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1. GRADIENT DESCENT METHOD
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Gradient methods: some historical aspects

. <7—[, CONIE H)real Hilbert space, f : H — R continuously
differentiable.

. miﬂ f(x) = f*: Find x € argmin(f) such that:
X€

F(x) = f*.

e Optimality condition: solve the nonlinear equation

Vf(x)=0.
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Gradient Descent Method (Steepest Descent Method)

Xo € H
Xpp1 = Xk — skVF(xx)
with s > 0: the step length or the learning rate.

o Attributed to Cauchy, who
first used it in 1847.

e Hadamard proposed a
similar method in 1907.

e First proof of convergence is
due to Haskell Curry (in
1944).

Cauchy (1789-1857) Hadamard (1865-1963)
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CAUCHY AND THE GRADIENT METHOD

CLAUDE LEMARECHAL

2010 Mathematics Subject Classification: 65K05, 90C30
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Any textbook on nonlinear optimization mentions that the gradient method is
due to Louis Augustin Cauchy, in his Compte Rendu d I’Académie des Sciences
of October 18, 18471 (needless to say, this reference takes a tiny place amongst
his fundamental works on analysis, complex functions, mechanics, etc. Just
have a look at http://mathdoc.emath.fr/cgi-bin/oetoc?id=0E_CAUCHY_1_
10: a paper every week).

Cauchy is motivated by astronomic calculations which, as everybody knows,
are normally very voluminous. To compute the orbit of a heavenly body, he
wants to solve not the differential equations, but the [algebraic] equations rep-
resenting the motion of this body, taking as unknowns the elements of the orbit
themselves. Then there are siz such unknownsﬂ Indeed, a motivation related
with operations research would have been extraordinary. Yet, it is interesting to
note that equation-solving has always formed the vast majority of optimization
problems, until not too long ago.

To solve a system of equations in thoae daya one ordinarily starts by reducing
them to a single one by i i to tually solve for good the
resulting equation, if possible. But it is important to observe that 1° in many

cases, the elimination cannot be performed in any way; 2° the resulting equation
is usually very complicated, even though the given equations are rather simpleﬁ
Something else is wanted.

Thus consider a function




THE METHOD OF STEEPEST DESCENT FOR NON-LINEAR
MINIMIZATION PROBLEMS*

By HASKELL B. CURRY (Frankford Arsenal)

1. Introduction. The problem idered here is that of minimizing a function of #
real variables, G(xy, - - -, x,). The object is to find a practical method for evaluating,

approximately at least, a stationary point for G.
This problem includes as a special case that of solving a set of simultaneous equa-

tions
filmy e,

because the function

(i=1,2---,m), 1)

Gy, -+ (2)

has a minimum at a solution of (1). It also includes that of determining the parame-
ters x1, - - -+, %, of a function f(u; x1, - - -, x,) 50 as to get the best approximation,
in a least square sense, to a function F(u) for certain values of u; the G in this case
is of the form given by

oy ) = 35 [FGw) = flai 2+, 2] ®
z

Certain engineering applications of the latter sort of problem arose in the work
of the Engineering Research Section, Fire Control Design Division, at Frankford
Arsenal. In these applications, the function f(u; %1, - - -, x.) was sufficiently compli-
cated so that the standard method for dealing with non linear least square problems?
failed to converge. Two techniques for dealing with this situation were developed by
the section under the direction of J. G. Tappert. One of these was an original sugges-
tion of my associate K. Levenberg.? The second method is the subject of this note.

This method is not new. Levenberg found it set forth in a paper by Cauchy dated
1847.3 That it has become a standard procedure in analysis is clear from a recent paper
by Courant.* Nevertheless it does not appear to be well known to authorities on nu-

* Received Jan. 22, 1944.

1 See, for example, W. E. Deming, Some notes on least squares, U. S. Dept. of Agriculture Graduate
School, 1938, p. 31 1., or E. T. Whittaker and G. Robinson, The calculus of observations, Blackie and
Son, London, 1940, p. 214. Deming’s treatment is also given in his book, Statistical adjustment of data,
John Wiley & Sons, New York, 1943, p. 52 .

* K. Levenberg, 4 method for the solution of certain non-linear problems in least squares, Quarterly of
Applied Mathematics, 2, 164 (1944).

*A. L. Cauchy, Mthode générale pour la résolution des systimes d'équations simultantes, Comptes
rendus, Ac. Sci. Paris, 25, 536-538 (1847).

4R, Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull.
Amer. Math. Soc. 49, 1-23 (1943). See especially pp. 17-20. Courant calls the method the “method of

Haskell B. Curry (1900-1982)




Gradient Descent Method: How to choose the step

length?

xTo€H
ZTkt1 = Tk — gV f (Tk)

v?%)/""
Y :

How to choose the step length s, > 07
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Gradient flow as a continuous model

X0 €H
(GDM){ °
Xk+1 = Xk — SVf(Xk)
Question. Could we associate a continuous model to the GDM?

Let us introduce the Ansatz xx ~ X(ks), k € N for a smooth function
X : [0, +o0[— H.
For t = ks, we have

X(t+s) = xk41 = xk — sVF(xk) = X(t) — sVF(X(t)).
Hence,
1
; [X(t ts)— X(t)] = —sf(X(2)).
By letting the step length o — 0, we have
X(t) = =VF(X(t)), t >0
X(O) =Xxp € H,

(GF)
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Gradient Flow

x(t) = =VIf(x(t)), t >0 x0 €H
Gy d 0 (x(0), £ > ——
X(O) =xp0 €H Explicit Euler Xk+1 = Xk — SVf(Xk)
discrete iteration = continnous tlme’ k= E
step length s

|—descent 20
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Convergence result of the Gradient Flow

(GF)
X(O) =x0 €H

Theorem

Let f : H — R be convex, continuously differentiable and bounded from
below.

Assume that S = argmin (f) # (0. f* =infy f. Then

(i) F(x(2)) - F* < 2P 4 5 0,

(i) x(t) = xo0 € S weakly as t — +00, Vf(xs) =0. (Bruck (1975),
Opial’s lemma).
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Convergence result of the Gradient Flow: the convex

case

Since f is convex, we obtain

Proof. Consider the Lyapounov function

o EO = () = 7 22 x(0) = I < £0) — ().
E'(t) = (VF(x(t)), x(t)) = —|Ix(t)]|* < 0. Using (??), we have for every 0 < s < t
Hence, the function t — f(x(t)) is nonincreasing, f(x(t)) — fy) < f(x(s)) — f(y).

i.e. for every s < t, we have
Integrating this inequality, we get

() < F(x(9)) &) t
We have, () = 1) < [ (Fx(e) = () as

1 2 1 2
e ¢ ) S sl =yl = Slx(®) = ylI™
FO(£)—F(x0) = — /0 I%(s)I%ds = — /0 197 (x(s)) 2. 2
< 3l = I
Since f is bounded below, we get
Hence,

+oo ) +o00 )
[T = [T IV P < oo .
’ ’ F(x(t) = F() < 5l =y, ¥y € A

On the other hand, we have for every y € H
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Convergence result of the Gradient Flow: the strongly

convex case

Definition

A function f : H — R is p-strongly convex iff £ — ]| - ||? is convex, i.e. for
every A € [0,1] and, x, y € H, we have

(e (1= 2)y) <260 + (@ = WAy - Ay

e For differentiable functions, this is equivalent to the p-strong monotonicity
of the gradientVf, i.e.

(VE(x) = VF(y),x = y) > ullx = ylI’, ¥x, y € H.

e Another characterization is
F(y) = F() + (VF(x),y = x) + Slly = x|

e The parameter y > 0 measures the curvature of f.
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Convergence result of the Gradient Flow: the strongly

convex case

Coming back to the proof of the gradient flow convergence, we have for
p-strongly convex functions and every y € ‘H

1d 7
5 e IX®) =y I = (VAx(8),y = x(8)) < F(y) = F(x(2)) = SIx(£) = y[I*
In this case, the set of solutions S = {x*}. So for y = x*, we have

d

S IIX(@) = XTI+ () = |17 < 0.

Consequently,
Ix(2) = x*[1> < e #||x0 — x*[|.

We deduce the strong convergence of the trajectory x(t) — x* as
t — +o0.
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Convergence result of the Gradient Descent Method

Let f : H — R be convex and continuously differentiable.
Assume that S = argmin (f) # 0.
V' Lipschitz continuous with modulus L > 0, 0 < sL < 2.

Discrete dynamic:  xx11 = xx — sVF(xk), x € H

Ldist(xo, S)? 1
o f(xx)—f*< Ldist(x0, 5)° =0(-) as k = +oo.
2k k
2—slL
o f(xkt1) — F(xk) + 255 l[xk11 — xx||> < 0 (gradient descent
lemma).

0 Xx — Xoo € S weakly as k — +oo.
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Gradient flow: the nonconvex case

(SD) x(t) + Vf(x(t)) = 0. J

o f: RN — R real analytic: Lojasiewicz (IHES, 1965).
Any bounded trajectory converges to a critical point of f.

e Counterexample: J. Palis and W. De Melo(1982), mexican hat (a
function in R? of class C*).
Without geometric hypothesis on f, x(-) may not converge.

Geometry of f: tame optimization,
KL, complexity.
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Lojasiewicz inequality and (SD)

(SD) x(t)+ VF(x(t)) = 0. J

Theorem (Lojasiewicz inequality, 1963)

Let f: U C RN = R be real analytic, U be open, x € U be a critical
point of f.

Then, there exists 0 € [%, 1[, € >0, and a neighbourhood W of x s.t.

VxeW  [f(x) — F(R)’ < CIVFCI.

Theorem (Lojasiewicz, 1984)

f:UCRN =R real analytic. Any bounded trajectory of (SD) has a
finite length and hence converges to a critical point of f, as t — +oo.
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2. ACCELERATION OF (GRADIENT-BASED
OPTIMIZATION ALGORITHMS
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How to accelerate the Gradient Descent Method?

e Polyak’s momentum
o Nesterov Accelerated Gradient Method (NAG).
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Polyak’s momentum

The first improvement of the Gradient Descent Method is due to
Polyak in

@ B. T. POLYAK, Some methods of speeding up the convergence of
iteration methods. Computational mathematics and mathematical
physics (1964).

The algorithm is given by

X0, X1 € H
PM
( ) Xk+1 = Xk — SVf(Xk) =+ /B(Xk — Xk_l),
GDM mom;tum

where s > 0 is the step length of the GDM and 5 > 0 is the momentum
coefficient.
The algorithm is accelerated by giving a momentum from the previous
two steps.

Fast Optimization Algorithms 19/78



Polyak’s momentum: interpretation

Vi = Xk + B(xk — xk—1)

(PM)
Xk+1 = Yk — SVf(Xk)
-

Remark

Polyak’s momentum is not a descent method, i.e. f(xk+1) < f(xk)
could be not satisfied.

Fast Optimization Algorithms 20/ 78



What is the continuous surrogate of Polyak’s

momentum?

Xp, x1 €EH
(PM) 0, X1
Xp+1 = Xk — SV (xk) + B(xk — xk—1) (%),
Set h= /s and 8 =1 — ~vh with v > 0.
We have
(*) < (Xk+1 — Xk) — (Xk - kal) + (1 — ﬁ)(Xk — kal) + hZVf(Xk) =0
Xpk41 — 2Xk + Xp—1 Xk — Xk
h2 T
Let us introduce the Ansatz x, ~ X(kh) with k = . As the step size
goes to 0, we get
X(t) +yX(t) + VF(X(t)) =0, t>0.

X(0) = xp, X(0) = x;.

L 4 VF(x) = 0.
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The heavy ball with friction method

Fixed viscous damping coefficient v > 0, Polyak (1964, 1987)

(HBF) X(t) + yx(t) + VI (x(t)) =0, x(0) = xo, x(0) = xy.
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(HBF) in the -strongly convex case

Strongly convex functions

f : H — R p-strongly convex <= f — &|| - || is convex.

f : H — R p-strongly convex
Xx(t) + 2/ux(t) + VF(x(t)) = 0.
o f(x(t)) —infy f = O (e"VF) ast — +oo.

e Geometry of f <— Damping coefficient <— Convergence rate.

Theorem

If f : H — R is p-strongly conver and of class C2, then

f(x(t)) — i?{f f < Ce VFt Vit >0,

with C = f(x0) — infy f + pdist(xo, S)% + ||xa|?.

= (i = =
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(HBF) in the convex case

— { R(t) +vx(t) + VF(x(t)) = 0,
x(0) = x0, x(0) = xy.

Theorem (Alvarez (SICON, 2000))

Let f : H — R be convex and of class C* such that S = argmin () # 0.
(i) F(x(t) —infy £ < 00X i
C(x0,x1) = %(f(xo) — infy ) + ydist(x0, S)? + %Hlez.
(i1) x(t) = Xoo € S weakly ast — +oo.

E(t) = 3|Ix(¢)||> + f(x(t)) the Lyapounov energy function.
E/(t) = —||%(t)|]|> <0 (dissipative system).
o f(x(t)) —infy f=0(1) ast— +cc.
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HBF versus GDM

(HBF) Yk = Xk + B(Xk — Xk—1) (GDM) x0 €H

Xk+1 = Yk — SVf(Xk)

=
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The Heavy Ball with friction: optimal parameters

Xp, X1 € H
(HBF){ 7

Xk+1 = Xk — SVI(xk) + B(xk — xk—-1)-
Let f be of class C?, p-strongly convex and L-smooth. The optimal
parameters a and 3 are given by:

s CpEeIp L
S—Wandﬁ—[ﬁ+1:| with kK = .

(HBF) is optimal for C2, u-strongly convex, and L-smooth
functions.

Knowledge of both parameters L and p is crucial for the analysis.

Tuning parameters s and £ for smooth convex functions is unclear.

For general convex functions, (HBF) converges asymptotically at
O(1/t), not surpassing steepest descent.
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The Heavy Ball with friction: some drawbacks

Beside the oscillation problems of the (HBF), it may fail to converge
even for strongly convex functions (non C2).
The following counter-example is given in [LRP] (2015).
Take f : R — R such that
25x if x<1

fi(x)=<¢ x+24 if 1<x<?2

26x —24 if x> 2.
The function is L-smooth and p-strongly convex with L = 25 and
p = 1. (HBF) produces a limit cycle with oscillations.

[d L. LESSARD, B. RECHT, A. PACKARD. Analysis and Design of

Optimization Algorithms via Integral Quadratic Constraints.
arXiv:1408.3595 (2015).
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Nesterov’s Accelerated Gradient Method (NAG)

In 1983, Y. Nesterov introduced an algorithm with momentum

(NAG) Xk+1 =Yk —SVF(yk), 0<s S%

Vi1 = X1 + Br(Xhy1 — xk)-
with Bk = 5 +3 the momentum coefficient.
Starting with xg and yg = xo.

This choice of the extrapolation coefficient is intriguing. It is
considered one of the mysterious results in Optimization.
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Nesterov’s Accelerated Gradient Method (NAG)

loxa. Axan. Hayx CCCP Soviet Math. Dokl
Tom 269 (1983), N° 3 Vol, 27 (1983), No. 2

A METHOD OF SOLVING
A CONVEX PROGRAMMING PROBLEM
WITH CONVERGENCE RATE O(1 /k?)
unc si

YU. E. NESTEROV

1. In this note we propose a method of solving a convex programming problem in a
Hilbert space E. Unlike the majority of convex programming methods proposed earlier,
this method constructs a minimizing sequence of points {x,}F that is not relaxational.
This property allows us to reduce the amount of computation at each step to a minimum.
At the same time, it is possible to obtain an estimate of convergence rate that cannot be
improved for the class of problems under consideration (see [1]).

2. Consider first the problem of unconstrained minimization of a convex function f(x).
We will assume that f(x) belongs to the class C"'(E), i.e. that there exists a constant
L >0suchthatforallx, y € E

(1) l7Cx) = £ (o)l = Lllx = ¥l-




From O (%) to O (%)

Historical NAG a = 3

e Suppose that f is convex and L-smooth, then

. _ 2Ldist(x0, S)? 1
— Squuu——— — ] .
f(xk) — < (k+1) @ 12

Convergence of the iterates is an open problem.

Optimal rate among all first-order gradient based methods.

o Nemirovsky-Yudin (1983), Nesterov (2004), Drori-Teboulle (2012).
o Gradient-based first-order method is a black-box algorithm:

(Xo,go, e Xk kk) — Xk+1 € Xo + Span(go, - - -, 8k)-

[@ A.S. NEMIROVSKY and D. B. YUDIN. Problem Complexity and
Method Efficiency in Optimization. Wiley Interseciences, 1983.
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Nesterov’s Accelerated Gradient Method (NAG)

(NAG),, oo o= xc+(1-9%) 0k — xk-1)

Xk+1 — yk—SVf(yk).

e The gradient step is applied to yx, which is obtained by linear
extrapolation from x, and xx_1.

e Note the subtle tuning of the extrapolation coefficient
0 < ak:=1-— % <1 which tends to one from below as k — +o0.
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(NAG),, Yoo = x+(1-9%) 0k — xk-1)

Xk+1 = Yk — SVF(yk).

o a = 3: Historical NAG. f(xx) — f* < O(1/k?) (Nesterov 1983).
The convergence of the sequence (xx) is an open question.

@ a >3 Xk — Xoo € S (Chambolle-Dossal, 2015).
f(xx) — f* = o(1/k?) (Attouch-Peypouquet, 2016).

0 0<a<3: flx)—f=0(1/k%).
Apidopoulos-Aujol-Dossal, Attouch-Chbani-Riahi (2016).

Fast Optimization Algorithms



NAG for strongly convex function (NAG-SC)

f: H — R p-strongly convex function.

Y1 = Xk —sVF(x)
(NAG - SC) B -
Xktl = Vil s Vet — Yi)-
Equivalently,
1-— 1-—
Xk4+1 = Xk—SVf(Xk)—l- \/ﬁ (Xk—Xk_l)—S \//-E Vf(Xk)—Vf(Xk_l .
1+ /us 1+ /us

Like the heavy ball with the gradient correction term

s<1;\/\/§) (Vf(xk) - Vf(xk_l).
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Nonsmooth convex case: Inertial Proximal Algorithm

min{f(x): x € H}, f € [o(H), S = argminf # (. J

Inertial Proximal algorithm, proxy(y) := argminecy {f(£) + %= |ly — &/1*}

(IP) { e =xk+ (1= %) (xk — Xk—1)

Xk+1 = PTOXsf()’k)~
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The composite problem and the LASSO

)r(Téi?r_ml h(x) := f(x) + g(x),

with f convex and L-smooth and g € [o(H).

0€a(f +g)(x) 0 € VF(x) + dg(x)

—

<= 0¢€sVf(x)+sog(x), s>0.
< x € x+sVf(x)+ sog(x)
=
—

x — sVF(x) € (1 n sag) (x).

X = proXgg <x - sz(x)).
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Forward-backward algorithm

x€EH, 0<s< %

(FB)

Xk1 = ProXeg ( Xk — sz(xk)>

e LASSO: min ||Ax — b||3 + \||x]|1, with A€ R™*" and b € R™,
XERM e N~

f(x) g(x)

ProXy., = (TA(xl), ce T)\(Xn))

T\ = proxy

+1_ O]

—A +A
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[terative Shrinkage-Thresholding Algorithm (ISTA)

xEH, 0<s< Z
(FB) Xk+1 = ProXgy||.|1; (xk — sVIf(xk) )
h=~f+X |-
h(xki1) — h* < L”X";kxuz

e Possibility of a backtracking version.
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Structured minimization: miny(f 4 g)

o f: H — R convex, C!, Vf L-Lipschitz continuous; 0 < s < %
e g:H — RU{+o0} convex, lower semicontinuous, proper.

Inertial Proximal Gradient algorithm

(IPG). o = xk+ (1—2) (% — xk—1)

Xk+1 = Proxe (v —sV£f(y))

@ a=3: (f+g)(x)—mingy(f+g)= (’)(%),
Beck-Teboulle: FISTA (STAM J. Imaging 2009).

>3 (f+g)(x)—miny(f+g)=0(k), x = xx €S,
Chambolle-Dossal (JOTA 2015), Attouch-Peypouquet (SIOPT 2016).
o a<3: (f—i—g)(xk)—minq.[(f—i—g):O(l/k%a).

Apidopoulos-Aujol-Dossal (Math Prog ’20), Attouch-Chbani-Riahi
COCV 18
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4. UNDERSTANDING THE ACCELERATION
PHENOMENON FROM THE PERSPECTIVE OF LIMITING
ODEs
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A continuous ODE associated to NAG

Yk i+ (1= F) O — xk—1)

Xk+1 vk — sVE(yk).

Question: Is there any continuous (in time) ODE which is the limit of
(NAG), by taking the step size s — 07

Journal of Machine Learning Research 17 (2016) 1-43 Submitted 3/15; Revised 10/15; Published 9/16
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‘Weijie Su SUWQWHARTON.UPENN.EDU
Department of Statistics

University of Pennsylvania

Philadelphia, PA 19104, USA

Stephen Boyd BOYD@STANFORD.EDU
Department of Electrical Engineering

Stanford University
Stanford, CA 94305, USA

Emmanuel J. Candés CANDES@STANFORD.EDU
Departments of Statistics and Mathematics

Stanford University

Stanford, CA 94305, USA




Su-Boyd-Candes model

Let us set h = /s. We have
Xk+1 = Xk + (1 — %) (Xk — kal) — SVf(yk).
Hence,
(1 8) B ()
We introduce the Ansatz xx ~ X(kh) for a smooth curve
X [0, +o0[— H, t — X(t) with t = kh = k/s.

~— X

Xk4+1 — Xk - h .
% = X(t) + 5 X(t) + o(h).
Xpe — Xk— . h .
% = X(t) - EX(t) + o(h).

hVf(yk) = hVF(X(t)) + o(h).
By identification with the coefficients of h, we get

X(£) + TX(0) + VAX() =
Inertial dynamic with an asymptotic vanishing damping.

lim max HX(kh)—XkH =0.

s—00<k
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Su-Boyd-Candes model for NAG

Asymptotic Vanishing Damping
(AVD)o  X(£) + TX(8) + VF(x(1)) = 0.

@ o > 3: Su-Boyd-Candes (NIPS 2014), link with Nesterov
1
f(x(t))—f*=0 (?) as t — +o00.
@ « > 3: Attouch-Chbani-Peypouquet-Redont (Math. Prog. 2018)
1
f(x(t))—f*=o (ﬁ) , X(t) = Xo0 € S as t — +o0.

o a < 3: Apidopoulos-Aujol-Dossal (SIOPT 2018),
Attouch-Chbani-Riahi (ESAIM COCV 2019)

F(x(t) — f* =0 (%) as t — +00.
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Low versus high resolution ODE of NAG

Remark

o Gradient-based optimization algorithms can be studied from the
perspective of limiting ODEs.

e Existing ODEs do not distinguish between two different
algorithms: Nesterov’s accelerated gradient method for strongly
convex functions and Polyak’s heavy-ball method.

e SDJS introduced a limiting process that uses high-resolution
ODEs: take the step size s small but non-vanishing.

o High resolution ODEs are more accurate than low resolution ODE.)

@ B. Sui, S. S. Du, M. I. JorpaN, W. J. Su, Understanding the
acceleration phenomenon via high-resolution differential equations,
Math. Program., 2021.
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Low versus high-resolution ODE for NAG-SC and HBF

(NAG—SC) Xk+1 =Xk — SVf(Xk) + <1 — \/E>(Xk - kal)

(HBF) Xk+1 = xk—sz(xk)-&-B(xk—xk,l). 1+ \/}E
1— /s
_ 5(1 - \/E) (Vf(xk) - Vf(xk,l).

The low resolution ODE for (HBF) and (NAG-SC) is
x(t) + 2/px(t) + VE(x(t)) = 0.
@ The high-resolution ODE for the (HBF) is
x(t) +2/px(t) + (1 + /us)VFE(x(t)) = 0.
The high-resolution ODE for the (NAG-SC) is
x(t) + 2y/mx(t) + sV (x(2))x(t) + (1 + /Bs)VF(x(t)) = 0.
@ The high-resolution ODE for the (NAG-C), convex case, is

%(£) + 2x(t) + VEVAF(x(£)x(t) + (1 + SE)VF(x(£)) = 0.
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5. THE RAVINE METHOD: A LITTLE KNOWN
METHOD.

Fast Optimization Algorithms



Ravine method. Link with Nesterov method

Gel'fand, I. M. [Gel'fand, Izrail' Moiseevich]; Cetlin, M. L. [Tsetlin, M. L.]
The principle of nonlocal search in automatic optimization systems.
Soviet Physics Dokl. 6 1961 192-194

The authors suggest a computational procedure for determining the minimum of general
functions of n variables. At the kth step, a gradient method is used to pass from the
point X}, to the point Aj. Then a line from Aj_; (obtained earlier) to Ay is extended an
appropriate distance to the new approximation, Xj11. A gradient method then leads to
Ap+1, ete. Though no numerical results are provided, it is claimed that, for functions
involving eight to ten variables, computing times are cut by factors of hundreds over
straight search and gradient (not conjugate gradient) methods. R. Kalaba




Ravine method. Link with Nesterov method

In Nesterov accelerated gradient, (yjx) follows the Ravine method.

(NAG), Yo = xk+ (1—%) (% — xk—1)

Xk41 = Yk —SsVIF(yk)

Yk+1 = Xk41 + ( k+1) (X1 — xx)

= = sV + (1= 581) (%= sVF0) = (s = sVF ()

Wk = yk—sVI(yk
(Ravine),, )

Yet1 = wi+ (1 - ﬁ) (Wi — wi—1).

¢ (NAG), extrapolation step + gradient step.
e (Ravine), gradient step + extrapolation step.
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Geometric view of the Ravine method

Gelfand, Tsetlin (1961), Nesterov (1983), Polyak (2018).
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Interpretation of the Ravine method
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Link with the Nesterov method

Conversely, if (yx) follows the Ravine method, i.e.

wk = yk—SsVI(yk)

(Ravine),
Yk+1 = Wi+ (1 = I%i—l) (Wk — wi—1).

then, (xx) defined by xkt1 = yx — sV (yk) follows (NAG),:
Yir1 = Yk — sV (yk) + (1 - k%l) (}’k —sVF(yi) = (V-1 — SVf(}/k—1)))
= Xk+1+ (1 - ﬁ) (X1 — xk) -
e =xk+ (1= %) (xk — xk—1)

(NAG),
Xk+1 = Yk — SV (yk)-
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Low resolution ODE of the Ravine method

Equivalent forms of Ravine
Ye+1 = yk — sVF(yk) + (1 - k%l) (Yk —sVF(yk) = (Yk-1 — SVf(Yk—l)))
yirr =yt (1= 225) (r=yi) =sVF) —s (1= 531 (VA0 = V(o))

(Vi1 — yk) = (Yk — Yk—1) a Yk — Y1

2 tarr n TV

+(1 = E2)(VF(yk) — VE(yk-1)) = 0.

Ansatz y, ~ Y(kh)

Set k = t/h As h— 0, Y(t) ~ yt/h = Yk, Y(t + h) ~ y(t+h)/h = Yk+1- Taylor
expansion of Y(t) at t gives

Y(t) + 2Y(t) + VF(Y(t)) + o(1) = 0.
Letting h — 0 gives that Y(-) is a solution trajectory of (AVD),

Y(t) + 2Y(t) + VF(Y(t) =0.

= = = o
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Theorem

The super-resolution ODE with temporal step-size \/s of (RAG) gives
the inertial dynamic with Hessian driven damping

Y(t) + %s‘/(t) + VEV2E(Y (1) Y(t) + (1 + \[) VF(Y(t)

s

= (%Y(“)(t) + % Y(t) — %sz(Y(t))Y(t) — V2R(Y () V(1) — VPE(Y () (Y(2), Y(t))) —o.

When neglecting the terms of order higher or equal to 2, we recover the

high-resolution ODE of (RAG) of order 1

Vi) + 2 wg+¢v%mﬁnwn+< a¢7

)vmyu»:u

S. Adly, H. Attouch and J. M. Fadili. Comparative Analysis of Accelerated
Gradient Algorithms for Convex Optimization: High and Super Resolution
ODE Approach. HAL CNRS (2023).
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Theorem
The super-resolution ODE with temporal step-size \/s of (NAG) gives

the inertial dynamic with Hesstan driven damping

X(t) + %X(t) +VEVRF(X(E)X(1) + (1 + %) VE(X(t))

SIx®m 4 2 xe - v (1) — V2 % 3 (1), 5 _
+2 (6X (t) + 3tx(:) : V(X (£)X(t) — VF(X(£)X(t) + V f(X(t))(X(t),X(t))) =0.

When neglecting the terms of order higher or equal to 2, we recover the
high-resolution ODE of (NAG) of order 1

on/s
T)

X(t) + %X(r) T VEVREA(X ()X () + (1 + 0 ) VEX(®) =o.

S. Adly, H. Attouch and J. M. Fadili. Comparative Analysis of Accelerated
Gradient Algorithms for Convex Optimization: High and Super Resolution
ODE Approach. HAL CNRS (2023).
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Super-resolution ODE of NAG and RAG with s =0.1
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R of order A of RAG

Figure: Trajectories of the super-resolution of order h? of NAG and RAG with
s = 0.1 for different initial conditions.




RAG v NAG v, IGAHD on qartic problems: munber ofierations o o performance measire RAG vs. NAG vs. IGAHD on quadratic problems: computing time as a performance measure
¥
— —
09 09
0 08
07
0
o3} 05}
204
03
03 02
E——
0y pmantiiv o
e
os 1 1s 2 25 3 a5 o os 1 15 2 25 3 35 4 45 5
RAG vs. NAG vs. IGAHD on quadratic problems: residue as a performance measure
09
08

0
—
0. e
—— G
o
o 1 2 3 0 B © 7 e




5. ON THE LIMIT FORM OF THE SU-BOYD-CANDES
DYNAMIC VERSION OF NESTEROV’S ACCELERATED
GRADIENT METHOD WHEN THE VISCOUS PARAMETER
BECOMES LARGE

Based on a paper by S.A. and H. Attouch, (2023).
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Analysis of Su-Boyd-Candés Dynamics for Large o

Asymptotic Vanishing Damping (AVD)
%(t) + %X(t) + VF(x(t)) = 0.

@ A natural approach is to consider the limit as o — 400 in the
dynamic (AVD).

e However, this approach, as shown below, provides limited insights
into the asymptotic behavior of trajectories when « is large.

o Instead, we need to employ a more sophisticated analysis, as
indicated by the following result obtained from an elementary
energy analysis.
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Analysis of the Su-Boyd-Candes dynamic for large

Proposition
Take xg € H and x; € H. For each o > 3, let x, : [to, +00[— H be the
solution trajectory of the Cauchy problem

Xa(t) + $Xa(t) + VF(xa(t)) =0

Xa(to) = Xp, Xa(to) = X1
Then,
o For each t > ty, xu(t) = xo strongly in H as a — +oo.
o For each T finite, T > ty, we have
SUPte[ty, T] [[Xa(t) — ol < %7

1
where Mr = tollxa|| + T2 (IVF(x0)| + L T (2((x0) = £*) + xal?) ),
and L, is equal to the Lipschitz constant of Vf on the ball centered at the
origin and of radius

r =[xl + T (2(F(x0) — £) + I ]2) 2.

Fast Optimization /



The time rescaling approach

Xa(t) + $Xa(t) + VI(xa(t)) =0

xa(to) = x0, Xa(to) = x1

We set yo(s) = xa ( 2(a+ 1)5), which satisfies the differential
equation

221Ya(S) + Ya(s) + VF

(¥a
Ya (2(5*‘-%%1)) %0 y@( (ti1)> =
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The time rescaling approach

Theorem

Take xg € H, x; € H. For each o > 0, let x,, : [to, +oo[— H be the solution
trajectory of

(AVD), %a(t) + Sia(t) + Vi(xa(t) = 0,

which satisfies the Cauchy data x,(tg) = xo and X, (o) = x1. Consider the
2
sequence of rescaled trajectories (o), Ya :[35%T) (a Ty E +oo[— H defined by

Ya(S) = xa ( 2(a+ 1)5) .

Then, the following results are satisfied.

(i) For each o > 0, y,, satisfies the differential equation

0[27:1}70((5) + Ya(s) + VI(ya(s)) =0, (2)

with the Cauchy data y, (2(;7‘110 = xp and y, (2(;7‘11)) = O‘t—ngxl.
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The time rescaling approach

(ii) Suppose now that H is a finite dimensional Hilbert space. Let us extend
the function y, to [0, 4oo[ by setting

5
2(a + 1)]

. i
Yoo = Yo O [2(

Tl)7+00[’ Ja = xp on [0,

When « tends to oo, the sequence (¥,) converges uniformly on the bounded
sets of [0, +o0o[ to the solution of the following continuous steepest descent

y(s) + V£(y(s)) = 0, (3)
that satisfies y (0) = xo.

@ The convexity of f is not required.

2
@ The Cauchy data on the velocity y, (2(4;1—1)) = at—ﬁlxl explodes as

a — +00. This induces singular perturbation phenomenon.
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Time rescaling approach: the convex case

Theorem

Suppose that H is a general real Hilbert space, and that f : H — R is a
convex differentiable function.

Then, as o — +o00, the sequence of rescaled functions (¥,) converges
uniformly to y on the bounded intervals of [0, +oc[, where y is the
solution of the continuous steepest descent

y(s) + Vf(y(s)) =0,

that satisfies y (0) = xp. Precisely, for each T > 0, there exists a
constant Ct such that

. Cr
sup |[Vals) —y(s)|| < .
up (s~ () <

Open question. In the convex case, is the uniform convergence
property valid on [0, 4o00[?
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Time rescaling approach: the convex case

Consider f(x1,x2) = A1x2 + Aox3 with A\; = 0.02 and \» = 0.005 with
the initial condition xp = (2,2) and x; = (1,1). Note that f is of the
form f(x) = (x, Ax) with A = diag([\1, A2]).

Figure: Mlustration on a quadratic convex function.
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6. PERSPECTIVE, OPEN QUESTIONS
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Some open questions

e Comparaison de IGAHD, RAV et NAG (papier
Adly-Attouch-Fadili)

o High-resolution ODE
o Large a Adly-Attouch.

@ Doubly nonlinear.
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Some open questions

X+ (1= %) (x — Xk—1)

Yk

X1 = Yk —SVF(y)

o Convergence of NAG’s iterates in the critical case @ = 3 (except in 1D).
@ How to tune efficiently the vanishing damping coefficient o > 3?7

@ Extension to nonconvex case: KL theory only works in a finite
dimensional framework and for autonomous systems. This is why it
cannot be applied directly to (AVD)_ which is a non-autonomous system.

@ We have already mentioned that when f is strongly convex, the
convergence rate of values is O (1 / tzTa>, and becomes therefore

arbitrarily fast (in the scale of powers of 1/t) with a large. To exploit
this result in the case of a general convex differentiable function
f:H — R, a natural idea is to use Tikhonov’s regularization method.
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THANK YOU VERY MUCH FOR YOUR
ATTENTION
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