Some Approaches for Solving the Discretely-Constrained Mixed Complementarity Problem (DC-MCP)

Steven A. Gabriel ${ }^{1,2}$

${ }^{1}$ Full Professor, University of Maryland, College Park, Maryland USA, http://stevenagabriel.umd.edu
${ }^{2}$ International Adjunct Professor in Energy Transition, Norwegian University of Science and Technology,
Trondheim, Norway, https://www.ntnu.edu/energytransition/about-us
GERAD, Montréal, Canada

26 October 2022

Outline

(1) Overview

- Motivation, Examples
- Complementarity Problems Short Review, Relation to Game Theory \& Optimization Problems
(2) Mathematical Formulations: Discretely Constrained MCP (DC-MCP)
- Problem Definition
- Median Function Formulation
- Some Continuous-Variable Formulations
(Selected Theoretical and Numerical Results
- Conclusions/Next Steps
(References

Focus on Two Papers

Concentration on two of my co-authored works in this presentation.

- S.A. Gabriel, 2017. "Solving Discretely Constrained Mixed Complementarity Problems Using a Median Function," Optimization and Engineering, 18(3), 631-658. [4]
- Re-express the DC-MCP as a particular (usually binary-constrained) mixed-integer nonlinear program (MINLP), theoretical and numerical results
- S.A. Gabriel, M. Leal, M. Schmidt, 2021. "Solving Binary-Constrained Mixed Complementarity Problems Using Continuous Reformulations," Computers and Operations Research, Vol. 131, Issue C. [7]
- Continuous-variable reformulation of the binary-constrained MCP, theoretical and numerical results
Other related co-authored works in DC-MCP shown in the References.

Some Motivations for Studying the Class of Discretely Constrained Equilibrium Problems

- These problems can apply integer/binary restrictions to equilibriums problem for more realism, richer applications (e.g., game theory plus go-no go decisions, if-then thresholds)
- Allowing for autonomy in infrastructure networks/supply chains (e.g., energy) that need some additional logic constraints and/or distributional or other equity enforcement (e.g., discrete design variables), or multi-sector coupling (combined with logic variables)
- Allowing for mixed equilibrium systems that involve volumes as well as discrete units (e.g., road traffic volume but accounting for a discrete number of emergency vehicles)
- Equilibrium problems combined with combinatorial optimization
- Relaxation of multi-agent, non-cooperative markets with discrete restrictions (e.g., unit commitment in power), for example [10]

Outline

(1) Overview

- Motivation, Examples
- Complementarity Problems Short Review, Relation to Game Theory \& Optimization Problems
(2) Mathematical Formulations: DC-MCP
- Problem Definition
- Median Function Formulation
- Example of Continuous-Variable Formulation
(3) Selected Theoretical and Numerical Results

Conclusions/Next Steps

The Big Picture

The Bigger Picture Including the Mixed Complementarity Problem (MCP)

The Bigger Picture with Discrete/Integer Restrictions

Spatial Price Equilibrium Problem (example of an MCP)

- Consider the classical Transportation Problem with $x_{i j}$ the (primal) flow variables, ψ_{i}, θ_{j} the dual variables (Lagrange multipliers) at respectively, supply node i and demand node j
- Not so realistic since ψ_{i} and θ_{j} should be elastic not fixed
- Want to have the dual variables a function of the primal variables $\left(x_{i j}\right)$ but this can't be done with a linear program ('Catch 22 ') situation)
- KKT optimality conditions will include: $\psi_{i}+c_{i j} \geq \theta_{j}, \forall i, j$

Spatial Price Equilibrium Problem (example of an MCP)

- $x_{i j}:=$ flow from supply i to demand $j, S_{i}:=\sum_{j} x_{i j}, D_{j}:=\sum_{i} x_{i j}$
- $\psi_{i}\left(S_{i}\right):=$ inverse supply function
- $\theta_{j}\left(D_{j}\right):=$ inverse demand function
- $c_{i j}:=$ marginal transport cost

Overall MCP in terms of (nonnegative) flows $x_{i j}$ is thus:

$$
\begin{equation*}
0 \leq \psi_{i}\left(\sum_{j} x_{i j}\right)+c_{i j}-\theta_{j}\left(\sum_{i} x_{i j}\right) \perp x_{i j} \geq 0 \tag{1}
\end{equation*}
$$

- $x_{i j}>0 \Rightarrow \psi_{i}\left(\sum_{j} x_{i j}\right)+c_{i j}=\theta_{j}\left(\sum_{i} x_{i j}\right)$ or marginal cost $=$ marginal benefit
$\psi_{i}\left(\sum_{j} x_{i j}\right)+c_{i j}-\theta_{j}\left(\sum_{i} x_{i j}\right)>0 \Rightarrow x_{i j}=0$ or no flow when marginal "cost is higher than marginal benefit

Nawes Uumesise

SPE Example with 4 Supply Nodes, 5 Demand Nodes [4]

- Consider a solution of the SPE with numbers on arcs referring to an equilibrium flow (color-coded by supply node).
- Problem: Supply node 4 is inactive! This might be a warehouse or depot so costly to keep running.
- Want to keep the equilibrium notion but reroute flows somehow? How to do this?

SPE Example with 4 Supply Nodes, 5 Demand Nodes, Equity-Enforcing Constraints [4]

- If $\sum_{j} x_{i j}<\delta_{i}$ then $\sum_{j} x_{i j} \geq 0.25 \sum_{i} \sum_{j} x_{i j}$, re-routing equilibrium flows.
- With δ_{i} a minimum flow threshold (contractual?) and 0.25 the minimum guranteed flow \% (of total flows) for supply node i.
- See the new solution below with $\delta_{i}=3, \forall i$. Want to generalize this MCP example, this leads to the DC-MCP.

Outline

(1) Overview

- Motivation, Examples
- Complementarity Problems Short Review, Relation to Game Theory \& Optimization Problems
(2) Mathematical Formulations: DC-MCP
- Problem Definition
- Median Function Formulation
- Example of Continuous-Variable Formulation
(3) Selected Theoretical and Numerical Results

Conclusions/Next Steps

Nocregzan Unimersity of
Sclence and Techrology

Complementarity Problems, Mixed Complementarity Problems (MCP) [5]

(Mixed) Nonlinear Complementarity Problem MNCP
Having a function $F: R^{n} \rightarrow R^{n}$, find an $x \in R^{n_{1}}, y \in R^{n_{2}}$ such that
$F_{i}(x, y) \geq 0, x_{i} \geq 0, F_{i}(x, y) * x_{i}=0$ for $i=1, \ldots, n_{1}$
$F_{i}(x, y)=0, y_{i}$ free, for $i=n_{1}+1, \ldots, n$
Example

$$
\begin{aligned}
& F\left(x_{1}, x_{2}, y_{1}\right)=\left(\begin{array}{l}
F_{1}\left(x_{1}, x_{2}, y_{1}\right) \\
F_{2}\left(x_{1}, x_{2}, y_{1}\right) \\
F_{3}\left(x_{1}, x_{2}, y_{1}\right)
\end{array}\right)=\left(\begin{array}{c}
x_{1}+x_{2} \\
x_{1}-y_{1} \\
x_{1}+x_{2}+y_{1}-2
\end{array}\right) \text { so we want to find } x_{1}, x_{2}, y_{1} \text { s.t. } \\
& x_{1}+x_{2} \geq 0 \quad x_{1} \geq 0 \quad\left(x_{1}+x_{2}\right) * x_{1}=0 \\
& x_{1}-y_{1} \geq 0 \quad x_{2} \geq 0 \quad\left(x_{1}-y_{1}\right) * x_{2}=0 \\
& x_{1}+x_{2}+y_{1}-2=0 \quad y_{1} \text { free }
\end{aligned}
$$

One solution: $\left(x_{1}, x_{2}, y_{1}\right)=(0,2,0)$, why? Any others?
If all functions (linear) affine, we get the linear complementarity problem (LCP)

Sources for Complementarity Problems: Linear Programming

Consider a (primal) linear program in the variables $x \in R^{n}$:

$$
\begin{align*}
\min _{x} & c^{T} x \tag{2a}\\
\text { s.t. } & A x \geq b \tag{2b}\\
& x \geq 0 \tag{2c}
\end{align*}
$$

and corresponding dual linear program in the variables $y \in R^{m}$

$$
\begin{align*}
\max _{y} & b^{T} y \tag{3a}\\
\text { s.t. } & A^{T} y \leq c \tag{3b}\\
& y \geq 0 \tag{3c}
\end{align*}
$$

and complementary slackness for both primal and dual problems:

$$
\begin{equation*}
(A x-b)^{T} y=0,\left(c-A^{T} y\right)^{T} x=0 \tag{4}
\end{equation*}
$$

Sources for Complementarity Problems: LP Primal and Dual Feasibility, Complementary Slackness

We can rewrite things a bit to get the following equivalent form. Find $x \in R^{n}, y \in R^{m}$ such that:

$$
\begin{array}{r}
0 \leq c-A^{T} y \perp x \geq 0 \\
0 \leq A x-b \perp y \geq 0 \tag{5b}
\end{array}
$$

This is exactly the (monotone) linear complementarity problem (LCP) in nonnegative variables (x, y) and is exactly the KKT optimality conditions as applied to the primal LP. Here

$$
\begin{align*}
& F(x, y)=\binom{F_{x}(x, y)}{F_{y}(x, y)}=\binom{c-A^{T} y}{A x-b} \text { or } \tag{6}\\
& F(x, y)=\binom{c}{-b}+\left(\begin{array}{cc}
0 & -A^{T} \\
A & 0
\end{array}\right)\binom{x}{y} \tag{7}
\end{align*}
$$

Sources for Complementarity Problems: KKT Optimality Conditions for Nonlinear Programs

Consider a nonlinear program of the following form where $f: R^{n} \rightarrow R, g_{i}: R^{n} \rightarrow R, i=1, \ldots, m, h_{j}: R^{n} \rightarrow R, j=1, \ldots, p:$

$$
\begin{array}{rlrl}
\min _{x} & f(x) & \\
\text { s.t. } & g_{i}(x) \leq 0 & i=1, \ldots, m & \left(\lambda_{i}\right) \\
& h_{j}(x)=0 & j=1, \ldots, p & \left(\gamma_{j}\right) \tag{8c}
\end{array}
$$

The KKT conditions are to find primal variables $x \in R^{n}$ and Lagrange multipliers $\lambda \in R_{+}^{m}, \gamma \in R^{p}$ such that:

$$
\begin{align*}
& 0=\nabla f(x)+\sum_{i} \nabla g_{i}(x) \lambda_{i}+\sum_{j} \nabla h_{j}(x) \gamma_{j}, x \text { free } \tag{9a}\\
& 0 \leq-g(x) \perp \lambda \geq 0 \tag{9b}\\
& 0=h(x), \quad \gamma \text { free }
\end{align*}
$$

Selected Sources for Complementarity Problems: KKT Optimality Conditions for Nonlinear Programs

Putting all these conditions together, we get a mixed complementarity problem of the following form. Find vectors $\lambda \in R_{+}^{m}, x \in R^{n}, \gamma \in R^{p}$ such that:

$$
F(x, \lambda, \gamma)=\left(\begin{array}{c}
\nabla f(x)+\sum_{i} \nabla g_{i}(x) \lambda_{i}+\sum_{j} \nabla h_{j}(x) \gamma_{j} \\
-g(x) \\
h(x)
\end{array}\right)
$$

with

$$
\begin{array}{lr}
0=F_{x}(x, \lambda, \gamma) & x \text { free } \\
0 \leq F_{\lambda}(x, \lambda, \gamma) & \perp \lambda \geq 0 \\
0=F_{\gamma}(x, \lambda, \gamma) & \gamma \text { free } \tag{10c}
\end{array}
$$

\Rightarrow Connection to game theory problems

Outline

(1) Overview

- Motivation, Examples
- Complementarity Problems Short Review, Relation to Game Theory \& Optimization Problems
(2) Mathematical Formulations: DC-MCP
- Problem Definition
- Median Function Formulation
- Example of Continuous-Variable Formulation
(3) Selected Theoretical and Numerical Results

44 Conclusions/Next Steps

References

Norwegian Uniwersity of
Sclence ard Techrology

The Bounded MCP (generalizes MCP $[4,5]$)

For the following two definitions, $F: R^{n} \rightarrow R^{n}$ is a given function and the vectors $l, u \in R^{n} \cup\{-\infty,+\infty\}$ with $l \leq u$.

- Definition: The bounded mixed complementarity problem is to find a vector $x \in R^{n}$ so that

$$
\begin{array}{ll}
F_{i}(x) \geq 0 & x_{i}=l_{i} \\
F_{i}(x)=0 & l_{i}<x_{i}<u_{i} \tag{11}\\
F_{i}(x) \leq 0 & x_{i}=u_{i}
\end{array}
$$

This generalizes the earlier MCP that had $\left(l_{i}, u_{i}\right)=(0, \infty)$ (nonnegative variables) or $\left(l_{i}, u_{i}\right)=(-\infty, \infty)$ (free variables).

- Definition: Let $S \subseteq R^{n}$ be a given subset of the variables x in a bounded MCP as given above. The DC-MCP is to find a solution x to (11) that also satisfies $x_{i} \in Z, \forall i \in S$.

DC-MCP, Encoding Integer Values

- In most cases, the set S refers to integer-valued variables but could be more generally discrete levels.
- If a variable $x_{i}, i \in S$ is to be binary, then $F_{i}(x)=x_{i}\left(1-x_{i}\right)=0$, with $l_{i}=-\infty, u_{i}=+\infty$.
- More generally for integer values $\left\{-m_{1},-m_{1}+1, \ldots, 0,1, \ldots, m_{2}\right\}$, we have $F_{i}(x)=\left(-m_{1}-x_{i}\right) \times \ldots\left(x_{i}\right) \times \ldots\left(m_{2}-x_{i}\right)=0$, with $l_{i}=-\infty, u_{i}=+\infty$.
- Can add additional constraints on the continuous and integer-valued variables in a designated set X; see for example, the next slides on the median function.
- Can also just add auxiliary (e.g., binary) variables for example to the MINLP formulation shown in the next slides.

Outline

(1) Overview

- Motivation, Examples
- Complementarity Problems Short Review, Relation to Game Theory \& Optimization Problems
(2) Mathematical Formulations: DC-MCP
- Problem Definition
- Median Function Formulation
- Example of Continuous-Variable Formulation
(3) Selected Theoretical and Numerical Results

Conclusions/Next Steps

Norwegan Uniwersity of
Sclence ard Techrology

H Function

As described in [9] and [3], the bounded $\mathrm{MCP}(F)$ can be equivalently recast as finding the zero of the function $H: R^{n} \rightarrow R^{n}$ defined by

$$
\begin{equation*}
H_{i}(x)=x_{i}-\operatorname{mid}\left(l_{i}, u_{i}, x_{i}-F_{i}(x)\right), \forall i \tag{12}
\end{equation*}
$$

where $\operatorname{mid}(a, b, c)$ represents the median of the three scalars a, b, c.
Consider an example where $H: R^{2} \rightarrow R^{2}$ with

$$
\begin{array}{ll}
F_{1}(x, y)=x+y, & \left(l_{1}, u_{1}\right)=(0,+\infty) \\
F_{2}(x, y)=y, & \left(l_{2}, u_{2}\right)=(-\infty,+\infty) \tag{13b}
\end{array}
$$

So that,

$$
\binom{H_{1}(x, y)}{H_{2}(x, y)}=\binom{x-\operatorname{mid}(0,+\infty, x-(x+y))}{y-\operatorname{mid}(-\infty,+\infty, y-(y))}=\binom{ \begin{cases}x+y & y \leq 0 \\ x & y>0\end{cases} }{y}
$$

H is in General Non-smooth, Example for $F: R^{2} \rightarrow R^{2}$

Thus,

$$
\begin{align*}
\|H(x, y)\|_{1} & = \begin{cases}|x+y|+|y| & y \leq 0 \\
|x|+|y| & y>0\end{cases} \tag{14a}\\
& = \begin{cases}|x+y|-y & y \leq 0 \\
|x|+y & y>0\end{cases} \tag{14b}\\
& = \begin{cases}|y|-y=-2 y & y \leq 0, \text { for } x=0 \\
y & y>0, \text { for } x=0\end{cases} \tag{14c}
\end{align*}
$$

which for $x=0$ fixed, is continuous in y but kinked, hence non-differentiable in the sense of Fréchet at the point $y=0$ as shown.

Figure 1: Example of the mid function being non-smooth.

DC-MCP Definition

Definition: A vector pair (x, y) is a relaxed DC-MCP solution if it solves (15).

$$
\begin{array}{ll}
& \min _{x \in X}\|H(x, y)\| \\
\text { s.t. } & x_{i} \in R_{+}, i \in I_{x} \backslash D_{x} \\
& x_{i} \in Z_{+}, i \in D_{x} \\
& y_{j} \in R, j \in I_{y} \backslash D_{y} \\
& y_{j} \in Z, j \in D_{y} \tag{15e}
\end{array}
$$

- Where H is given in (12), $\|\cdot\|$ is any vector norm, I_{x}, I_{y} are the index sets, respectively for x, y and D_{x}, D_{y} are respective subsets.
- If for a solution to this optimization problem: $\left(x^{*}, y^{*}\right),\left\|H\left(x^{*}, y^{*}\right)\right\|=0$, then $\left(x^{*}, y^{*}\right)$ is also a DC-MCP solution.
Can add any integer if-then type constraints (or other constraints) like for the equity-enforcing SPE example via the set X.

MINLP Problem for the Bounded MCP

$$
\begin{gather*}
\min _{x, y, z^{+}, z^{-}, w^{+}, w^{-}, b,,_{b}} f=\sum_{i \in I_{x}}\left(z_{i}^{+}+z_{i}^{-}\right)+\sum_{j \in I_{y}}^{n}\left(w_{j}^{+}+w_{j}^{-}\right) \tag{16a}\\
s . t .-M b_{i} \leq x_{i}-F_{i}(x, y)-l_{i} \leq M\left(1-b_{i}\right), \forall i \in I_{x} \tag{16b}\\
-M \widetilde{b}_{i} \leq x_{i}-F_{i}(x, y)-u_{i} \leq M\left(1-\widetilde{b}_{i}\right), \forall i \in I_{x} \tag{16c}\\
-M\left(2-b_{i}-\widetilde{b}_{i}\right) \leq z_{i}^{+}-z_{i}^{-}-x_{i}+l_{i} \leq M\left(2-b_{i}-\widetilde{b}_{i}\right) \tag{16d}\\
-M\left(1+b_{i}-\widetilde{b}_{i}\right) \leq z_{i}^{+}-z_{i}^{-}-F_{i}(x, y) \leq M\left(1+b_{i}-\widetilde{b}_{i}\right) \tag{16e}\\
-M\left(b_{i}+\widetilde{b}_{i}\right) \leq z_{i}^{+}-z_{i}^{-}-x_{i}+u_{i} \leq M\left(b_{i}+\widetilde{b}_{i}\right) \tag{16f}\\
w_{j}^{+}-w_{j}^{-}=F_{j}(x, y), \forall j \in I_{y} \tag{16g}\\
x_{i} \in R_{+}, i \in I_{x} \backslash D_{x}, x_{i} \in Z_{+}, i \in D_{x}, b_{i}, \widetilde{b}_{i} \in\{0,1\}, \forall i \in I_{x} \tag{16h}\\
y_{j} \in R, j \in I_{y} \backslash D_{y}, y_{j} \in Z, j \in D_{y} \tag{16i}\\
z_{i}^{+}, z_{i}^{-} \geq 0, \forall i \in I_{x}, w_{j}^{+}, w_{j}^{-} \geq 0, \forall j \in I_{y}
\end{gather*}
$$

Outline

(1) Overview

- Motivation, Examples
- Complementarity Problems Short Review, Relation to Game Theory \& Optimization Problems
(2) Mathematical Formulations: DC-MCP
- Problem Definition
- Median Function Formulation
- Example of Continuous-Variable Formulation
(3) Selected Theoretical and Numerical Results

Canclusions/Next Steps

References

Norwegian Uniwersity o
Sclence and Techrolagy

Example of Continuous-Variable Formulation (see [7] for other examples)

Here is an example of a continuous reformulation of the DC-MCP noticing that we can reformulate it as the following system of inequalities (x now is the set of nonnegative and free variables combined):

$$
\begin{array}{rl}
\left(x_{i}-l_{i}\right) F_{i}(x) \leq 0 & i \in\{1, \ldots, n\} \\
\left(u_{i}-x_{i}\right) F_{i}(x) \geq 0, & i \in\{1, \ldots, n\} \\
x_{i} \in\left[l_{i}, u_{i}\right], & i \in\{1, \ldots, n\} \tag{17c}
\end{array}
$$

assuming $l_{i}<u_{i}$ for each i. Now the binary-constrained MCP (BC-MCP) which we consider for the next few slides, in addition has:

$$
\begin{equation*}
x_{i} \in\{0,1\}, \quad i \in S \subseteq\{1, \ldots, n\} \tag{18}
\end{equation*}
$$

Example of Continuous-Variable Formulation: Complementarity-Constrained Formulation (CCF)

Note that $x_{i} \in\{0,1\}$ is equivalent to

$$
x_{i} \in[0,1] \subseteq R, \quad x_{i}\left(1-x_{i}\right)=0 .
$$

Thus, we can replace the BC-MCP equivalently by

$$
\begin{array}{rl}
\left(x_{i}-l_{i}\right) F_{i}(x) \leq 0 & i \in\{1, \ldots, n\} \\
\left(u_{i}-x_{i}\right) F_{i}(x) \geq 0, & i \in\{1, \ldots, n\} \\
x_{i} \in\left[l_{i}, u_{i}\right] & i \in\{1, \ldots n\} \\
0 \leq\left(1-x_{i}\right) \perp x_{i} \geq 0 & i \in S \tag{19d}
\end{array}
$$

The MPEC-like condition (19d) is again a complementarity problem.

Relaxed Complementarity-Constrained Problem (RCCF- ϵ)

- For computational reasons, better to not solve the above directly as an NLP.
- For example, can try the regularization scheme of Scholtes, which relaxes the MPEC constraint (19d) to get the following formulation:

$$
\begin{align*}
\left(x_{i}-l_{i}\right) F_{i}(x) \leq 0, & i \in\{1, \ldots, n\} \tag{20a}\\
\left(u_{i}-x_{i}\right) F_{i}(x) \geq 0, & i \in\{1, \ldots, n\} \tag{20b}\\
x_{i} \in\left[l_{i}, u_{i}\right], & i \in\{1, \ldots, n\} \tag{20c}\\
x_{i}\left(1-x_{i}\right) \leq \epsilon, & i \in S \tag{20d}\\
x_{i} \in[0,1], & i \in S \tag{20e}
\end{align*}
$$

where $\epsilon>0$ is a given regularization parameter that is iteratively decreased. See [7] for details on theoretical and numerical results and other continuous-variable formations.

Selected Theoretical Results: Median Function Formulation

The following result shows the correspondence between the above problem (16) and solving the DC-MCP expressed as (15). For each $i \in I_{x}$, assume that $l_{i}<u_{i}$.

Theorem

(1) Consider any feasible solution $\left(x, y, z^{+}, z^{-}, w^{+}, w^{-}, b, \widetilde{b}\right)$ to (16). Then, for $z_{i} \triangleq z_{i}^{+}-z_{i}^{-}, w_{j} \triangleq w_{j}^{+}-w_{j}^{-}, z_{i}=H_{i}(x, y), \forall i \in I_{x}, w_{j}=H_{j}(x, y), \forall j \in I_{y}$
(2) Consider any optimal solution $\left(x^{*}, y^{*}, z^{+^{*}}, z^{-^{*}}, w^{+^{*}}, w^{-^{*}}, b^{*}, \widetilde{b^{*}}\right)$ to (16). Then at most one of $\left(z_{i}^{+*}, z_{i}^{-*}\right)$ is nonzero and at most one of $\left(w_{i}^{+}, w_{i}^{-}\right)$is nonzero.
(0. Consider any optimal solution $\left(x^{*}, y^{*}, z^{+^{*}}, z^{-^{*}}, w^{+^{*}}, w^{-^{*}}, b^{*}, \widetilde{b^{*}}\right)$ to (16) with corresponding optimal objective function value f^{*}. Then,

$$
\left\|H\left(x^{*}, y^{*}\right)\right\|_{1}=f^{*}=0 \Leftrightarrow\left(x^{*}, y^{*}\right) \text { solve the DC-MCP (11). }
$$

Selected Numerical Results: Median Function Formulation

Problem \#	n_{x}	n_{y}	There is a continuous solution	Type of
1			that is integer?	Problem
1a	10	10	yes, by construction	Small Illustrative
1b	10	10	no	Small Illustrative
- 1c	10	10	no	Small Illustrative
1d	1000	1000	yes, by construction	Large random
1 e	1000	1000	yes, but not known in advance	Large random
2a	4	0	yes	Energy duopoly
2b	4	0	no	Energy duopoly
2c1	4	0	no	Energy duopoly
2c2	4	0	no	Energy duopoly
3a	12	0	yes, but not known in advance	Spatial Price Equilibrium
3b	12	0	yes, but not known in advance	Spatial Price Equilibrium
3c	12	0	yes, but not known in advance	Spatial Price Equilibrium

Table 1: Summary of numerical results.

Main Conclusions

- DC-MCP approach can apply integer restrictions to an equilibrium problem setting for more realism, richer applications (e.g., SPE)
- Allowing for autonomy in infrastructure networks/supply chains (e.g., energy) that need some additional logic constraints and/or distributional or other equity enforcement (e.g., discrete design variables), or multi-sector coupling (combined with logic variables)
- Allowing for mixed equilibrium systems that involve volumes as well as discrete units (e.g., road traffic volume but accounting for a discrete number of emergency vehicles)
- Equilibrium problems combined with combinatorial optimization (generalizing the SPE example)
- Relaxation of multi-agent, non-cooperative markets with discrete restrictions (e.g., unit commitment in power), for example [10]
- There are many approaches to solving DC-MCPs involving complementarity and optimization modeling, some mentioned here, others in the References and other literature

Lots of directions to explore both theoretically and numerically

Relevant Publications

[1] F. D. Fomeni, S.A. Gabriel, M. J. Anjos, 2019." Applications of Logic Constrained Equilibria to Traffic Networks and to Power Systems with Storage, Journal of the Operational Research Society, 70(2), 310-325.
[2] F. D. Fomeni, S.A. Gabriel, M. J. Anjos, 2019. "An RLT Approach for Solving the Binary-Constrained Mixed Linear Complementarity, Computers and Operations Research,110, 48-59.
[3] S. A. Gabriel, 1998. "An NE/SQP Method for the Bounded Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, 97(2), 493-506.
[4] S.A. Gabriel, 2017. "Solving Discretely Constrained Mixed Complementarity Problems Using a Median Function," Optimization and Engineering, 18(3), 631-658.
[5] S.A. Gabriel, A.J. Conejo, J.D. Fuller, B.F. Hobbs, B.F. and C. Ruiz, 2012. Complementarity modeling in energy markets (Vol. 180). Springer Science \& Business Media.
[6] S.A. Gabriel, A.J. Conejo, C. Ruiz, Sauleh Siddiqui, 2013. "Solving Discretely-Constrained, Mixed Linear Complementarity Problems with Applications in Energy, " Computers and Operations Research, 40(5), 1339-1350.
[7] S.A. Gabriel, M. Leal, M. Schmidt, 2021. "Solving Binary-Constrained Mixed Complementarity Problems Using Continuous Reformulations," Computers and Operations Research, Vol. 131, Issue C.
[8] S.A. Gabriel, S. Siddiqui, A.J. Conejo, C. Ruiz, 2013, "Discretely-Constrained, Nash-Cournot Games in Energy," Networks and Spatial Economics, 13(3), 307-326.
[9] S. A. Gabriel and J. J. More, 1997. "Smoothing of Mixed Complementarity Problems," 105-116 in Complementarity and Variational Problems State of the Art, SIAM, Proceedings of the International Conference on Complementarity Problems, The Johns Hopkins University, Baltimore, Maryland.
[10] R. Weinhold and S.A. Gabriel, 2020. "Discretely Constrained Mixed Complementary Problems: Application and Analysis of a Stylised Electricity Market," Journal of the Operational Research Society, 71(2), 237-249.

