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Abstract : Providing the right data to a machine learning model is an important step to insure
the performance of the model. Non-compliant training data instances may lead to wrong predictions
yielding models that cannot be used in production. Instance or prototype selection methods are
often used to curate training sets thus leading to more reliable and efficient models. In this work,
we investigate if diversity is helpful as a criterion for choosing which instances to remove from a
given training set. We test our hypothesis against a random selection method and Mahalanobis
outlier selection, using benchmark data sets with different data characteristics. Our computational
experiments demonstrate that selection by diversity achieves better classification performance than
random selection, and can hence be considered as an alternative data selection criterion for effective
model training.

Acknowledgements: The authors would like to thank professors Eduardo Pardo and Abraham Duarte
for providing us the OBMA code and executable. This research was partially funded by Natural
Sciences and Engineering Research Council of Canada (NSERC) under grants DG–2017–05617 and
DG–2020–06311 for its financial support.
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1 Introduction

Machine learning (ML) has often been perceived as requiring the largest possible amount of data to

gain accuracy in predicting a behavior. Typically, there are three stages for a ML model: preprocess-

ing, training and decision/prediction [1]. During preprocessing, the provided training set might be

transformed before being fed to the ML model. In the sequel, during the training stage, the model

processes the training set to generalize rules and formulas for prediction with a minimum amount of

classification errors. Finally, at the prediction stage, new unlabelled data instances are given to the

ML model which must predict a class or a value for them.

Nowadays, several preprocessing methods exist to ensure that only the right data is given to an

ML model – a concern that accompanies the ML field since its origin [2, 3]. For example, a model

that overfits or underfits the training data will result in poor predicting capabilities as they lose their

ability to generalize over unseen data [4]. In addition, being able to reduce the amount of data needed

to correctly train a ML model is crucial to speed up its training process and save memory resources.

Preprocessing techniques can be mainly categorized into feature selection, instance selection, and

outlier detection methods [2, 3]. All of them seek to decrease the amount of data fed to a classification

model. Feature selection methods reduce the training dataset by decreasing the number of used

features, therefore the dimension of the data. Those methods weight the features in order of relevance

and remove the least important ones [5]. Both outlier detection methods and instance selection methods

work by reducing the amount of data instances. A method can either focus on removing noisy instances,

superfluous data instances or both. Noisy or outlier data instances deteriorate the performance of

classifiers when added to the training set while superfluous instances do not impact the performance

when removed [6]. Outlier detection methods, as the name indicates, focus on removing outliers from

the dataset [7].

The goal of an instance selection method is to speedup the model training by reducing the size of

the training set without impacting the model’s performance [6, 8, 9]. An instance selection method

can either start with an empty training set and add data instances, or start with all the data then

remove instances. The selection criterion is usually based on a performance metric or a selection

formula. With a metric performance, the methods reduce the training set as long as the classification

performance stays above a predefined threshold [9]. With a selection formula, the stopping condition

is typically defined by the user, e.g. number of needed instances, logical tests, etc. Multiple criteria

can be combined together to achieve a more complex method [10].

In this paper, we investigate if diversity can be used as an effective criterion for removing instances

within selection methods. Our concept of diversity is related to variety among the data instances,

which is quantified by the observed dissimilarities among them [11]. Our research hypothesis is that

the removed data instances are diverse, representing instances less likely to belong together to the same

class. Thus, given that one decides to reduce the training size of a ML model, these data instances are

rather selected to be suppressed.

We test our approach on classifying eight different benchmark datasets, comparing it with two

baseline methods. The first one selects data instances for suppression completely at random whereas

the second consists of the classical Mahalanobis outlier detection method [6, 12].

The paper is organized as follows. In Section 2, we present the maximum diversity problem which

is optimized to decide the data instances to be removed from the available training set. In Section 3,

we explain our instance selection method based on maximum diversity. Section 4 describes the exper-

imental methodology used to test our research hypothesis. In Section 5, we present and discuss the

performed computational results. Finally, in Section 6, we present our concluding remarks.
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2 The maximum diversity problem

Given a set of n data instances U = {u1, . . . , un} for which a symmetric dissimilarity matrix D = {dij :
1 ≤ i, j ≤ n} is defined such that dii = 0 and dij ≥ 0 for every 1 ≤ i < j ≤ n, the maximum diversity

problem (MDP) consists of selecting a subset P ⊂ U of size p < n such as the sum of dissimilarities

between the elements of P is maximum. The problem is formalized as:

max

n−1∑
i=1

n∑
j=i+1

dijxixj

subject

n∑
i=1

xi = p

xi ∈ {0, 1} ∀i = 1, . . . , n.

(1)

The MDP arises in many real-life applications. For example, in facility location, one may be in-

terested in locating competing stores in a city as far as possible, or to place trash/pollutant storage

as to not concentrate exposure in one area of the town [13, 14]. The MDP is also applied in biol-

ogy for deciding about ecosystems re-population or for genetic engineering to produce more resilient

plants [15, 16, 17, 18, 19], or for product design where companies want to have products that are

different from their competitor [20]. The problem was shown to be NP-hard by Kuo et al [11].

Several exact and heuristic methods have been proposed in the literature to solve the

MDP [14, 21, 22]. The state-of-the-art exact method for the MDP is due to Mart́ı et al. [23] who

proposed a branch-and-bound able to optimally solve medium-size instances with n = 100 in 1 hour of

CPU time. Regarding heuristics, Mart́ı et al. [24] have very recently performed an exhaustive compar-

ison of state-of-the-art heuristics on the MDPLIB 2.0 - Maximum Diversity Problem Library available

at https://www.uv.es/ rmarti/paper/mdp.html. Among the compared methods, the OBMA method

of Zhou et al. [25] emerges as the best heuristic.

3 Instance selection by maximum diversity

Using the MDP as underlying optimization model, we propose a new instance selection method which

removes p data instances from the training set. The so-called Max Diversity Instance Selection Method

(MaxDivSelec) is described in Algorithm 1. MaxDivSelec proceeds by removing a total of p data

instances from the classes of the training dataset. For that, it solves a MDP in each class. The

algorithm starts by initializing the training set with all labelled data instances (line 1). After that,

the algorithm iterates (lines 2-8) over each class label c = 1, . . . , k of the training dataset. In line 3,

the data instances of class c are isolated in Xc ⊆ X, and then the covariance matrix Xc is computed

in line 4. Then, in line 5, a matrix Dc of distances is computed for each pair of instances in class c. In

our case, D = (dij) are computed as Mahalanobis distances, i.e.,

dij =
√
(xi − xj)TΣ−1(xi − xj). (2)

We note that Σ is approximated by singular value decomposition (SVD) factorization if it is singu-

lar [26]. In the sequel, a MDP solver – in our case OBMA – is called to solve an MDP problem for

Dc, selecting the pc points of maximum diversity in class c. More details on how pc is computed are

given in Section 4.3. The algorithm then removes the selected data instances from the training set in

line 7. Finally, the reduced training set T is returned in line 9.

Let Xc ⊆ X be the matrix of dimension nc × s composed by the data instances of class c in X

Compute the covariance matrix Σc of Xc Compute a distance matrix Dc of dimension nc×nc R ←
SolveMDP(Dc,pc) T ← T \R
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Algorithm 1 MaxDivSelec
Input: X: labelled dataset of dimension n× s,

p: array of dimension 1× k with the number of instances to be removed per class

1: T ← X
2: for c = 1, . . . , k do
3: Let Xc ⊆ X be the matrix of dimension nc × s composed by the data instances of class c in X
4: Compute the covariance matrix Σc of Xc

5: Compute a distance matrix Dc of dimension nc × nc

6: R ← SolveMDP(Dc,pc)
7: T ← T \R
8: end for
9: return T

Figure 1 illustrates the use of MaxDivSelec on a 2D synthetic dataset consisting of two gaussians

with 40 data instances each. The first gaussian is generated with µ=0 and σ=0.5, while the second

has a µ=-3 and σ=1. In the example five data instances are removed from each gaussian.

Figure 1: Illustration of the data instances selected by MaxDivSelec for p1 = 5 and p2 = 5, which corresponds to 12.5%
of the whole dataset

4 Experimental methodology

4.1 K-nearest neighbors

In order to prove our hypothesis about effectiveness of MaxDivSelec as a data instance selection method

for classification models, we had to choose one representative ML model from which our conclusions

could be better generalized.

The K-nearest neighbor (KNN) model is a simple yet effective supervised classifier [27]. It predicts

the class of an unseen instance by finding its K closest data instances from the training set. The

unlabelled instance is then assigned to the majority class among them. The KNN classification model

was a natural choice for our experiments for three reasons:

(i) it relies on a distance metric – as well as the MDP.

(iii) it is quite tolerant to outliers and noisy data.

(iii) its classification performance, memory usage and computing times are tightly linked to the

number of data instances used for training. 1

1KNN makes use of the so-called lazy training or instance-based learning. It simply queries over the data to make
a prediction [28].
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4.2 Baseline methods

We compared MaxDivSelec against two other selection methods. The first method, called Random,

corresponds to our null hypothesis. It simply chooses p data instances to remove at random, with

equal probability.

The second method, denoted here Mahalanobis, is well-known in the literature [29]. It removes

outliers by computing the Mahalanobis distance (2) from each data instance to the centroid of the class

it belongs. Larger values of the Mahalanobis distance indicate a greater outlier likelihood. The method

aims to improve model classification by removing from the training dataset the instances which are

too different to be statistically part of a class.

Algorithm 2 presents the pseudo-code of method Mahalanobis which returns a set T of data

instances for model training. The method computes for each available labelled data instance its

Mahalanobis distance to the centroid of the class to which it belongs. In the sequel, the algorithm

removes, from each class c, pc data instances whose Mahalanobis distances are the largest computed.

Algorithm 2 Mahalanobis method
Input: X: labelled dataset of dimension n× s,

p: array of dimension 1× k with the number of instances to be removed per class

1: T ← X
2: for c = 1, . . . , k do
3: Let Xc ⊆ X be the matrix of dimension nc × s composed by the data instances of class c in X
4: Compute the covariance matrix Σc of Xc

5: for each data instance xℓ of class c do

6: Compute the Mahalanobis distance dℓ =
√

(xℓ − µc)TΣ
−1
c (xℓ − µc) between xℓ and the centroid µc of class c

7: end for
8: R ← the pc instances of class c with largest d
9: T ← T \R
10: end for
11: return T

Figure 2 illustrates the application of the Mahalanobis method over the same synthetic example of

the two the last section. Here, again, five data instances are removed from each gaussian. We remark

that the selections performed by MaxDivSelec and Mahalanobis differ of two data instances only.

Figure 2: Illustration of the data instances selected by Mahalanobis for p1 = 5 and p2 = 5, which corresponds to 12.5%
of the whole dataset
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4.3 The α parameter

The α parameter controls the percentage of data instances to be removed from the training set. For

example, for α = 50% and n = 100, 50 data instances are suppressed from the training dataset

(p = 50% × 100). This amount is split proportionally across the provided classes. Thus, the method

removes pc = α× nc data instances from each class c = 1, . . . , k, rounding it to the closest integer. At

the end, some adjustments must be performed so that
∑k

c=1 pc = p. Considering p′ = p−
∑k

c=1 pc as

the number of adjustments, we either remove or add a data instance to the final training set depending

whether p′ is positive or negative. The adjustments performed in each class are limited to one, and are

performed from the class with the largest amount of data instances to the least populated class. To

illustrate, for a training set with 5 classes such that n1 = 10, n2 = 10, n3 = 10, n4 = 30, n5 = 40, for

α = 50% (that is, p = 50), we obtain p1 = 5, p2 = 5,p3 = 5, p4 = 15, p5 = 20. Because p′ = 0, there

is no need to adjust the values. For the same training set, by taking α = 12.5% (that is, p = 13), we

have p1 = 1, p2 = 1, p3 = 1, p4 = 4, p5 = 5. Since, in this case, p′ = 13− 12 = 1, p5 is adjusted to 6,

making a total of p = 13 data instances.

5 Computational experiments

5.1 Datasets

We compare the presented methods over different real-world benchmark datasets. The used datasets

are shown in Table 1. The different number of classes and attributes across them are aimed to test

how well the compared methods handle complex classification problems. All datasets were numerically

normalized in each attribute dimension before use.

Table 1: Table with datasets’ characteristics.

Dataset n #classes #attributes

Iris [30] 150 3 4
Seeds [31] 210 3 7
Dermatology 358 6 34
Ionosphere [32] 351 2 34
Breast cancer Wisc. [33] 683 2 9
Mammographic [34] 830 2 5
Contraceptive[35] 1473 3 9
Abalone [36] 4177 29 8

5.2 Evaluation

We used different classification performance metrics depending on whether the classification problem

was: (i) binary or multiclass, and (ii) balanced or unbalanced. A binary classification problem is one

in which prediction is done for two classes only, while a multiclass problem involves more than two

classes. A balanced problem supposes that the number of data instances of each class is approximately

the same, while an unbalanced classification task has the majority of the data instances belonging

to a subset of the provided classes. To accommodate those different categories of problems, three

performances metrics were used, namely accuracy, RMSE and the F1-score.

The accuracy score is a classification performance metric often used for supervised classification

problems [37]. It compares the prediction to the ground-truth class thus computing the ratio of right

predictions. In a binary classification problem, there exist four possible cases for a given prediction: a

True Positive (TP), a False Positive (FP), a True Negative (TN) and a False Negative (FN) [38]. The

two true cases happen when the model predict the correct class (positive or negative). Conversely, the

false cases happen when the model predicts the opposite class. For example, a FP occurs when the
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model predicts a positive class for an actual negative data instance. The accuracy score is is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

An accuracy value of 1 means that the model predicted 100% of the classes correctly while a score of

0 means that none of the predictions was correct. The accuracy metric can also be generalized for k

classes as

Accuracy =

∑k
c=1 Tc∑k

c=1 Tc +
∑k

c=1 Fc

(4)

where Tc is the number of TP for class c, and Fi the number of FP for that same class.

The Root Mean Squared Error (RMSE) score is a performance metric commonly used for multiclass

models [39] for which the classes are ordered somehow. Thus, for an expected value of 0, predicting 1

is less “wrong” than predicting 10, for instance. The RMSE is equal to the squared root of the mean

of squared errors between the predictions and the ground-truth values. The formula with y′ and y as

the predicted and ground-truth values, respectively, and n as the number of predictions is given by:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − y′i)
2 (5)

The score represent by how much the model is off on average from the expected values. A score of 0

means that no error was made and the classifier is perfect.

The last and more complex performance metric is the F1-score also called the F-measure. It is

used for unbalanced binary classification problems. It is a suitable score for when the model has to

predict well one class in particular amongst others. The recall refers to the model’s capacity to detect

the positive class of interest among the total amount of positive samples, while the precision is the

model’s capacity to well classify TP data instances over the total amount of instances predicted as

members of the positive class [38].

The recall and the precision of a model are computed as:

recall =
TP

TP + FN
precision =

TP

TP + FP
. (6)

The F1-score is finally calculated as the geometric mean of both measures:

F1-score = 2 · recall · precision
recall + precision

(7)

The Iris, Seeds, Dermatology and Contraceptive datasets are assessed according to the accuracy

score since they are balanced. The Abalone dataset is an unbalanced dataset with more than two

ordered classes. Consequently, KNN ’s classification performance is evaluated according to the RMSE

score for that dataset. Finally, datasets Ionosphere, Breast cancer Wisconsin and Mammographic

datasets are evaluated according to F1-score since they consist of binary labelled data, with one

majority class.

5.3 Cross-validation

The three methods MaxDivSelec, Random and Mahalanobis are tested with the KNN classifier for

K ∈ {3, 5, 10} and α ∈ {0.125, 0.25, 0.5}, which yields a total of 9 combinations of parameters to

be tested. The KNN classifier uses the Euclidean distance. To generalize our results, a 5-fold cross-

validation is used to produce multiple test sets. A 5-fold cross-validation separates the data into 5 sets

where each set is used as the test set while the rest is used as the training set [40]. That means that
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80% of the dataset is used for training while the other 20% is used for the testing. For this experiment,

ten 5-fold cross-validation processes are made to produce a total of 50 pairs of training/test sets. The

instance selection methods are employed on the training set of each fold. Since Random is a stochastic

method, it is executed 20 times with a different seed (0 to 19) for each fold.

Table 2 reports the benchmark performance scores of the KNN classifier for each dataset. They

correspond to the classifier’s mean performance when using the whole set of labelled data instances

for training, i.e., without instance selection. The datasets are grouped in the table according to the

used performance metric.

Table 2: Mean benchmark performance of KNN [Accuracy, F1-score, RMSE] for each tested dataset

Dataset k=3 k=5 k=10

Iris 0.961 0.961 0.964
Seed 0.920 0.930 0.922
Dermatology 0.954 0.956 0.959
Contraceptive 0.458 0.483 0.502

Ionosphere 0.716 0.722 0.707
Breast cancer Wisconsin 0.946 0.953 0.953
Mammographic 0.771 0.789 0.792

Abalone 2.856 2.801 2.692

6 Results and discussion

Our computational results for methods Random, Mahalanobis and MaxDivSec are displayed as box plots

to focus on the classification performance distributions of the methods over the tested folds. Besides,

we present line charts of the mean performance obtained by each method. We present here a subset

of the results, but all box plots can be checked at https://ktton.github.io/master-research/.

Results are grouped by the number of used neighbors K and by the resulting training size after

instance selection. By grouping the results, we can better evaluate how the parameters K and α affect

classification performance.

The methods are compared regarding their general behavior, but also on their worst-case result.

The worst-case result is the lowest performance result achieved by the method for a given data fold.

Regarding accuracy and F1-score that corresponds to the lowest obtained score for a tested fold,

whereas for the RMSE tha corresponds to the highest obtained score. The results are further analysed

by means of a Wilcoxon statistical test with a confidence level of 5 %. That test tell us if the results

achieved by our method are statistically different from those obtained by the baseline methods Random

and Mahalanobis.

6.1 Classification performance results

First, we checked the general performance of the instance selection methods for each dataset. For the

smallest datasets (regarding n), the three methods presented similar performance. To illustrate that,

Figures 3a and 4a show the results for the dataset Seeds. Moreover, the obtained means are not far

from the benchmark KNN performance, which means that using instance selection methods for small

datasets does not incur significant losses of classification performance.

Regarding the largest datasets Breast cancer, Mammographic masses, Ionosphere, Contraceptive

and Abalone, we observe a major difference between the classification metrics obtained by the different

methods. Performing instance selection with Random appear to incur more varied classification perfor-

mance than by using Mahalanobis and MaxDivSec, as shown in the box plots of Figures 3b, 3c and 3d.

Figures 4b, 4c and 4d show the mean performance of each method for the same three datasets.

https://ktton.github.io/master-research/
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The Mahalanobis and MaxDivSec methods outperform the Random method particularly for Iono-

sphere (Figure 4c) and Abalone (Figure 4d). Besides, we note across the plots that the Mahalanobis

and MaxDivSelec methods obtain better mean classification scores than those obtained by Random.

These score differences become larger as more instances are removed from the training sample. In fact,

for these instances, the Mahalanobis and MaxDivSelec methods perform better than the benchmark

performance obtained by the KNN classifier using the whole data for training. We can hence conclude

that for these datasets restricting the training data to relevant instances is important for increasing

the generalization capability of the model.

Regarding the worst-case performance, MaxDivSelec always obtains better or equal worst-case

classification results than Random. Having a better worst-case scenario means that our instance selec-

tion method is more robust regarding the posterior classification performance of the classifier when

predicting the labels of unseen data. When compared to Mahalanobis, our method appears to have

similar worst-case performance.

Finally, we also analyse the classification performance for varied values of α, and number of neigh-

bors K used by the KNN classifier. Our conclusions are as follows:

• For the smallest datasets and breast cancer Wisconsin, the classification performance is lightly

affected by K and α.

• For both the Abalone and Contraceptive datasets, the classification performance improves as K

increases for methods MaxDivSelec, Mahalanobis and Random.

• For the Ionosphere dataset, the classification performance decreases as K increases for methods

MaxDivSelec, Mahalanobis and Random, especially with α=50%.

• For the Abalone , Contraceptive, Mammographic and Ionosphere datasets, the classification

performance of MaxDivSelec and Mahalanobis increases as α gets larger, i.e., as more data

instances are removed from the training set. They are actually better than the benchmark

performance presented in Table 2 except for the Mammographic dataset.

6.2 Wilcoxon tests

This section presents Wilcoxon signed-ranks tests [41] in order to compare the obtained results in

terms of statistical significance.

For each dataset, we compared the different methods Random, Mahalanobis and MaxDivSelec on

each combination of K = 3, 5 and 10, and α = 0.25, 0.50 and 0.75, totalizing nine Wilcoxon tests per

dataset. Two hypothesis are tested. First, we check if the two result distributions are similar (i.e., the

median of differences = 0). If that first hypothesis is rejected, this means that the second hypothesis is

true, i.e., that the methods obtain statistically different results (the median of differences <0) We used

a confidence level of 5% meaning that the p-value must be smaller than 0.05 to reject an hypothesis.

The Wilcoxon test results are reported in Tables 3 and 4 for each dataset.

Table 3 shows the results of the comparisons of the methods MaxDivSec and Mahalanobis with the

method Random. We observe that our instance selection method MaxDivSelec is statistically different

from the Random method for most of K and α combinations for all the datasets. We can also verify

the same behaviour with the Mahalanobis method except for the Seed dataset. The Mahalanobis

method is only different for two combinations. Moreover, when our method is different from the

Random method, it is most of the time better.

In Table 4, we show the Wilcoxon results obtained when comparing our method MaxDivSec with

the Mahalanobis method. We notice that MaxDivSec is seldom different or better than Mahalanobis

except for two datasets: Contraceptive and Mammographic. However, such difference does not mean

that the first is necessarily better than the later. In most of the cases, MaxDivSelec is not statistically

different from the Mahalanobis method.



Les Cahiers du GERAD G–2022–38 9

(a) Seeds dataset

(b) Cancer dataset

(c) Ionosphere dataset

(d) Abalone dataset

Figure 3: Boxplot results grouped by training size
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(a) Seeds dataset

(b) Cancer dataset

(c) Ionosphere dataset

(d) Abalone dataset

Figure 4: Mean classification results grouped by K
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Table 3: Wilcoxon test results with a confidence level of 5% for comparing MaxDivSec and Mahalanobis with Random

Dataset
MaxDivSec Mahalanobis

Different Better Different Better

Iris 5/9 4/5 7/9 5/7
Seed 4/9 4/4 2/9 2/2
Dermatology 5/9 5/5 6/9 6/6
Ionosphere 9/9 9/9 9/9 9/9
Cancer 8/9 8/8 8/9 8/8
Mammographic 8/9 4/8 6/9 4/6
Contraceptive 9/9 9/9 8/9 8/8
Abalone 9/9 9/9 9/9 9/9

Table 4: Wilcoxon test results with a confidence level of 5% for comparing MaxDivSec with Mahalanobis

Dataset Different Better

Iris 1/9 1/1
Seed 0/9 0/0
Dermatology 0/9 0/0
Ionosphere 0/9 0/0
Cancer 1/9 0/1
Mammographic 7/9 3/7
Contraceptive 8/9 8/8
Abalone 3/9 0/3

7 Concluding remarks

This paper proposed to investigate the use of diversity for selecting data instances for model training.

With that purpose, we proposed MaxDivSec, an algorithm that proceeds by removing from the training

set of a machine learning model the subset of data instances for which its associated diversity is

maximum. We compared MaxDivSec, regarding the classification performance of a target classifier, with

two other baseline instance selection methods, one that random selects data instances for suppression

and another based on the removal of data outliers. Our results demonstrated that diversity is actually

a good criterion for data instance selection as the obtained results by MaxDivSec led to superior

classification performance in the vast majority of the tested scenarios when compared to the random

approach. However, the proposed method was not shown to be significantly different from the method

based on the suppression of outliers. Finally, although we demonstrated by our experiments that

maximum diversity is effective on selecting data instances for model training, its computation still

requires the solution of a NP-hard problem either exactly or heuristically.
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