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Motivation for preference robust optimization

Motivation: Homeland Security Budget Allocation I

(Hu et al, 2011)

Budget allocation problem for m = 10 U.S. cities subject to possible
terrorist attack:

Three underlying loss scenarios: {reduced loss, standard loss,
increased loss}
Measure loss in terms of n = 4 attributes: {property loss, fatalities,
air departures, bridge traffic}

Random loss in city i for attribute j is Cij .
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Motivation for preference robust optimization

Motivation: Homeland Security Budget Allocation II

Data on property loss and fatalities are taken from (Willis et al, 2006)

Daily bridge traffic and airport departures are assumed to follow a
log-uniform distribution P(U = −1) = P(U = 0) = P(U = 1) = 1

3 .

1 Random incidents then satisfy Tij = κijγ
U for a constant κij and γ > 1

2 Constant κij depends on average values
3 The cost satisfies Cij := ciTij where ci is the economic loss per incident

of attribute i
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Motivation for preference robust optimization

Motivation: Homeland Security Budget Allocation III

Let zij be the amount invested in city i for attribute j :
1 Set of feasible decisions Z := {z ∈ Rm :

∑m
i=1

∑n
j=1 zij ≤ B} for

budget e.g., B = $400 million
2 Investment functions gij(zij) = vij(1− exp(−δzij)) for δ ∈ (0, 1]

(Nikoofal 2012)

Given z ∈ Z, define shortfall

Ci (z) :=
m∑
j=1

max{Cij − gij(zij), 0}

for attribute i = 1, ..., n. Define vector C (z) := (Ci (z))ni=1 of
shortfalls.

How to find the best allocation plan z∗ ∈ Z ?
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Motivation for preference robust optimization

Motivation: Homeland Security Budget Allocation IV

Compare two allocation plans: expected shortfall minimization vs. equal
allocation
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Motivation for preference robust optimization

Motivation: Why are these decisions difficult to make?

Patients Screening under the COVID-19 Pandemic (Roseli et al, 2020),
Portfolio Optimization, Capital Allocation (Esfahani & Kuhn 2018)...

1 Something important is at stake and a person/group is held
accountable for the decision.

2 The performance measure has multiple dimensions/attributes/criteria.

3 The alternatives are numerous.

4 Numerical optimization can only help once the decision maker’s
subjective preferences have been fully characterized.
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Motivation for preference robust optimization

Motivation: Von Neumann-Morgenstern Expected Utility

(Von Neumann & Morgenstern, 2007)

If the decision maker (DM) agrees with the following axioms:

1 Completeness : He can order any two lotteries.

2 Transitivity: X1 � X2 � X3 ⇒ X1 � X3

3 Continuity: If X1 � X2 � X3 then there is a p such that
X2 ∼ pX1 + (1− p)X3

4 Independence: If X1 � X2, then pX1 + (1− p)X3 � pX2 + (1− p)X3

for all p and X3,

then there exists a function u such that:

X1 � X2,

if and only if
E[u(X1)] ≥ E[u(X2)].
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Motivation for preference robust optimization

Motivation: The Limitations of Utility Theory

One can easily provide false information about his preferences.
(Grable & Lytton, 1999)

You are on a TV game show and can choose one of the following.
Which would you take?

A. $1,000 in cash
B. A 50% chance at winning $5000
C. A 25% chance at winning $10,000
D. A 5% chance at winning $100,000

One cannot specify a utility function in group decision-making where
there must be a consensus.
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Motivation for preference robust optimization

Motivation: The Limitations of Utility Theory

One may not agree all VNM axioms (Allais, 1953).

E[u(X )] = p1 · u(x1) + p2 · u(x2) + ...

This is a counterexample to the independence axiom. An explanation
is the “certainty effect” (Tversky & Kahneman, 1986).

One cannot make choice without full knowledge of the probability
distribution.

Wenjie Huang (CUHK-SZ) Preference Robust Optimization June 2rd 2021 10 / 56



Motivation for preference robust optimization

Motivation: What is the right structure for the preferences
?

Define and formulate the choice and preferences in new ways;

Make simplifying assumptions about the structure of preference in
order to allow interpolation and filter the errors;

Employ a scheme that handles uncertainty about the preference;

Develop scalable algorithms for decision-making with preferences;
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Problem formulation

Problem Formulation I

A probability space (Ω, F , P);

Let L = L∞(Ω, F , P; Rn) with n ≥ 1 denote the set of essentially
bounded random variables X : Ω→ Rn.

The essential supremum norm

‖X‖L := inf{a ∈ R : P{‖X (ω)‖∞ > a} = 0},

where ‖ · ‖∞ is the ∞-norm on Rn;

Write X = (Xj)
n
j=1, where Xj represents attribute j = 1, ..., n.
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Problem formulation

Problem Formulation II

A partial order � on L is a preference relation (i.e., weak order, total
pre-order) if � is complete and transitive:
(i) � is complete if for any X , Y ∈ L, either X � Y or Y � X holds.
(ii) � is transitive if X � Y and Y � Z holds, then X � Z .

Let R̄ := R ∪ {−∞, ∞}. The function φ : L → R̄ is a choice
function corresponding to “�”, then for any X , Y ∈ L, we have
X � Y , if and only if φ(X ) ≥ φ(Y ).

Global Information:
1 [Mon](Monotone) X ≥ Y implies φ(X ) ≥ φ(Y ).
2 [QCo](Quasi-concave) For any λ ∈ [0, 1],

φ(λX + (1− λ)Y ) ≥ min{φ(X ), φ(Y )}.
3 [Usc](Upper semi-continuous) lim supY→X φ(Y ) = φ(X ).
4 [Lip](Lipschitz continuity) There exists L > 0, such that

|φ(X )− φ(Y )| ≤ L ‖X − Y ‖L.
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Problem formulation

Problem Formulation III

Local Information:

[Eli] (Preference elicitation) For a sequence of pairs of prospects
E = {(Wk , Yk)}Kk=1 exposed to the DM, the DM prefers Wk to Yk

for all k = 1, . . . , K . Call E the elicited comparison data set (ECDS).

[Nor] (Normalization) φ(W0) = 0 for some fixed normalizing prospect
W0 ∈ L.
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Problem formulation

Problem Formulation IV

Let RQCo denote the set of all choice functions satisfying Global
Information.

Let R(E) ⊂ RQCo be the preference ambiguity set satisfying Local
Information.

Definition 1 (Robust choice function)

LThe robust choice function ψR(E) : L → R corresponding to R(E) is
defined by:

ψR(E)(X ) := inf
φ∈R(E)

φ(X ), ∀X ∈ L.

Given a benchmark Y ∈ L, the robust choice function with benchmark is
defined via: ψR(E)(X ; Y ) := infφ∈R(E){φ(X )− φ(Y )}, ∀X ∈ L.

Why considering the “worst-case” paradigm?
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Problem formulation

Problem Formulation V

Let Z be a compact convex subset of a Euclidean space that
represents feasible decisions. Let G : Z → L be a stochastic function
that maps decisions in Z to prospects in L such that:

G (z , ω) := [G (z)](ω) is concave for all ω ∈ Ω.

We seek to maximize the stochastic function G w.r.t the robust
choice function ψR(E). The preference robust optimization (PRO) is:

max
z∈Z

ψR(E)(G (z)) ≡ max
z∈Z

inf
φ∈R(E)

φ(G (z)).

1 Expected utility (Armbruster & Delage 2015, Hu & Mehrotra 2015,
Haskell et al, 2016, Hu & Stepanyan 2017, Hu et al, 2018);

2 Risk measure (Delage & Li 2017, Delage et al, 2018, Wang & Xu 2020,
Zhang et al, 2020, Guo & Xu 2021);

3 Target-based measure (Brown & Sim 2009, Brown et al, 2012);
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The “value” problem and “interpolation” problem

The “Value” and “Interpolation” Problem I

We start by studying the robust choice function, i.e., evaluating
ψR(E)(G (z)) for given z ∈ Z.

Define support set for local information Θ := {W0} ∪ {(Wk , Yk}Kk=1

with total number of J = 2K + 1 prospects;

Two-stage decomposition: the “value” problem and the
“interpolation” problem;

Wenjie Huang (CUHK-SZ) Preference Robust Optimization June 2rd 2021 17 / 56



The “value” problem and “interpolation” problem

The “Value” and “Interpolation” Problem II

The “value” problem is:

P := inf
φ∈R(E)

∑
θ∈Θ

φ(θ).

The “interpolation” problem: Given any set of values v = (vθ)θ∈Θ for
the choice function on the prospects in Θ,

P(X ; v) := inf
φ∈RQCo

{φ(X ) : [Lip], φ(θ) ≥ vθ, ∀θ ∈ Θ}.

Theorem 2

Problem P has a unique optimal solution φ∗ ∈ RQCo . Furthermore, for
any X ∈ L, ψR(E)(X ) = val(P(X ; v∗)), where v∗θ = φ∗(θ) = ψR(E)(θ) for
all θ ∈ Θ.
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The “value” problem and “interpolation” problem

The “Value” and “Interpolation” Problem III

Assumption

Ω = {ω1, ω2, . . . , ωT} (i.e., the underlying sample space is finite) and
P(ω) > 0 for all ω ∈ Ω (i.e., all scenarios have positive probability).

Identify a prospect X ∈ L with the vector of its realizations
~X = (X (ω))ω∈Ω. equate ~X ≡ X and ψR(E)(~X ) ≡ ψR(E)(X ) for all
X ∈ L. (Delage & Li 2017).
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The “value” problem and “interpolation” problem

The “Value” and “Interpolation” Problem IV

The disjunctive programming reformulation: under finite sample space
assumption, and define Ê to be the set of all edges, the value problem
P is equivalent to

P ≡ min
v , s

∑
θ∈Θ

vθ (1a)

s.t. vθ + max {〈sθ, θ′ − θ〉, 0} ≥ vθ′ , ∀ (θ, θ′) ∈ E , (1b)

sθ ≥ 0, ‖sθ‖1 ≤ L, ∀θ ∈ Θ, (1c)

vθ ≥ vθ′ , ∀ (θ, θ′) ∈ Ê , (1d)

vW0 = 0. (1e)
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The “value” problem and “interpolation” problem

The “Value” and “Interpolation” Problem V

The interpolation problem P(~X ; v) is then equivalent to the
disjunctive programming problem:

P(~X ; v) ≡ min
a, b

b (2a)

s.t. max
{
〈a, θ − ~X 〉, 0

}
+ b ≥ vθ, ∀θ ∈ Θ, (2b)

a ≥ 0, ‖a‖1 ≤ L. (2c)

Problem (1) and (2) can be turned into the mixed-integer linear
program (MILP) reformulation (e.g., Big-M or convex hull).

One has to introduce J2 binary variables to Problem (1) and J
binary variables to Problem (2) !
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A sorting algorithm

A Sorting Algorithm I

Define an order list D := {(θ, v∗θ )}θ∈Θ′ and Dt to denote the first t
elements of D, for t = 1, 2, ..., J. (D1 = {(W0, 0)} and DJ = D).

We want to predict the value of ψR(E)(θ), θ /∈ Dt by the following
LP:

P(θ; Dt) := min
vθ,sθ

vθ (3a)

s.t. vθ +
〈
sθ, θ

′ − θ
〉
≥ v∗θ′ , ∀θ′ ∈ Dt , (3b)

sθ ≥ 0, ‖sθ‖1 ≤ L, ∀θ ∈ Θ, (3c)

vθ ≥ v∗θ′ , ∀(θ, θ′) ∈ Ê , θ′ ∈ Dt . (3d)
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A sorting algorithm

A Sorting Algorithm II

Define the predictor of ψR(E)(θ), θ /∈ Dt as

π(θ; Dt) := min {v t , val(P(θ; Dt))} ,

where v t := min{v∗θ | θ ∈ Dt}.

𝜗! 𝜗" 𝜗#𝜃 𝜗! 𝜗" 𝜗#𝜃
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A sorting algorithm

A Sorting Algorithm III

Algorithm 1: Sorting algorithm for the value problem

Initialization: Θ, t = 1, and Dt = {(W0, 0)};
while t < J do

Choose θ∗ ∈ arg maxθ/∈Dt
π(θ; Dt), and set uθ∗ := π(θ∗; Dt);

Set Dt+1 := {Dt , (θ
∗, uθ∗)}, and set t := t + 1;

end
return D := DJ .

Theorem 3

Algorithm 1 finds a decomposition D of Θ and computes v∗ = (v∗θ )θ∈Θ,
after solving O(J2) linear programs.

The MILP reformulation of Problem P may require O(2J
2
) LPs !
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Law invariance

Law Invariance I

Figure: 2$ yellow ball and 1$ red ball (left);
2$ red ball and 1$ yellow ball (right)

[Law] (Law invariance) φ(X ) = φ(Y ) for all X , Y ∈ L such that
X =D Y .
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Law invariance

Law Invariance II

Assume that the probability measure P is uniform.

The permutations on Ω is σ(Ω) = {ωσ(1), ωσ(2), . . . , ωσ(T )}. The

permuted long vector is σ(~X ) = (X (ωσ(t)))Tt=1.

When [Law] is in effect, X � Y is equivalent to φ(σ(~X )) ≥ φ(σ′( ~Y ))
for all σ, σ′ ∈ Σ.

The interpolation problem is

min
vθ,sθ

vθ (4a)

s.t. vθ +
〈
sθ, σ(θ′)− θ

〉
≥ v∗θ′ , ∀θ′ ∈ DL,t , σ ∈ Σ, (4b)

sθ ≥ 0, ‖sθ‖1 ≤ L, ∀θ ∈ Θ, (4c)

vθ ≥ v∗θ′ , ∀(θ, θ′) ∈ Ê , θ′ ∈ DL,t . (4d)
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Law invariance

Law Invariance III

The reduce LP PL(θ; DL,t) is

min
s,vθ,{yθ,wθ}θ∈DL,t

vθ (5a)

s.t.
−→
1 >yθ′ +

−→
1 >wθ′ − 〈s, θ〉+ vθ − v∗θ′ ≥ 0,

∀θ′ ∈ DL,t , (5b)
n∑

i=1

θ′i s
>
i − yθ′

−→
1 > −−→1 w>θ′ ≥ 0,

∀θ′ ∈ DL,t , (5c)

s ≥ 0, ‖s‖1 ≤ L, (5d)

vθ ≥ v∗θ′ , ∀(θ, θ′) ∈ Ê , θ′ ∈ DL,t . (5e)

Based on Problem PL(θ; DL,t), we can also develop a sorting
algorithm for law invariance case.
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Law invariance

Law Invariance IV

An alternative representation: Can we define the binary relation and
choice functions directly on the space of cumulative distribution
functions ? Yes !

Let PX be the push-forward probability measure on (Rn, B) induced
by X ∈ L, defined by PX (B) := P(X−1(B)) for all B ∈ B. A lower
orthant at x = (x1, x2, . . . , xn) ∈ Rn is

B = {b ∈ Rn : b1 ≤ x1, b2 ≤ x2, . . . , bn ≤ xn} .

Write FX (x) for P(X−1(B)). Define the set of CDFs associated with
L to be

F (Rn) := {FX : X ∈ L}.
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Law invariance

Law Invariance V

Let F1, F2 ∈ F (Rn), then F1 is said to be preferred to F2 in the lower
orthant order, written F1 �lo F2, if F1 (x) ≤ F2 (x) for all x ∈ Rn.

A function φ : F (Rn)→ R̄ is called a choice function on CDFs if it
satisfies the following property:

[Mon] (Monotonicity) For all F1, F2 ∈ F (Rn), F1 �lo F2 implies
φ(F1) ≥ φ(F2).

The set X = {x1, x2, . . . , xd} ⊂ Rn is finite and lexicographically ordered,
then the CDFs F is step-like with breakpoints in X and

~F = (F (x1), F (x2), . . . , F (xd)) ∈ Rd .

1 Acceptability functional (Frittelli et al, 2014);

2 Yaari’s dual theory of choice (Yaari, 1987);
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Optimization algorithms

Optimization Algorithms

1 Binary Search: Developed based on acceptance set representation;

2 Level Search Method (LSM): Developed based on the
“interpolation” problem and a trick of getting ride of the disjunctive
term;

All of them rely on the decomposition into the “value” and
“interpolation” problem and sorting algorithm for accelerate
computation of “value” problem.
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Optimization algorithms

Optimization Algorithms: Binary Search I

Normalizing by ψR(E)( ~W0) = 0, the acceptance sets of ψR(E) is

denoted as: Av := {~X ∈ L : ψR(E)(~X ) ≥ v}, ∀v ≤ 0.

Main Idea: With the acceptance sets of ψR(E) in hand, we can solve
Problem (PRO) by doing binary search over the levels of the
acceptance sets. Given level v ≤ 0, we want to find some z ∈ Z such
that ~G (z) ∈ Av . If we can find such a z , then we can next search at
a higher level; otherwise, we next search at a lower level.
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Optimization algorithms

Optimization Algorithms: Binary Search II

Theorem 4

Choose level v ≤ 0 and t = κ(v) := {t = 1, 2, . . . , J + 1 | v t+1 < v ≤ v t}.
Then, there exists z ∈ Z such that ~G (z) ∈ Av if and only if Fv (Dt) has a
solution, where

Fv (Dt) :=

{
(z , p) | ~G (z) ≥

∑
θ∈Dt

θ̃ · pθ + v/L,
∑
θ∈Dt

pθ = 1, z ∈ Z, p ≥ 0

}
,

and θ̃ := θ − v∗θ /L.

Theorem 5

Choose level v ≤ 0 and t = κ(v), then maxz∈Z ψR(E)( ~G (z)) ≥ v if and
only if val(G (Dt)) ≥ v . where

G (Dt) := max
z,p,v
{v : Fv (Dt) is feasible} .
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Optimization algorithms

Optimization Algorithms: Binary Search III

Algorithm 2: Binary search for Problem (PRO)

Initialization: h1 = H, h2 = 0;
while h1 6= h2 + 1 do

Set h := d h1+h2

2 e, t := κ(v∗[h−1]), and compute vt = val(G (Dt)) with

optimal solution z∗;
if vt > v t+1 then set h1 := h ;
else set h2 := h ;

end

Set h := d h1+h2

2 e, t := κ(v∗[h−1]), and compute vt = val(G (Dt)) with optimal

solution z∗;
return z∗ and ψR(E)(G (z∗)) = min{vt , v t}.

Theorem 6

Algorithm 2 returns an optimal solution z∗ of Problem (PRO), after
solving O(logH) (H ≤ J) instances of Problem G (Dt).
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Optimization algorithms

Optimization Algorithms: Level Search I

Recall the interpolation problem:

P(~X ; v∗) ≡ min
a, b

b

s.t. max
{
〈a, θ − ~X 〉, 0

}
+ b ≥ v∗θ , ∀θ ∈ Θ,

a ≥ 0, ‖a‖1 ≤ L.

Let’s get ride of the disjunctive term !

max
{
〈a, θ − ~X 〉, 0

}
+ b =

{
〈a, θ − ~X 〉+ b 〈a, θ − ~X 〉 ≥ 0,

b 〈a, θ − ~X 〉 < 0.
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Optimization algorithms

Optimization Algorithms: Level Search II

Define J (b) := {j ∈ J : b ≤ v∗j } to be the set θj ∈ Θ for which
ψR(E)(θj) = v∗j ≥ b. For any fixed level b, define:

ψ(~X ; b) := min
a≤0, ‖a‖∞≤L

max
j∈J (b)

{
v∗j − 〈a, θj − ~X 〉

}
.

For any fixed level b consider the following optimization problem:

ϑ(b) := max
z∈Z

ψ
(
~G (z); b

)
.

Propose the univariate optimization problem for solving (PRO):

min
b≤0
{b : b ≥ ϑ(b)} . (6)

Problem (6) and Problem (PRO) are equivalent !
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Optimization algorithms

Optimization Algorithms: Level Search III

Algorithm 3: Level Search Method (LSM)

Step 1: Select initial range [bmin, 0], bl = bmin and bu = 0, set
tolerance ε > 0 and set t = 0.

Step 2: Let bt = (bl + bu)/2. Check if ϑ(bt) ≥ bt , update bl ← bt ;
otherwise, update bu ← bt .

Step 3: If bu − bl ≤ ε, stop; otherwise, set t := t + 1; go to Step 2.

Theorem 7

Choose ε > 0, let {bt}t≥0 be produced by Algorithm 3, and let
z t ∈ arg maxz∈Z ϑ(bt) for all t ≥ 0. Then, for all t ≥ log2(|bmin|/ε), z t is
an ε−optimal solution of (PRO).
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Applications

Applications

Guide a DM for decision-making. No one knows his choice function
explicitly, including himself!

Data-driven: Pairwise prospects are exposed to the DM, and then
ECDS can be constructed.

Decision is made in clairvoyant’s perspective, such that we
1 show the performance of the learned robust choice function.
2 show the performance of the robust optimal solution in terms of the

perceived value.
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Applications

Applications

The true preference of DM is described by “perceived” choice function:

Perceived choice function (PCF) I:

φCE (X ) = u−1(E[u(〈w , X 〉)]), ∀X ∈ L,

where w ∈ Rn
+ is a vector of weights. Take the piece-wise utility

function

u(x) =

{
1− exp(−γx) if x ≥ 0,

γx if x < 0,

with γ = 0.05.

Perceived choice function (PCF) II:

φCE (FX ) := u−1

(∫
u(x)dFX (x)

)
.
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Applications

Applications: Capital Allocation I

(Esfahani & Kuhn 2018)

Consider a financial institution consisting of N sub-units, represented
by the random vector X = (X1(ω),X2(ω), . . . , XN(ω))ω∈Ω.

Define Z = {Z ∈ L :
∑N

n=1 Zn(ω) ≤ B, Z (ω) ≥ 0, ∀ω ∈ Ω}, to be
the set of admissible scenario-dependent financial recourse decisions
subject to a budget constraint B = 0.5.

A systematic risk factor ϕ ∼ Normal(0, 2%) common to all sub-units.
An idiosyncratic risk factor ξn ∼ Normal(n × 3%, n × 2.5%) specific
to sub-unit n = 1, 2, . . . ,N. The return is set to be Xn = 10(ϕ+ ξn).

Randomly generate samples of financial returns for ECDS
construction. Pairwise preference is determined by using the PCF I.

Our goal is to solve: maxZ∈Z ψR(E)(X + Z ).

Test sorting algorithm for value problem and binary search for PRO
problem.
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Applications

Applications: Capital Allocation II

ECDS Pairs
Method Group 10 20 30 40 50

Sorting

1 15.6s 97s 364s 841s 1631s
2 13.2s 107s 350s 826s 1539s
3 12.5s 99s 326s 808s 1483s
4 12.6s 107s 342s 823s 1651s
5 13s 97s 337s 781s 1545s

Average 13.38s 101.4s 343.8s 815.8s 1569.8s

MILP

1 7.16s 56.13s 185.78s 3728.40s 22109.66s
2 4.64s 59.92s 254.80s 5312.21s 31019.20s
3 6.47s 90.27s 450.12s 6560.72s 38534.88s
4 5.30s 71.62s 387.61s 5666.33s 36112.33s
5 5.18s 38.9s 278.50s 5449.45s 32334.57s

Average 5.75s 69.48s 296.90 5343.42s 32022.13s

Table: Scalability of the sorting algorithm
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Applications: Capital Allocation III

ECDS Pairs
Settings Group 1 2 5 10 20 50 80

20 Scen, 20 Attr

1 52.9ms 437ms 7.19s 52.4s 506s 6715s 28284s
2 47.5ms 420ms 7.12s 52.8s 507s 6822s 30111s
3 52ms 445ms 7.28s 52.5s 508s 6720s 27765s
4 50.2ms 440ms 7.2s 53s 511s 6669s 28202s
5 51.8ms 444ms 7.22s 52.4s 512s 6733s 28116s

Average 50.88ms 437.2ms 7.202s 52.62s 508.8s 6731.8s 28495.6s
Number of Scenarios

Settings Group 5 10 15 20 50 100 200

10 Pairs, 20 Attr

1 6.64s 17s 33.4s 54.3s 274s 1141s 4532s
2 6.75s 17.1s 33.2s 55.1s 274s 1222s 4605s
3 6.58s 16.8s 33.3s 52.8s 280s 1088s 4520s
4 6.32s 17.9s 33.6s 54.2s 269s 1050s 4330s
5 6.67s 16.9s 33.8s 55s 271s 1150s 4567s

Average 6.592ms 17.14s 33.46s 54.28s 273.6s 1130.2s 4510.8s
Number of Attributes

Settings Group 5 10 15 20 50 100 200

10 Pairs, 20 Scen

1 21s 31s 40.9s 51.5s 124s 246s 480s
2 20s 31s 40.6s 51.2s 122s 244s 484s
3 19s 31s 40.7s 51.6s 123s 248s 482s
4 20s 30s 41.2s 52.2s 126s 250s 480s
5 21s 32s 41s 51.8s 124s 246s 481s

Average 20.2s 31s 40.88s 51.66s 123.8s 246.8s 481.4s

Table: Scalability of the sorting algorithm (law-invariant case)
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Applications: Capital Allocation IV

ECDS Pairs
Settings Group 1 2 5 10 20 50 80

20 Scen, 20 Attr

1 576ms 867ms 1.21s 1.46s 1.84s 2.38s 4.56s
2 532ms 902ms 1.17s 1.51s 1.82s 2.32s 4.62s
3 555ms 855ms 1.15s 1.45s 1.81s 2.4s 4.88s
4 546ms 832ms 1.22s 1.47s 1.85s 2.33s 4.67s
5 612ms 841ms 1.23s 1.46s 1.9s 2.35s 4.51s

Average 564.2ms 859.4ms 1.196s 1.47s 1.844s 2.356s 4.648s
Number of Scenarios

Settings Group 5 10 15 20 50 100 200

10 Pairs, 20 Attr

1 153ms 414ms 1.02s 1.46s 8.8s 40s 181s
2 115ms 414ms 924ms 1.36s 9.79s 35s 177s
3 130ms 376ms 919ms 1.32s 10s 38s 190s
4 119ms 427ms 917ms 1.33s 7.88s 42s 176s
5 131ms 425ms 922ms 1.42s 9.47s 40s 183s

Average 129.6ms 417.2ms 940.4ms 1.378s 9.188s 39s 181.4s
Number of Attributes

Settings Group 5 10 15 20 50 100 200

10 Pairs, 20 Scen

1 402ms 745ms 1.42s 1.6s 4.56 9.42s 18.5s
2 398ms 740ms 1.38s 1.55s 4.6s 9.44s 18.7s
3 396ms 740ms 1.37s 1.56s 4.61s 9.45s 19s
4 408ms 750ms 1.45s 1.61s 4.6s 9.39s 18.8s
5 405ms 744ms 1.44s 1.61s 4.56s 9.4s 18.9s

Average 401.8ms 743.8ms 1.412s 1.586s 4.586s 9.42s 18.78s

Table: Scalability of the binary search algorithm
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Applications: Capital Allocation V
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Figure: Robust choice function (left) and Performance of allocation (right) with
ECDS size
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Applications: Portfolio Optimization I

The goal is to find the optimal mixture strategy of the m investment
plans. The data consists of the daily return rates of exchange traded
funds (ETFs) and the US central bank (FED) from January 2006 to
December 2016, attained from Yahoo! Finance.

Randomly choose a batch of A assets and then equally allocate
wealth (normalized to one). The daily return rate of the investment
plan X is the average of daily return rate of A assets.

Let ymin and ymax denote lower and upper bounds on the daily returns
of all assets. Approximate the interval [ymin, ymax] with a uniform grid
of J breakpoints satisfying ymin = y1 ≤ y2 ≤ · · · ≤ yJ = ymax. Let N
be the total number of days. The empirical CDF is then:

F̂ (yj) =
1

N

N∑
n=1

I{xn ≤ yj}, j = 1, . . . , J.
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Applications: Portfolio Optimization II

Some findings from the experiment:

A pure strategy may outperform any mixture of investment plans.

A randomized strategy will not outperform a deterministic one for
choice functions satisfying the properties of translation invariance and
‘mixture quasi-concavity’ (Delage et al, 2019). We relax the condition
because we do not enforce translation invariance.
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Applications: Portfolio Optimization III

Figure: Scalability of LFM and LSM with number of investment plans m (left)
and ECDS size (right)
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Applications: Portfolio Optimization IV
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Figure: Robust choice function (left) and Performance of mixture strategy (right)
with ECDS size
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Conclusion

We study preference robust optimization (PRO) problems where
DM’s preference is uncertain.

Our choice function covers a number of well-known preference
models.

A data-driven scheme is employed to handle the uncertainty about
the preference.

Scalable algorithms are developed to compute the robust choice
function and PRO problem.
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Thank you !

Questions & Comments

Wenjie Huang (CUHK-SZ) Preference Robust Optimization June 2rd 2021 49 / 56



Applications

References

Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: critique des
postulats et axiomes de l’école américaine. Econometrica: Journal of the Econometric
Society, 503-546.

Armbruster, B., Delage, E. (2015). Decision making under uncertainty when preference
information is incomplete. Management science, 61(1), 111-128.

Brown, D. B., Sim, M. (2009). Satisficing measures for analysis of risky positions.
Management Science, 55(1), 71-84.

Brown, D. B., Giorgi, E. D., Sim, M. (2012). Aspirational preferences and their
representation by risk measures. Management Science, 58(11), 2095-2113.

Delage, E., Guo, S., Xu, H. (2017). Shortfall risk models when information of loss
function is incomplete. GERAD HEC Montréal.
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Appendix: Example I

Example 8 (Robust utility maximization )

(Armbruster & Delage 2015, Hu & Mehrotra 2015, Haskell et al, 2016, Hu &
Stepanyan 2017, Hu et al, 2018)

max
z∈Z

inf
u∈U

E[u(G (z))].

max
z∈Z

inf
u∈U

u−1(E[u(G (z))]).

max
z∈Z
{f (z) : s.t. E[u(G (z))] ≥ E[u(Y )], ∀u ∈ U} .

Example 9 (Robust risk exposure minimization)

(Delage & Li 2017, Delage et al, 2018, Wang & Xu 2020, Zhang et al, 2020, Guo
& Xu 2021)

min
z∈Z

sup
ρ∈R

ρ(−G (z)),

where ρ is monetary risk measure (convex, coherent, law invariant), e.g., spectral
risk measure, utility-based shortfall...
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Appendix: Example II

Example 10 (Target-based measure)

(Brown & Sim 2009, Brown et al, 2012): Given a family of risk measures
ρk and target τ(k):

µ(X ) = sup{k ∈ R : ρk(X − τ(k)) ≤ 0}.

Conversely,
τ(k) = inf{a ∈ R : µ(a) ≥ k},

ρk(X ) = inf{a ∈ R : µ(X + a) ≥ k} − τ(k).

1 Quasi-concave;

2 Connect to prospect theory;

3 Resolve many paradoxes: Allais, Ellsberg and Gain-loss separability;
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Appendix: Example III

Example 11 (Acceptability functional for n ≥ 1)

(Frittelli et al, 2014) Let {Fm}m∈R ⊂ F (Rn) be a family of CDFs, and
suppose Fm(x) is decreasing in m for all fixed x ∈ Rn. The corresponding
acceptance sets are Am := {FX ∈ F (Rn) : FX (x) ≤ Fm(x), ∀x ∈ Rn}, the
acceptability functional is

φ(FX ) := sup{m ∈ R : FX (x) ≤ Fm(x), ∀x ∈ Rn}.

Function φ is monotone increasing with respect to �lo and quasi-concave.
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Appendix: Example IV

Example 12 (Yaari’s dual theory of choice)

(Yaari, 1987) Consider functional φ : F (R)→ R defined as follows:

φ(FX ) =

∫ ∞
0

g(1− FX (x))dx +

∫ 0

−∞
[g(1− FX (x))− 1]dx ,

where g : [0, 1]→ [0, 1] is a strictly increasing function with g(0) = 0 and
g(1) = 1. Then φ is monotonically increasing w.r.t. �lo and hence
quasi-concave (also quasi-convex).

Counterexample:
Take g(u) = min{γ u, 1} for γ > 1. Choose CDFs F1(x) = Ix≥1 and
F2(x) = Ix≥2. Let λ ∈ [0, 1] and Fλ = λF1 + (1− λ)F2 be the
compound distribution. Then Fλ �lo F2 but φ(F2) = φ(Fλ) = 2 for
all λ ∈ [1/γ, 1]. The underlying reason is that the function g(u) = 1
is constant in the region [1/γ, 1].
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