within similar areas.

The EnKF framework provides an efficient process for updating the simulations of the deposit

without re-simulating the entire deposit. A spatial random field of the attribute of interest is denoted

Z(x) where each element Z(xj) is a random variable associated with a block position at location xj

for j = {1, . . . , N}. Each realization of the spatial random field and the corresponding material grade

is denoted z∗ (x)t,s. This provides the predicted value at location xj given the information gathered

up to timestep t and the simulated realization s, where t = {1, . . . , T}. A timestep represents each

time new information becomes available by selecting a new drillhole location. The spatial random field

is limited to a neighbourhood of blocks in the deposit as it is only desirable to update parts of the

realization neighbouring the newly collected additional information. A T by N matrix A represents

the contribution of each new drillhole sample up to the present timestep t. The rows of matrix A

represent the contribution of each drillhole selected to the posterior simulated orebody realizations,

which is a matrix of zeros and ones. When one of the N potential drilling locations are drilled all the
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Figure 2: Ensemble Kalman Filter approach for updating stochastic simulations with additional drilling information

locations intersected by drilling vertically contribute to the update and are included as a one in the

matrix A. Each block location xj in the neighbourhood is then updated using the following update:

z∗ (x)t+1,s = z∗ (x)t,s +Ct,tA
T
(
ACt,tA

T +Cv,v

)−1︸ ︷︷ ︸
Kalman Gain

(
yt,s −Az∗ (x)t,s

)
︸ ︷︷ ︸

Innovation

(1)

where z∗ (x)t+1,s is the updated attribute for each realization s after additional information is collected

in timestep t. The covariance matrix Ct,t is a N by N matrix approximating the auto- and cross

covariance of the random field between each element Z(xj). The Kalman gain matrix depicted in

Equation 1 represents the weighting factor that determines the contribution of the update to those

neighboring locations considered in the update. This includes the covariance matrix Cv,v of the

measured error in the sample. The second component in the update is the innovation, which represents

the error between the predicted outcome of the prior model and the observed drillhole value yt,s =

yt + ϵs. The observation yt is the data value collected through drilling and a small noise term is

added to consider measurement error. The ensemble Kalman filter approach uses the set of simulated

scenarios to approximate the covariance matrix and increase computational efficiency. This updating

framework is applied to the set of stochastic simulations following each new drillhole selection.

2.3 Training the actor-critic reinforcement learning agent

An off-policy actor-critic reinforcement learning agent with deep neural network function approxima-

tors is applied to optimize the drillhole selection. This framework has been selected to determine

actions in a high dimensional continuous action space. The method is based off a reinforcement learn-

ing agent designed for continuous control (Lillicrap et al., 2016). A typical reinforcement learning

problem is constructed by allowing an agent or decision maker to interact with a mining complex (en-

vironment) E over a discrete set of timesteps. During each timestep t the agent receives an observation

from the mining complex st = ϕ(schedt), given the current long-term production schedule (schedt),

and a continuous action at ∈ R3 is chosen to determine the coordinate of the drillhole (X, Y) and if

drilling should occur at that location within the mining complex. The agent then receives a numerical

reward rt+1 from the mining complex based on the action taken. The learning framework is illustrated

in Figure 3.

Actor-critic reinforcement learning uses an agent composed of two components: an actor and a

critic. The actor learns a parametrized policy that maps the current state of the mining complex st to

an action at = µ(st|θµ) and controls the decision-making process where θµ denotes the parameters
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Figure 3: Actor-critic reinforcement learning for infill drillhole selection

of the policy network. Similarly, the critic learns the action-value function Q
(
st, at|θQ

)
through a

second set of parameters θQ. The action value-function is used to approximate the expected value of

taking an action at in state st parametrized by θQ. Upon initialization, the actor µ (st|θµ) and critic

network Q
(
st, at|θQ

)
are randomly initialized with weights θµ and θQ, respectively. A duplicate of

each of these networks are created as a target network to stabilize learning denoted Q′ and µ′ with

weights such that θµ
′

← θµ and θQ
′

← θQ. Lastly, a replay buffer denoted R is initialized. The replay

buffer is used to train the network with an off-policy learning method. As the agent interacts with

the mining complex, each experience it obtains is stored as a tuple (st, at, rt, st+1) in the buffer that

contains the information from the most recent interaction with the mining complex. These experiences

or transitions are randomly sampled after enough experience is collected to minimize the correlations

between samples and are used to update the neural network parameters.

Each episode of learning is a sequence of states, actions, and rewards that end in a terminal state.

In the mining complex, the actor decides which locations to infill drill based on the input features and

proceeds until the terminal state is reached. The terminal state can occur when the agent decides to

no longer continue drilling or a budgetary constraint is exceeded. A random process N introduces

noise to each action to provide adequate exploration of the solution space. This is defined by the

exploratory policy µ
′
(st) = µ (st|θµ)+N . After each episode, the random process N is re-initialized

for exploration. In addition, the initial state of the environment is received by calculating a set of

features st = ϕ(schedt) derived from the optimized production schedule schedt and considering the

information available prior to additional drilling.

During each timestep within an episode:

1. An action at = µ (st|θµ) + Nt is selected based on the current policy network and exploration

noise.

2. The agent selects the nearest drillhole location to the output coordinates given by the agent’s

action at. If drilling occurs, the drillhole is sampled and used to update a set of simulated

realizations St using EnKF. This results in a new set of simulated realizations St+1 updated to

account for the information collected through infill drilling. (Note, if the agent decides not to

drill part three is skipped and the reward rt = 0 for the transition as drilling is not completed.

The episode is then terminated and given the original state of the mining complex).

3. After drilling, a reward rt is generated by simultaneously optimizing the mining complex given

new information. The objective function used for optimizing the long-term production sched-

ule maximizes net present value (NPV) and minimizes deviations from production targets by

applying a set of penalties (PEN), see Appendix A. Considering this objective, the reward is



Les Cahiers du GERAD G–2022–60 6

computed by determining the difference in the objective function between the optimized long-

term production schedule given new information (Schedt+1) and the schedule obtained prior to

collecting new information (Schedt):

rt = ESt+1 [NPV − PEN |Schedt+1]− ESt+1 [NPV − PEN |Schedt]− drilling cost (2)

which accounts for the additional cost of drilling and considers the most up-to-date information

available (St+1). The state st+1 can then be reconstructed using the optimized schedule that

considers new information and the updated stochastic simulations. Notice, the optimized sched-

ule given new information will likely change due to the difference in input and a positive reward

can only be realized if the improvement in the objective function overcomes the cost of additional

drilling.

4. Each transition in the environment is stored in a replay buffer R as a tuple (st, at, rt, st+1)

and a small batch of P transitions are sampled (si, ai, ri, si+1) ∼ R to facilitate learning. The

bootstrapped return is calculated using the target network that combines the reward received in

timestep i and the predicted action-value provided by the critic target network:

yi = ri +Q
′
(
si+1, µ

′
(
si+1

∣∣∣θµ′)∣∣∣θQ′)
(3)

5. The critic and policy network are updated by minimizing the loss L and using the sampled policy

gradient ∇θµJ to improve the policy, respectively.

L =
1

P

∑
i

(
yi −Q

(
si, ai

∣∣θQ))2 (4)

∇θµJ ≈ 1

P

∑
i

∇aQ
(
s, a

∣∣θQ) |s=si,a=µ(si)
∇θµµ (s|θµ) |s=si

(5)

6. Lastly, the target networks are then updated using the updated policy and critic network pa-

rameters:

θQ
′

← τθQ + (1− τ)θQ
′

(6)

θµ
′

← τθµ + (1− τ)θµ
′

(7)

where τ ∈ (0, 1] is the weighting factor that gradually updates each target network to be closer

to current network parameters. This process is repeated until the agent reaches convergence, or

the maximum number of episodes are reached.

2.4 Testing the agent

After learning is completed, the trained actor is used to select additional infill drilling locations in a

mining complex. The stochastic orebody simulations of the deposit prior to additional information

are provided as input along with the stochastically optimized production schedule prior to additional

information. The random process noise used for action exploration is eliminated, and drillholes are

selected until the budget constraint is reached or the trained actor decides it is no longer valuable to

continue drilling. The resulting output is the drillhole coordinates that lead to the largest improvement

in net present value and mitigated risk based on the agent’s previous learnings. The learning process

is repeated several times with different stochastic simulations of the mineral deposit for sampling

drillholes to ensure stability of the results and that similar locations are found independent of the

stochastic realization that is sampled.

3 Case study in a copper mining complex

The extended simultaneous stochastic optimization framework for selecting additional infill drilling

locations is tested in an operating copper mining complex with a single open pit mine, several processing
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streams, stockpiles, and waste dump destinations. The objective of the optimization framework is to

determine a set of locations to drill that maximize net present value and minimize the risk of deviating

from production targets given a budgetary constraint. Figure 4 shows the configuration of the mining

complex that the stochastic mathematical model considers and the allowable flow of materials from the

mine to the customers and the market. A set of stochastic orebody simulations are used to represent

the uncertain material source. The simulated attributes include total copper and soluble copper. There

are two processing streams; a process plant and heap leach destination that produce copper concentrate

and copper cathode products, respectively. In addition, a stockpile facility is included in the mining

complex to defer material to be processed in later periods. The extraction sequence, destination

policy, and process stream decisions are optimized using simultaneous stochastic optimization and the

resulting production schedule is the initial input to the actor-critic reinforcement learning framework.

Figure 4: Copper mining complex

The case study considers a set of 10 stochastically simulated orebody realizations with a block

size of 20 x 20 x 15 m3 as input and 108,000 blocks. The long-term production schedule has a 10-

year mine life. To account for the nature of the stochastic simulations of the mineral deposit, several

different simulations are used to represent the drillhole samples in a real deposit. These simulations

are different than the ones used for stochastically optimizing the mining complex. Lastly, there is

a budgetary constraint of $1 M and using this budget the algorithm can select from 3640 potential

drilling locations. The objective is to maximize the expected net-present value while reducing the risk

of deviating from production targets.

During training, the actor-critic reinforcement learning agent is left to interact with its environment

to learn a set of infill drilling locations that provide the largest improvement in the long-term production

schedule. Two example episodes of training the reinforcement learning approach are shown in Figure 5.

The background image shows the initial production schedule generated using the information prior

to additional infill drilling and the periods of extraction are indicated by the colors of each block.

Marked using a white circular survey location are the different drilling locations determined by the

actor during each episode in training. The total reward quantifies the improvement in the objective

function obtained through collecting additional information. Additionally, the number of holes drilled

in each episode are listed. It is important to notice that the number of drillholes changes between

episode as the reinforcement learning agent also decides when to stop drilling. The cumulative reward

obtained varies significantly depending on where drilling is commenced, and the potential value added

by adapting the production schedule to new information. Finally, the trained actor is used to select

the number of drillholes and appropriate locations. The stochastic orebody simulations are updated

using EnKF and a new production schedule is created using simultaneous stochastic optimization.

In Figure 6, the resulting production schedule prior to new information (left) is compared to the

production schedule with additional information (right). The primary findings reveal the extents of

the final pit are similar between the two production schedules, however, the extraction sequence over
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Figure 5: Training examples

the 10-year schedule changes significantly in early periods. In the main areas of drilling, denoted

with a light blue circle, the schedule changes due to additional drilling information adapting to an

area of lower risk to generate further value for the mining complex. As a result of extracting this

area earlier in the mine life other areas are pushed back to later periods. This is noticeable in the

central part of the deposit as the simultaneous stochastic optimization approach adapts the schedule to

manage production targets and increases NPV. The adapted schedule generates higher early cashflows

accounting for the time value and increasing the NPV from $3.5 B to $3.7 B by adapting to the schedule

to new information, a 5.7% or $201 M improvement (Figure 7). Furthermore, the schedule impacts the

total copper production at the processing plant over the life-of-mine, reducing the recovery of copper

concentrate by 33 kt (Figure 8). However, significant value is obtained by adapting the production

schedule to mine higher grade material earlier in the schedule resulting in higher metal production

during the first two periods.

Figure 6: Production schedule: (left) prior to additional information; (right) after additional drilling

Lastly, five stochastic simulations of the mineral deposit are used for sampling the drillhole infor-

mation in separate runs of the drillhole selection framework. The tests show that the method was

insensitive to the simulation used to represent the real deposit as similar areas are drilled during

each run of the optimization process (Figure 9). The drillholes selected are localized in the northeast

portion of the pit and there is considerable overlap when using different simulated realizations to rep-

resent the sampled drillhole data. The drilling area is contained within a 250 m x 500 m area in the

north-east corner of the open pit mine across all realizations used. Therefore, the drilling optimization

method identifies the area to drill in a stable way that is not affected by using different or additional

realizations.
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Figure 7: Cumulative discounted cashflows given the schedule: (left) prior to additional information; (right) after additional
drilling

Figure 8: Total copper production given the schedule: (left) prior to additional information; (right) after additional drilling

Figure 9: The selected infill drilling location using different simulated realizations of the mineral deposit

4 Conclusions

An extension to the simultaneous stochastic optimization approach is proposed that determines addi-

tional infill-drilling locations in a mining complex. The combined reinforcement learning and stochastic

mathematical programming framework is tested in an operating copper mining complex. The results

demonstrate a $201 M or 5.7% increase in net present value given a $1 M investment in additional

drilling. Using the infill drilling selection framework and updating the simulations to account for

additional information, the value of the mining complex is increasing significantly by adapting the

production schedule to new information using simultaneous stochastic optimization. Future work may
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consider the possibility of using drillholes that can have different azimuth and dips to allow more

flexibility in the drilling direction. In addition, supplementary information related to the deposit,

production schedule and technical information could be used in the selection process to further inform

the reinforcement learning approach on the most valuable locations to drill.

Appendix A

The simultaneous stochastic optimization framework outlined in Goodfellow and Dimitrakopoulos

(2016) uses the following objective function:

max
1

|S|
∑

i∈S∪P∪M

∑
t∈T

∑
(h∈H)

∑
s∈S

ph,i,tvh,i,t,s︸ ︷︷ ︸
Discounted revenues and costs

− 1

|S|
∑

i∈S∪P∪M

∑
t∈T

∑
(h∈H)

∑
s∈S

(
c+h,i,td

+
h,i,t,s + c−h,i,td

−
h,i,t,s

)
︸ ︷︷ ︸

Risk discounted penaties for deviations

(8)

The optimization objective maximizes the profit accounting for costs and revenues that are required

to generate the products in the first term and minimizes the penalties from deviations from production

targets using the second term. Further details regarding the notation can be found in the reference.
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