
Les Cahiers du GERAD ISSN: 0711–2440

Vessel service planning in seaports

Online supplement

L. Wu, Y. Adulyasak,
J.-F. Cordeau, S. Wang

G–2020–67

November 2020

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2020-67) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
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EC1 Mathematical proofs

This section presents proofs to lemmas, propositions, theorems, and corollaries in the main text.

EC1.1 Proof of Proposition 1

Proof of Proposition 1. Given any feasible solution (χ̄) to the BMP, let H = {(i, t)|
∑
ω∈Ω χ̄ωαω,i,t >

0, t ∈ Ei, i ∈ I}. Given χ̄, the corresponding PBSP is feasible if and only if there exists a solution µ′

such that
∑
φ∈Φ µ

′
φγφ,i,t =

∑
ω∈Ω χ̄ωαω,i,t, ∀(i, t) ∈ H. We can show that such a µ′ exists for any χ̄.

Recall that
⋃
s∈S Ts = T and that all vessel routes in model M2 satisfy constraints (34). Hence,

corresponding to each (i, t) ∈ H, one can always construct a feasible pilot route that visits i at time t.

In particular, the pilot route can consist of only task i (which starts at time t) and a rest period (which

starts at a feasible time) and is completed by a pilot in a suitable shift. Then, based on these pilot

routes, one can easily construct a feasible solution for the PBSP.

As a result, given any χ̄, the PBSP is always feasible. Furthermore, considering that the cost

parameters c̄φ are finite and due to constraints (48)–(50), any feasible solution of the PBSP must be

bounded. Therefore, as the dual of the PBSP, the DBSP is also feasible and bounded.

EC1.2 Proof of Theorem 1

Proof of Theorem 1. At each node of the branch-and-bound tree, the BMP and the PBSP are defined

on a subset Ω′ ⊆ Ω of vessel routes and a subset Φ′ ⊆ Φ of pilot routes, due to the branching constraints.

The approach solves the BMP to optimality with column-and-Benders-cut generation. Let (χ∗, η∗)

and µ∗ denote the optimal solution to the BMP and the associated PBSP, respectively. According to

Benders (1962), we have that (i) χ∗ and µ∗ constitute an optimal solution to the LP relaxation of M2

defined on the same subsets of vessel routes and pilot routes (i.e., the LP relaxation of M2 imposed

with the same branching constraints) and that (ii) the BMP and the LP relaxation of M2 have the

same optimal objective function value.

Now consider our branching scheme. One can verify the solution (χ∗) generated by the C&BCG

algorithm to the BMP is fractional if and only if there is at least one fractional value in Λ or Ξ.

Further, given any integer solution (χ̄) for the BMP, the solution generated by column generation to

the corresponding PBSP is fractional if and only if there is at least one fractional value in Π or Ψ.

Therefore, by imposing branching constraints on the BMP and the PBSP at the associated nodes

of the tree, and by solving the BMP at each node to optimality, the approach gradually reaches a

solution to the BMP that has the minimum objective function value among all integer solutions (i.e.,

solutions where all values in the solution χ∗ are integral and all values in the solution µ∗ for the

corresponding PBSP are integral as well). Correspondingly, the approach reaches an integer solution

that has the minimum cost among all integer solutions for the LP relaxation of M2. Therefore, the

BPBC approach delivers an optimal solution for M2.

EC1.3 Proof of Proposition 2

Proof of Proposition 2. Consider the BMP without these LBL inequalities. Given any feasible solu-

tion of the χ variables, denoted by χ̄, to the BMP, let η∗(χ̄) denote the associated optimal solution

of the η variable in the BMP. To prove that the LBL inequalities are valid for the BMP, it suffices to

show that the following linear program generates a lower bound to η∗(χ̄):

[PLBL(χ̄)] min
∑
s∈S

c3sns (EC1)

s.t. (69)− (72)∑
s∈St

νi,t,s =
∑
ω∈Ω

χ̄ωαω,i,t ∀t ∈ Ei, i ∈ I. (EC2)
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We have shown in Proposition 1 that the DBSP is always feasible and bounded. Given χ̄,

let δ∗ and ζ∗ denote an optimal solution to the DBSP. Because (δ∗, ζ∗) ∈ Γ∆, we have η∗(χ̄) ≥∑
i∈I

∑
t∈T

∑
ω∈Ω χ̄ωαω,i,tδ

∗
i,t +

∑
φ∈Φ ζ

∗
φ due to constraints (56). Let µ∗ denote the optimal solu-

tion to the dual of the DBSP (i.e., the PBSP). Because of strong duality, we have
∑
φ∈Φ µ

∗
φc̄φ =∑

i∈I
∑
t∈T

∑
ω∈Ω χ̄ωαω,i,tδ

∗
i,t +

∑
φ∈Φ ζ

∗
φ.

We construct the solution (ν′,n′) for the variables in the PLBL(χ̄), where

ν′i,t,s =
∑
φ∈Φs

µ∗φγφ,i,t ∀i ∈ I, t ∈ Ts, s ∈ S (EC3)

n′s =
∑
φ∈Φs

µ∗φ ∀s ∈ S. (EC4)

Considering the feasibility of pilot routes and the feasibility of µ∗ for the PBSP, we have∑
i∈I

∑
t′

= max{T s, t− di − q′i,t,s + 1}tγφ,i,t′ ≤ 1, ∀t ∈ Ts, φ ∈ Φs, s ∈ S (EC5)∑
s∈St

∑
φ∈Φs

µ∗φγφ,i,t =
∑
ω∈Ω

χ̄ωαω,i,t ∀t ∈ Ei, i ∈ I. (EC6)

Because µ∗φ ≥ 0, ∀φ ∈ Φ, by timing each term in inequalities (EC5) with µ∗φ, and summing them

over φ ∈ Φs we have

∑
i∈I

t∑
t′=max{T s,t−di−q′i,t,s+1}

∑
φ∈Φs

µ∗φγφ,i,t′ ≤
∑
φ∈Φs

µ∗φ, ∀t ∈ Ts, s ∈ S. (EC7)

Then, combining (EC3), (EC4), and (EC7) gives

∑
i∈I

t∑
t′=max{T s,t−di−q′i,t,s+1}

ν′i,t′,s ≤ n′s ∀t ∈ Ts, s ∈ S, (EC8)

and from (EC3) and (EC6) we have∑
s∈St

ν′i,t,s =
∑
ω∈Ω

χ̄ωαω,i,t ∀t ∈ Ei, i ∈ I (EC9)

ν′i,t,s ≤ 1 ∀i ∈ I, t ∈ T , s ∈ S (EC10)

ν′i,t,s ≥ 0 ∀i ∈ I, t ∈ T , s ∈ S. (EC11)

Finally, summarizing inequalities (EC8)–(EC11), one can conclude that the constructed solution

(ν′,n′) is feasible for the PLBL(χ̄). Besides, we have
∑
s∈S c

3
sn
′
s =

∑
s∈S

∑
φ∈Φs

c̄φµ
∗
φ =

∑
φ∈Φ c̄φµ

∗
φ ≤

η∗(χ̄). Let (ν∗,n∗) denote an optimal solution for the PLBL(χ̄). Because the PLBL(χ̄) forms a

minimization problem, we have
∑
s∈S c

3
sn
∗
s ≤

∑
s∈S c

3
sn
′
s ≤ η∗(χ̄).

Therefore, the PLBL(χ̄) generates a lower bound to η∗(χ̄), given any feasible solution of the χ

variables to the original BMP. This indicates that the LBL inequalities are valid for the BMP.

EC1.4 Proof of Lemma 1

Proof of Lemma 1. We provide a proof to this lemma based on the BMP without the LBL cuts

proposed in Section 4.5.1, while the extension to the BMP with these cuts is straightforward.
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We start by formulating the Lagrangian dual of the BMP. Let π̄ = (π̄k|π̄k ∈ R, k ∈ K), λ̄ =

(λ̄b,t|λ̄b,t ≤ 0, t ∈ T , b ∈ B), θ̄ = (θ̄t|θ̄t ≤ 0, t ∈ T ), ϑ̄ = (ϑ̄t|ϑt ≤ 0, t ∈ T ), κ̄ = (κ̄t,(i,j)|κ̄t,(i,j) ≤
0, t ∈ T , (i, j) ∈ U), ϕ̄ = (ϕ̄(δ,ζ)|ϕ̄(δ,ζ) ≥ 0, (δ, ζ) ∈ Γ∆) and ρ̄ = (ρ̄ω|ρ̄ω ≤ 0, ω ∈ Ω) be the vectors

of the Lagrangian multipliers for constraints (39)–(43), (56), and (57), respectively. Besides, let Ωk,b
denote the set of columns corresponding to vessel k being handled at berth b, where k ∈ K, b ∈ Bk.

As implied by constraints (39), (57), and (58), the following inequalities are valid for the BMP:∑
ω∈Ωk,b

χω ≤ 1, ∀b ∈ Bk, k ∈ K. (EC12)

Given π̄, λ̄, θ̄, κ̄, ϕ̄, and ρ̄, the Lagrangian dual of the BMP is as follows:

D(π̄, λ̄, θ̄, κ̄, ϕ̄, ρ̄) = min
χ,η

{∑
ω∈Ω

χωcω + η +
∑
k∈K

(1−
∑
ω∈Ωk

χω)π̄k

+
∑
t∈T

∑
b∈B

(1−
∑
ω∈Ω

χω

τ∑
t=1

T∑
t′=min{τ+1,T}

βω,b,t,t′)λ̄b,t

+
∑
t∈T

(1−
∑
ω∈Ω

χω
∑
i∈Iin

t∑
t′=max{t−fi+1,1}

αω,i,t′)θ̄t +
∑
t∈T

(1−
∑
ω∈Ω

χω
∑
i∈Iout

t∑
t′=max{t−fi+1,1}

αω,i,t′)ϑ̄t

+
∑
t∈T

∑
(i,j)∈U

(1−
∑
ω∈Ω

χω

t∑
t′=max{t−di+1,1}

αω,i,t′ −
∑
ω∈Ω

χω

t∑
t′=max{t−dj+1,1}

αω,j,t′)κ̄t,(i,j)

−
∑

(δ,ζ)∈Γ∆

(η −
∑
i∈I

∑
t∈T

∑
ω∈Ω

χωαω,i,tδi,t −
∑
φ∈Φ

ζφ)ϕ̄(δ,ζ)

+
∑
ω∈Ω

(1− χω)ρ̄ω, s.t. (58), (59), (EC12)

}
. (EC13)

Equation (EC13) is equivalent to

D(π̄, λ̄, θ̄, κ̄, ϕ̄, ρ̄) =
∑
k∈K

π̄k +
∑
t∈T

∑
b∈B

λ̄b,t +
∑
t∈T

θ̄t +
∑
t∈T

ϑ̄t +
∑
t∈T

∑
(i,j)∈U

κ̄t,(i,j) +
∑

(δ,ζ)∈Γ∆

∑
φ∈Φ

ζφϕ̄(δ,ζ)

+
∑
ω∈Ω

ρ̄ω + min
χ,η

∑
ω∈Ω

χωcω + (1−
∑

(δ,ζ)∈Γ∆

ϕ̄(δ,ζ))η −
∑
k∈K

∑
ω∈Ωk

χωπ̄k

−
∑
t∈T

∑
b∈B

∑
ω∈Ω

χω

τ∑
t=1

T∑
t′=min{τ+1,T}

βω,b,t,t′ λ̄b,t

−
∑
t∈T

∑
ω∈Ω

χω
∑
i∈Iin

t∑
t′=max{t−fi+1,1}

αω,i,t′ θ̄t −
∑
t∈T

∑
ω∈Ω

χω
∑
i∈Iout

t∑
t′=max{t−fi+1,1}

αω,i,t′ ϑ̄t

−
∑
t∈T

∑
(i,j)∈U

∑
ω∈Ω

χω

t∑
t′=max{t−di+1,1}

αω,i,t′ κ̄t,(i,j) −
∑
ω∈Ω

χω

t∑
t′=max{t−dj+1,1}

αω,j,t′ κ̄t,(i,j)

+
∑

(δ,ζ)∈Γ∆

∑
i∈I

∑
t∈T

∑
ω∈Ω

χωαω,i,tδi,tϕ̄(δ,ζ) −
∑
ω∈Ω

χωρ̄ω, s.t. (58), (59), (EC12)

 . (EC14)

Let Z∗ be the optimal objective function value for the BMP. We have

Z∗ ≥ max
π̄,λ̄,θ̄,κ̄,ϕ̄,ρ̄

D(π̄, λ̄, θ̄, κ̄, ϕ̄, ρ̄). (EC15)
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Since the BMP is solved by column and Benders cut generation, where columns and Benders

cuts are added dynamically, we let Ω̃ ⊆ Ω and Γ̃∆ ⊆ Γ∆ denote the current sets of columns and

Benders cuts generated for solving the BMP, respectively. After solving the BMP with columns from

Ω̃ and Benders cuts from Γ̃∆, one obtains the optimal solutions to the dual variables associated with

constraints (39)–(43), (56), and (57) which are denoted by π∗ = (π∗k|k ∈ K), λ∗ = (λ∗b,t|t ∈ T , b ∈ B),

θ∗ = (θ∗t |t ∈ T ), ϑ∗ = (ϑ∗t |t ∈ T ), κ∗ = (κ∗t,(i,j)|t ∈ T , (i, j) ∈ U), ϕ∗ = (ϕ∗(δ,ζ)|(δ, ζ) ∈ Γ̃∆), and

ρ∗ = (ρ∗ω|ω ∈ Ω̃), respectively. We further define vectors ϕ+ and ρ+ such that ϕ+ = (ϕ+
(δ,ζ)|ϕ

+
(δ,ζ) =

ϕ∗(δ,ζ), (δ, ζ) ∈ Γ̃∆, ϕ
+
(δ,ζ) = 0, (δ, ζ) ∈ Γ∆ \ Γ̃∆) and ρ+ = (ρ+

ω |ρ+
ω = ρ∗ω, ω ∈ Ω̃, ρ+

ω = 0, ω ∈ Ω \ Ω̃).

By definition, the BMP is constructed to be feasible and bounded. As a result, the dual of BMP

is also feasible and bounded. By the feasibility of the dual of the BMP, one can easily verify that

(π∗,λ∗,θ∗,ϑ∗,κ+,ϕ+) forms a feasible solution for D(π̄, λ̄, θ̄, κ̄, ϕ̄, ρ̄). It follows that

Z∗ ≥ D(π∗,λ∗,θ∗,ϑ∗,κ∗,ϕ+,ρ+), (EC16)

where

D(π∗,λ∗,θ∗,ϑ∗,κ∗,ϕ+,ρ+) =
∑
k∈K

π∗k +
∑
t∈T

∑
b∈B

λ∗b,t +
∑
t∈T

θ∗t +
∑
t∈T

ϑ∗t +
∑
t∈T

∑
(i,j)∈U

κ∗t,(i,j)

+
∑

(δ,ζ)∈Γ̃∆

∑
φ∈Φ

ζφϕ
∗
(δ,ζ) +

∑
ω∈Ω̃

ρ∗ω + min
χ,η

∑
ω∈Ω

χωcω + (1−
∑

(δ,ζ)∈Γ̃∆

ϕ∗(δ,ζ))η −
∑
k∈K

∑
ω∈Ωk

χωπ
∗
k

−
∑
t∈T

∑
b∈B

∑
ω∈Ω

χω

τ∑
t=1

T∑
t′=min{τ+1,T}

βω,b,t,t′λ
∗
b,t

−
∑
t∈T

∑
ω∈Ω

χω
∑
i∈Iin

t∑
t′=max{t−fi+1,1}

αω,i,t′θ
∗
t −

∑
t∈T

∑
ω∈Ω

χω
∑
i∈Iout

t∑
t′=max{t−fi+1,1}

αω,i,t′ϑ
∗
t

−
∑
t∈T

∑
(i,j)∈U

∑
ω∈Ω

χω

t∑
t′=max{t−di+1,1}

αω,i,t′κ
∗
t,(i,j) −

∑
ω∈Ω

χω

t∑
t′=max{t−dj+1,1}

αω,j,t′κ
∗
t,(i,j)

+
∑

(δ,ζ)∈Γ̃∆

∑
i∈I

∑
t∈T

∑
ω∈Ω

χωαω,i,tδi,tϕ
∗
(δ,ζ) −

∑
ω∈Ω̃

χωρ
∗
ω, s.t. (58), (59), (EC12)

 . (EC17)

Due to the feasibility of the dual of the BMP, we have
∑

(δ,ζ)∈Γ̃∆
ϕ∗(δ,ζ) ≤ 1 and ρ∗ω ≤ 0, ∀ω ∈ Ω̃.

Further, considering that η ≥ 0 and χω ≥ 0, ∀ω ∈ Ω̃, we have (1 −
∑

(δ,ζ)∈Γ̃∆
ϕ∗(δ,ζ))η ≥ 0 and∑

ω∈Ω̃ χωρ
∗
ω ≤ 0. Recall that in this lemma, the optimal objective function value of the BMP is

denoted by Υ. By strong duality, we have Υ =
∑
k∈K π

∗
k +

∑
t∈T

∑
b∈B λ

∗
b,t +

∑
t∈T θ

∗
t +

∑
t∈T ϑ

∗
t +∑

t∈T
∑

(i,j)∈U κ
∗
t,(i,j) +

∑
(δ,ζ)∈Γ̃∆

∑
φ∈Φ ζφϕ

∗
(δ,ζ) +

∑
ω∈Ω̃ ρ

∗
ω. Therefore, we have the following in-

equality:

D(π∗,λ∗,θ∗,ϑ∗,κ∗,ϕ+,ρ+) ≥ D′ = Υ + min
χ

∑
ω∈Ω

χω(cω − π∗k −
∑
t∈T

τ∑
t=1

T∑
t′=min{τ+1,T}

βω,b,t,t′λ
∗
b,t

−
∑
t∈T

∑
i∈Iin∩Ik

t∑
t′=max{t−fi+1,1}

αω,i,t′θ
∗
t −

∑
t∈T

∑
i∈Iout∩Ik

t∑
t′=max{t−fi+1,1}

αω,i,t′ϑ
∗
t

−
∑
t∈T

∑
i∈Ik

∑
j∈I

∑
(i,j)∈U

t∑
t′=max{t−di+1,1}

αω,i,t′κ
∗
t,(i,j)

+
∑

(δ,ζ)∈Γ̃∆

∑
i∈Ik

∑
t∈T

∑
ω∈Ω

χωαω,i,tδi,tϕ
∗
(δ,ζ)), s.t. (58), (EC12)

 . (EC18)
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Considering that Ω =
⋃
k∈K

⋃
b∈Bk

Ωk,b and by decomposing the minimization problem in (EC18)

for each combination of b and k, where k ∈ K, b ∈ Bk, D′ can be equivalently calculated by:

D′ = Υ +
∑
k∈K

∑
b∈Bk

min
χω:ω∈Ωk,b

∑
ω∈Ωk,b

χω(cω − π∗k −
∑
t∈T

τ∑
t=1

T∑
t′=min{τ+1,T}

βω,b,t,t′λ
∗
b,t

−
∑
t∈T

∑
i∈Iin∩Ik

t∑
t′=max{t−fi+1,1}

αω,i,t′θ
∗
t −

∑
t∈T

∑
i∈Iout∩Ik

t∑
t′=max{t−fi+1,1}

αω,i,t′ϑ
∗
t

−
∑
t∈T

∑
i∈Ik

∑
j∈I

∑
(i,j)∈U

t∑
t′=max{t−di+1,1}

αω,i,t′κ
∗
t,(i,j) +

∑
(δ,ζ)∈Γ̃∆

∑
i∈Ik

∑
t∈T

∑
ω∈Ω

χωαω,i,tδi,tϕ
∗
(δ,ζ)),

s.t.
∑

ω∈Ωk,b

χω ≤ 1, 0 ≤ χω ≤ 1, ∀ω ∈ Ωk,b

 . (EC19)

Let rk,b be the optimal objective function value of the pricing problem MPPk,b, where k ∈ K,

b ∈ Bk. It can be readily seen that

D′ = Υ +
∑
k∈K

∑
b∈Bk:rk,b<0

rk,b. (EC20)

Summarizing (EC16), (EC18), and (EC20), we have Z∗ ≥ Υ +
∑
k∈K

∑
b∈Bk:rk,b<0 rk,b, which

completes the proof.

EC1.5 Proof of Proposition 3

Proof of Proposition 3. Let LB = Υ +
∑
k∈K

∑
b∈Bk:rk,b<0 rk,b. From Lemma 1, we have that LB

is a lower bound for the BMP at the current node. Given a pair of b ∈ B and k ∈ K that satisfies

the conditions in this proposition, the lower bound (denoted by LB′) of the BMP with the constraint∑
ω∈Ωk,b

χω = 1 at the current node can be calculated by

LB′ = LB + min
ω∈Ωk,b

cω − π∗k −∑
t∈T

τ∑
t=1

T∑
t′=min{τ+1,T}

βω,b,t,t′λ
∗
b,t

−
∑
t∈T

∑
i∈Iin∩Ik

t∑
t′=max{t−fi+1,1}

αω,i,t′θ
∗
t −

∑
t∈T

∑
i∈Iout∩Ik

t∑
t′=max{t−fi+1,1}

αω,i,t′ϑ
∗
t

−
∑
t∈T

∑
i∈Ik

∑
j∈I

∑
(i,j)∈U

t∑
t′=max{t−di+1,1}

αω,i,t′κ
∗
t,(i,j) +

∑
(δ,ζ)∈Γ̃∆

∑
i∈Ik

∑
t∈T

∑
ω∈Ω

χωαω,i,tδi,tϕ
∗
(δ,ζ)

 ,

which equals LB + rk,b.

Therefore, LB + rk,b is a lower bound for the BMP with the constraint
∑
ω∈Ωk,b

χω = 1 at the

current node. It follows easily that LB + rk,b is also a lower bound for the BMP with the constraint∑
ω∈Ωk,b

χω = 1 at any node descended from the current node.

EC1.6 Proof of Proposition 4

Proof of Proposition 4. Given any solution to the BMP, denoted by χ̄, the PBSP at node ι′ is a

relaxation of that at node ι. Accordingly, given χ̄, the DBSP at node ι is a relaxation of that at

node ι′. Hence, any point in the polyhedron defined by (52)–(54) of the DBSP at node ι′ is also in the

polyhedron defined by (52)–(54) of the DBSP at node ι. As a result, according to Benders (1962), the

Benders cuts that are valid for the BMP at node ι′ are also valid for the BMP at node ι.
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EC1.7 Proof of Corollary 1

Proof of Corollary 1. For the root node (denoted by ι0), we have Θι0 = ∅. Hence, we have that for

any node ι 6= ι0, Θι0 ⊆ Θι. Therefore, according to Proposition 4, Benders cuts that are valid for the

BMP at the root node are also valid for the BMP at any other node in the branch-and-bound tree.

EC2 The label correcting algorithm for solving the SPPs

This section describes the label correcting algorithm for solving the pricing problems in the Dantzig-

Wolfe decomposition of the PBSP. Consider the pricing problem corresponding to shift s (SPPs). The

label correcting algorithm aims to identify the path, denoted by P∗
s in the space-time network Gs

that has the minimum cost (denoted by c̃∗s).

In the algorithm, Hs is partitioned into two subsets: H1
s = {(i, t)|t + di ≤ Ls, (i, t) ∈ Hs} and

H2
s = {(i, t)|t ≥ Ls + gs, (i, t) ∈ Hs} (a node (i, t) can appear in both subsets). Observe that H1

s

contains all tasks that can start before the rest period in shift s, whereas H2
s contains all tasks that

can start after the rest period. Each (i, t) ∈ H1
s is associated with a label l1(i,t) = (c̃1(i,t), V

1
(i,t)), where

V 1
(i,t) is the list of nodes that are visited before or at time t in the label and c̃1(i,t) is the associated

cost. Similarly, each (i, t) ∈ H2
s is associated with a label l2(i,t) = (c̃2(i,t), V

2
(i,t)), where V 2

(i,t) is the list

of nodes that are visited after or at time t in the label and c̃2(i,t) is the associated cost.

The algorithm generates P∗
s in three steps. The first step, which is called forward label correcting,

generates the l1(i,t) with the minimum cost c̃1(i,t) for each (i, t) ∈ H1
s . The second step, which is called

backward label correcting, generates the l2(i,t) with the minimum cost c̃2(i,t) for each (i, t) ∈ H2
s . Finally,

P∗
s is constructed in the last step, which is called label joining and route construction. The details of

these steps are presented in Sections EC2.1, EC2.2 and EC2.3, respectively. We prove the correctness

of the label correcting algorithm for solving the SPPs and discuss its time complexity in Proposition 1

which is presented in Section EC.2.3.

EC2.1 Forward label correcting

In forward label correcting, for each node (i, t) ∈ H1
s , we find the minimum-cost (partial) path that

ends at this node. To this end, we first sequence all nodes in set H1
s in non-decreasing order according

to their start times (t), where ties are broken arbitrarily. Let (ih, th), h = 1, ..., |H1
s | denote the h-th

node in the sequence. The details of this procedure are presented in Algorithm EC.1.

Algorithm EC.1 Forward label correcting.

1: Initialization: l1
(i,t)

= (−δi,t, [(i, t)]), ∀(i, t) ∈ H1
s .

2: Sequence (i, t) ∈ H1
s in non-decreasing order of t.

3: for h = 1, ..., |H1
s | − 1 do

4: for h′ = h+ 1, ..., |H1
s | do

5: if ih 6= ih′ & th + dih + qih,ih′ ≤ th′ then

6: if c̃1
(ih,th)

− δih′ ,th′ ≤ c̃1(ih′ ,th′ )
then

7: c̃1
(ih′ ,th′ )

= c̃1
(ih,th)

− δih′ ,th′ .

8: V 1
(ih′ ,th′ )

= V 1
(ih,th)

← (ih′ , th′ ). . Operator “←” represents adding an element to the rear of a list.

9: end if
10: end if
11: end for
12: end for
13: Return l1

(i,t)
, ∀(i, t) ∈ H1

s .
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EC2.2 Backward label correcting

In backward label correcting, for each node (i, t) ∈ H2
s , we find the minimum-cost (partial) path that

starts from this node. To this end, we first sequence all nodes in set H2
s in non-decreasing order

according to their start times (t), where ties are broken arbitrarily. Let (ih, th), h = 1, ..., |H2
s | denote

the h-th node in the sequence. The details of this procedure are presented in Algorithm EC.2.

Algorithm EC.2 Backward label correcting.

1: Initialization: l2
(i,t)

= (−δi,t, [(i, t)]), ∀(i, t) ∈ H2
s .

2: Sequence (i, t) ∈ H2
s in non-decreasing order of t.

3: for h = |H2
s |, ..., 2 do

4: for h′ = h− 1, ..., 1 do
5: if ih 6= ih′ & th′ + dih′ + qih′ ,ih ≤ th then

6: if c̃2
(ih,th)

− δih′ ,th′ ≤ c̃2(ih′ ,th′ )
then

7: c̃2
(ih′ ,th′ )

= c̃2
(ih,th)

− δih′ ,th′ .

8: V 2
(ih′ ,th′ )

= [(ih′ , th′ )]← V 2
(ih,th)

.

9: end if
10: end if
11: end for
12: end for
13: Return l2

(i,t)
, ∀(i, t) ∈ H2

s .

EC2.3 Label joining and route construction

In the last step, we identify the pilot route with the minimum cost (P∗
s ) by constructing and searching

among three sets of pilot routes, including (i) the set of routes that terminate at the rest period, (ii)

the set of routes that start from the rest period, and (iii) the set of routes where the rest period serves

as an intermediate node. Algorithm EC.3 shows the pseudo-code of this procedure, where we let j

denote the rest period.

Proposition 1 The label correcting algorithm solves the SPPs in O(|Hs|2) time.

Proof. We first prove the correctness of the algorithm. In the first step of the algorithm, we aim to

find, for each node (i, t) ∈ H1
s , the minimum-cost (partial) path that ends at this node. All nodes in

H1
s have been sequenced in non-decreasing order of t, and it is only possible for a path to travel from

node (i, t) to another node (i′, t′), if t′ ≥ t. Therefore, for the first node in the sequence, i.e., (i1, t1), the

minimum cost and the minimum-cost path have been contained in the label l1(i,t) after initialization.

Next, consider the two-layer for-loop in Algorithm EC.1. Because routes can only travel through the

nodes chronologically, when h = 1 in the first layer, the algorithm finds the optimal label l1(i2,t2) for

node (i2, t2) in the second layer. By induction, we can prove that the algorithm finds the best label

for node (ih̄+1, th̄+1) when h = h̄ in the for-loop. This indicates that Algorithm EC.1 can identify the

minimum-cost (partial) path that ends at each node (i, t) ∈ H1
s after executing the for-loop.

Following a similar logic, one can prove that Algorithm EC.2 generates the minimum-cost (partial)

path that starts from each node (i, t) ∈ H2
s .

Because H1
s (resp. H2

s ) contains all nodes that can be visited before (resp. after) the rest period

starts in a pilot route, by comparing the labels corresponding to all nodes in H1
s (resp. H2

s ), Algo-

rithm EC.3 finds the pilot route with the minimum cost that terminates at (resp. starts from) the

rest period. Finally, by concatenating all compatible pairs of labels corresponding to nodes from H1
s

and H2
s , Algorithm EC.3 finds the pilot route with the minimum cost where the rest period is an

intermediate node.

As for the time complexity of the algorithm, in Algorithms EC.1 and EC.2, it takes O(|Hs| log |Hs|)
time and O(|Hs|2) time, respectively, to sequence the nodes in H1

s and H2
s and correct their labels.



8 G–2020–67 – Online supplement Les Cahiers du GERAD

In Algorithms EC.3, the optimal pilot routes from the three sets are generated in O(|Hs|), O(|Hs|),
and O(|Hs|2) time, respectively. It can be readily seen that the overall time complexity for the label

correcting algorithm is O(|Hs|2).

Algorithm EC.3 Label joining and pilot route construction.

1: Initialization: c̃∗s = M . . M is a sufficiently large constant.
2: for (i, t) ∈ H1

s do
3: if c̃∗s > c̃1

(i,t)
+ c3s then

4: c̃∗s = c̃1
(i,t)

+ c3s.

5: P∗s = V 1
i,t ← (j, Ls). . (j, Ls) represents starting the rest period at time step Ls.

6: end if
7: end for
8: for (i, t) ∈ H2

s do
9: if c̃∗s > c̃2

(i,t)
+ c3s then

10: c̃∗s = c̃2
(i,t)

+ c3s.

11: P∗s = [(j, Ls)]← V 2
i,t. . (j, Ls) represents starting the rest period at time step Ls.

12: end if
13: end for
14: for (i, t) ∈ H1

s do
15: for (i′, t′) ∈ H2

s do
16: if i 6= i′ & t+ di + qi,i′ ≤ t′ then
17: tj = min{t+ di, Ls}. . Find the earliest feasible start time for the rest period.
18: if tj + gs ≤ t′ then . Recall that gs denote the minimum duration for a rest period in shift s.
19: if c̃∗s > c̃1

(i,t)
+ c̃2

(i′,t′) + c3s then

20: c̃∗s = c̃1
(i,t)

+ c̃2
(i′,t′) + c3s.

21: P∗s = V 1
(i,t)
← (j, tj)← V 2

(i′,t′). . (j, tj) represents starting the rest period at time step tj .

22: end if
23: end if
24: end if
25: end for
26: end for
27: Return P∗s and c̃∗s .

EC3 The pricing problems for the BMP with the LBL cuts

In this section, we explain the pricing problems for the BMP with the LBL cuts.

Let $ = ($s,t|t ∈ Ts, s ∈ S) denote vector of dual variables associated with constraints (72).

New vessel routes are generated by solving a pricing problem (denoted by MPP′k,b) for each k ∈ K
and b ∈ Bk. The MPP′k,b can be defined as a problem that identifies the arc with the minimum cost

in a three-dimensional task-time-shift network G′k,b = (N ′k,b, A
′
k,b), where N ′k,b and A′k,b denote the

sets of nodes and arcs in the network, respectively. Here, N ′k,b = {(i, t, s)|s ∈ St, t ∈ Ei, i ∈ Ik} and

A′k,b = {[(i, t, s), (i′, t′, s′)]|t′ − t ≥ di + hk,b, (i, t, s), (i
′, t′, s′) ∈ N ′k,b, i ∈ Iin, i ∈ Iout}. The cost of

sending a unit flow through arc [(i, t, s), (i′, t′, s′)], denoted by ĉ′[(i,t,s),(i′,t′,s′)], is calculated by

ĉ′[(i,t,s),(i′,t′,s′)] = ĉ[(i,t),(i′,t′)] +

min{t+di+q′
i,t,s
−1,T s}∑

τ=t

$s,τ +

min{t′+di′+q
′
i′,t′,s′

−1,T s′}∑
τ=t′

$s′,τ ,(EC21)

where ĉ[(i,t),(i′,t′)] is calculated by (60).

EC4 The heuristic for generating integer solutions

In this section, we explain the heuristic that tries to construct a feasible integer solution for M2 from a

fractional solution. Let χ0 and µ0 denote the optimal (fractional) solution to the BMP and PBSP at
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a node in the branch-and-bound tree, respectively. The heuristic consists of three stages. In the first

stage, we try to construct a feasible integer solution (denoted by χ1) for the BMP (without the Benders

cuts (56)). If such a solution can be constructed, then in the second step, we solve the associated PBSP

using column generation. Let µ1 denote the solution to the PBSP. If µ1 is fractional, we construct

an integer solution (denoted by µ2) based on µ1 in the last step. Note that if χ0 is integral then we

skip the first stage and let χ1 = χ0 and if µ1 is integral then we skip the third stage and let µ2 = µ1.

Corresponding to each feasible integer solution for M2 generated by the heuristic, we obtain a valid

upper bound which equals
∑
ω∈Ω χ

1
ω c̄ω +

∑
φ∈Φ µ

2
φc̄φ. Details of the first and the third stages in the

heuristic are explained as follows.

EC4.1 Constructing vessel routes

Given a fractional solution (χ0) to the BMP, we apply a greedy algorithm to construct a feasible

integer solution (χ1) for the BMP without the Benders cuts (56). The algorithm leverages information

from the current fractional solution. Let Ω+ = {ω|χ0
ω > 0, ω ∈ Ω} and let SΩ+ denote a sequence

which lists elements in Ω+ in non-decreasing order of χ0
ω. We let ω%, % = 1, 2, ..., |Ω+| denote the %-th

element in SΩ+ . The procedure for constructing χ1 is presented in Algorithm EC.4, and we make use

of the following additional notation in the pseudo-code:

k(ω): The vessel k ∈ K associated with vessel route ω.
b(ω): The berth b ∈ B used in vessel route ω.

iin(ω): The task i ∈ Iin covered in vessel route ω.
iout(ω): The task i ∈ Iout covered in vessel route ω.
t1(ω): The time step t ∈ T when the vessel in ω starts sailing into its berth.
t2(ω): The time step t ∈ T when the vessel in ω reaches its berth.
t3(ω): The time step t ∈ T when the vessel in ω leaves its berth.
K̄: Set of vessels that have associated vessel routes in Ω1.
T̄ in: Set of time steps at which vessels cannot start sailing into berths.
T̄ out: Set of time steps at which vessels cannot start sailing out of berths.

T̃i: Set of time steps at which task i ∈ I cannot start.

T̂b: Set of time steps at which berth b ∈ B is occupied by vessels.

One can easily verify that if |K̄| = |K|, then by letting χ1
ω = 1, ∀ω ∈ Ω1, and χ1

ω = 0, ∀ω ∈ Ω \Ω1,

χ1 becomes a feasible integer solution for the BMP (without Benders cuts). Meanwhile, observe that

it is also possible that Algorithm EC.4 fails to generate a feasible integer solution. In this case, the

primal heuristic fails to find a valid upper bound for M2.

EC4.2 Constructing pilot routes

Given a feasible integer solution (χ1) to the BMP, we solve the associated PBSP using column gen-

eration. Suppose the delivered solution to the PBSP, denoted by µ1, is fractional. In this case, to

construct a feasible integer solution for the PBSP (denoted by µ2), we use an algorithm that is similar

to the algorithm for generating vessel routes in the previous section. The algorithm can generate a

feasible integer solution for the PBSP given any feasible integer solution for the BMP (χ1). The details

are explained as follows.

Constructing µ2 is equivalent to generating a set Φ2 ⊆ Φ such that µ2
φ = 1, ∀φ ∈ Φ2 and µ2

φ = 0,

∀φ ∈ Φ \ Φ2. Algorithm EC.6 presents the details of the procedure. In the algorithm, we let Φ+ =

{φ|µ1
φ > 0, φ ∈ Φ}, and let SΦ+ denote a sequence that lists the elements in Φ+ in non-decreasing

order of µ1
φ. Besides, let φ%, % = 1, 2, ..., |Φ+| denote the %-th element in SΦ+ . The following notation

is also used in the pseudo-code: s(φ) which denotes the shift associated with pilot route φ, I(φ) which

denotes the set of tasks covered in pilot route φ, and Ī which denotes the set of tasks that have been

covered by pilot routes in Φ2.
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Algorithm EC.4 Vessel route construction.

1: Initialization: Ω1 = ∅; K̄ = T̄ in = T̄ out = ∅; T̂b = ∅, b ∈ B; T̃i = ∅, i ∈ I.
2: for % = 1, 2, ..., |Ω+| do
3: if k(ω%) /∈ K̄ & t1(ω%) /∈ T̄ in & t3(ω%) /∈ T̄ out & t1(ω%) /∈ T̃iin(ω%)

& t3(ω%) /∈ T̃iout(ω%)
& Z[t2(ω%),t3(ω%)−1] ∩

T̂b(ω%) = ∅ then

4: K̄ = K̄ ∪ {k(ω%)}. . Update the set of vessels that have been included in the solution.
5: Ω1 = Ω1 ∪ {ω%}. . Update the set of vessel routes that have been included in the solution.
6: Call sub-procedure P(ω) in Algorithm EC.5. . Update the constraints.
7: end if
8: if |K̄| = |K| then
9: Break.

10: end if
11: end for
12: for k ∈ K \ K̄ do . Construct routes for vessels not included in the current solution; k are enumerated

chronologically according to their earliest ready times for entering the channel.
13: for t1 ∈ Eiin do . iin ∈ Ik ∩ Iin. t1 are enumerated chronologically.
14: for t3 ∈ Eiout do . iout ∈ Ik ∩ Iout. t3 are enumerated chronologically.
15: if t1 /∈ T̄ in & t3 /∈ T̄ out & t1 /∈ T̃iin & t3 /∈ T̃iout then
16: for b ∈ Bk do . b are enumerated in non-increasing order of c2k,b.

17: t2 = t1 + diin .

18: if t2 ≥ ab & t2 + hk,b ≤ t3 & Z[t2,t3−1] ∩ T̂b = ∅ then
19: Construct a vessel route ω such that k(ω) = k, b(ω) = b, t1(ω) = t1, t2(ω) = t2, t3(ω) = t3,

and c̄ω = c1
iin,t1

+ c1
iout,t3

+ c2k,b.

20: K̄ = K̄ ∪ {k}.
21: Ω1 = Ω1 ∪ {ω}.
22: Call sub-procedure P(ω) in Algorithm EC.5.
23: Break and go to Line 12.
24: end if
25: end for
26: end if
27: end for
28: end for
29: end for
30: Return Ω1.

Algorithm EC.5 Constraint update [P(ω)].

1: T̄ in = T̄ in ∪ Z[t1(ω),t1(ω)+fiin(ω)
−1]. . Update time steps at which vessels cannot start sailing into the berths.

2: T̂bω = T̂bω ∪ Z[t2(ω),t3(ω)−1]. . Update time steps at which the berth is occupied.

3: T̄ out = T̄ out ∪ Z[t3(ω),t3(ω)+fiout(ω)−1].. Update time steps at which vessels cannot start sailing out of the berths.

4: for j ∈ I do . Update time steps at which a task cannot start due to the non-simultaneity constraints (43).
5: if (iin(ω), j) ∈ U then
6: T̃j = T̃j ∪ Z[t1(ω),t1(ω)+diin(ω)

−1].

7: end if
8: if (iout(ω), j) ∈ U then
9: T̃j = T̃j ∪ Z[t3(ω),t3(ω)+diout(ω)−1].

10: end if
11: end for
12: Return T̄ in, T̄ out, T̂b, b ∈ B, T̃i, i ∈ I.

EC5 Data of the Hong Kong container port and parameter settings
in the instances

EC5.1 Data of the port

We generated the instances based on real operational data from the Hong Kong Container Port. The

physical layout of the port is depicted in Figure EC1(a). There are 24 berths in the Kwai Tsing

Container Terminals. More than 85% of all vessel arrivals in this port travel through the East Lamma

Channel, which is a bidirectional channel with two traffic lanes: one for incoming vessels and the other
for outgoing vessels. Due to its sufficient water depth, vessels of all sizes can sail in the channel at any
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Algorithm EC.6 Pilot route construction.

1: Initialization: Φ2 = ∅; Ī = ∅.
2: for % = 1, 2, ..., |Φ+| do
3: I′ = ∅.
4: for i ∈ I(φ%) do
5: if i /∈ Ī then
6: I′ = I′ ∪ {i}.
7: end if
8: end for
9: if I′ 6= ∅ then

10: Ī = Ī ∪ I′.
11: Construct a pilot route φ′ ∈ Φs(φ) that covers all tasks in I′; . Route φ′ can be generated by letting all tasks

in I′ and the rest period start at the same times as they do in route φ%; The cost of the route equals c̄φ′ = c3
s(φ)

.

12: Φ2 = Φ2 ∪ {φ′}.
13: end if
14: if |Ī| = |I| then
15: Break.
16: end if
17: end for
18: Return Φ2.

time of the day (i.e., there is no tidal window for vessels in the channel). There is a pilot boarding

station at the entrance of the channel where pilots can board or deboard vessels. The port also has an

anchorage located near the East Lamma Channel, where arriving vessels can wait before sailing into

the channel.

To better explain the movements of vessels in the port, in Figure EC1(b), we illustrate the locations

of vessels in the port at a given time and the trajectory of a vessel that was handled in the port. This

figure was adapted from a screenshot of a software application that monitors real-time vessel positions

and movements in the Hong Kong Container Port.

Pilot Boarding 
Station

South-east Lamma 
Anchorage

E
ast L

am
m

a C
hannel

Berths (Kwai Tsing Container Terminals)

(a) Port Layout. (b) Vessel Traffic.

Figure EC1: Layout of the Hong Kong container port and an illustration of vessel traffic in the port.
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In 2017, 10,633 vessel arrivals were handled in the port (The Marine Department of Hong Kong

2018), which translates to approximately 1.21 vessel arrivals per berth per day on average. To derive

the vessel service data, we collected messages sent by the onboard Automatic Identification System

(AIS) of the vessels handled in the Hong Kong Container Port in 2017. The AIS is to vessels what

GPS is to cars. The reader is referred to Yang et al. (2019) for more information on the AIS and AIS

messages. By leveraging the AIS data, we obtained 7,062 complete vessel arrival records. Each record

depicts the movements of a vessel (accurate to one minute) during its entire port stay. For each of

the arrivals, we identified (i) the capacity of the associated vessel, (ii) the handling time at the berths,

and (iii) the transit time between the pilot boarding station and the berths.

Table EC1 reports the distribution of the vessel capacities associated with the 7,062 vessel arrivals.

We classify vessels into five groups according to their capacities (in twenty-foot equivalent units, or

TEU): feeder, intermediate (S), intermediate (L), large, and jumbo. We present the distribution of

handling times (in hours) of different vessels in Figure EC2. Among the 7,062 vessel arrivals, 6,425

and 5,655 arrivals entered and departed the port through the East Lamma Channel, respectively. The

average traveling time between the berths and the pilot boarding station in the channel was 64 minutes,

and nearly 80% of transit times lay within the range of [54,72] minutes.

Table EC1: Distribution of vessel capacities.

Type Size (TEU) Number Ratio (%)

Feeder [500, 3000] 3815 54%
Intermediate (S) [3001, 6000] 1710 24%
Intermediate (L) [6001, 9000] 988 14%
Large [9001, 12000] 229 3%
Jumbo [12001, 18500] 320 5%

Feeder Intermediate (S) Intermediate (L) Large Jumbo
Vessel Type
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Figure EC2: Distribution of vessel handling times.

Pilotage is compulsory in Hong Kong; all vessels over 3,000 gross tons must have a pilot on board

when navigating in the port (the smallest container vessel in our record is over 8,900 gross tons). There

are approximately 100 pilots licensed to serve vessels in Hong Kong (The Marine Department of Hong

Kong 2020a). To board vessels, pilots travel in the port using pilot boats. Pilot boats are significantly

smaller than container vessels; the typical length of a pilot boat is between 12 and 14 meters, whereas

the smallest feeder container vessel in our record is 138 meters long. While the speed of container

vessels in the channel is normally between 10–15 knots, pilot boats can travel at much higher speeds

(up to a maximum of 30 knots) in port waters. Accordingly, pilot boats can overtake container vessels

when sailing in the channel. A pilot boat can travel between any two berths in the port within 5

minutes and between berths and the pilot boarding station within 20 minutes.
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EC5.2 Parameter settings in the instances

Based on the operational data of the Hong Kong Container Port, we generate parameters in our testing

instances as follows.

First, corresponding to the five vessel types listed in Table EC1, we classify vessels in the instances

into five grades: Grades I, II, III, IV, and V. A higher grade indicates larger capacities. Among all

vessels calling at the seaport in an instance, the probabilities of the vessels being of Grades I, II, III, IV,

and V are set to 54%, 24%, 14%, 3%, and 5%, respectively. Vessels arrive at the seaport dynamically

and uniformly throughout the planning horizon. In the instances, a vessel can be handled at any berth

in the seaport, and the cargo handling times for vessel k at all berths are set to be identical and equal

to ĥk. Here, ĥk is randomly generated using the uniform distributions U(8, 12), U(10, 14), U(11, 18),

U(13, 20), and U(14, 21) (in hours) for vessels of Grades I, II, III, IV, and V, respectively.

Second, requirements regarding channel traffic management in the instances are set as follows. The

time for a vessel to travel between the anchorage and berths (including sailing in the channel and

berthing into or unberthing from a berth), denoted by d̂, is set to 70 minutes. There should be a

minimum headway between any two vessels that sail in the same direction in the channel. Meanwhile,

large-sized vessels cannot sail in opposite directions in the channel simultaneously. However, the

exact minimum headway and non-simultaneity requirements in the Hong Kong Container Port are not

available to us. In the instances, we set the minimum headway to be 10 minutes, which is in accordance

with the setting used by Jia et al. (2019). We also stipulate that vessels of Grade IV or V cannot sail

in opposite directions in the channel simultaneously.

Third, the time windows of the pilotage tasks are set in such a way as to fulfill the following two

requirements: (i) any incoming vessel should start sailing into the berths no more than eight hours

after arrival, and (ii) the total turnaround time of vessel k should not exceed the sum of the sailing

time between the anchorage and the berths and the handling time (2d̂+ ĥk), plus a total buffer time

of 16 hours.

Fourth, given that seaports operate around the clock, we simulate the initial condition in the

seaport as follows. We set the probability of a berth being occupied by a vessel to 0.5R (R denotes

the vessel arrival rate [vessel arrivals per berth per day]). For an occupied berth, the probabilities

of it being occupied by a Grade I, II, III, IV, and V vessel are set to 54%, 24%, 14%, 3%, and 5%,

respectively. If a berth is occupied, its available time (counting from the beginning of the planning

horizon) is generated from U(1, 10) (in hours); otherwise, we set the available time to zero. Meanwhile,

to impose the minimum headway requirement, no vessels in the instances can leave their berths within

the first 10 minutes after an initially occupied berth becomes available. Moreover, to impose the non-

simultaneity requirements between large vessels, if a berth is occupied by a Grade IV or V vessel, no

Grade IV or V vessels in the instances can start sailing into the berths within the first 70 minutes after

the berth becomes available. To impose these requirements, the time windows of the pilotage tasks

for the vessels are adjusted accordingly.

Fifth, in each instance, each pilot working in a shift is awarded a rest period that should last

at least an hour and cannot start within the first 30% or the last 30% period in the shift. A pilot

can maneuver multiple vessels in a shift, and a minimum setup time is required to reposition a pilot

between two tasks. If the repositioning does not necessitate travel through the channel, we set the

minimum setup time to 10 minutes; otherwise, we set the minimum setup time to 30 minutes.

Sixth, because we consider a discrete-time problem, the time points (for defining various time

windows) and time durations (of tasks, rest periods, and vessel handling) generated in continuous

time are translated into parameters depicted by discrete time steps. Such translation is conducted by

applying the appropriate ceiling or flooring operators on the continuous-time parameters to ensure the

feasibility of the obtained discrete-time solutions for the original continuous-time instances.
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Finally, we set the cost components as follows. First, tasks that start later than their earliest

possible start times are punished. The unit-time delay cost for tasks corresponding to vessels of

Grades I, II, III, IV, and V sailing into berths are set to 2, 3, 4, 5, and 6, respectively. The unit-time

delay cost for tasks corresponding to vessels of Grades I, II, III, IV, and V leaving berths are set

to 4, 6, 8, 10, and 12, respectively. Meanwhile, the cost for handling vessel k at berth b is set to

c2k,b = d5obĥke, where ob is generated from U(1, 1.5). Finally, the cost paid by the port authority for

assigning a pilot to work in a shift is set to 48 (i.e., 1 per unit time).
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