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Focus on Two Papers

Concentration on two of my co-authored works in this presentation.

o S.A. Gabriel, 2017. "Solving Discretely Constrained Mixed Complementarity
Problems Using a Median Function,” Optimization and Engineering, 18(3),
631-658. [4]

> Re-express the DC-MCP as a particular (usually binary-constrained)
mixed-integer nonlinear program (MINLP), theoretical and numerical results

@ S.A. Gabriel, M. Leal, M. Schmidt, 2021. “Solving Binary-Constrained Mixed
Complementarity Problems Using Continuous Reformulations,” Computers
and Operations Research, Vol. 131, Issue C. [7]

» Continuous-variable reformulation of the binary-constrained MCP, theoretical
and numerical results

Other related co-authored works in DC-MCP shown in the References.
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Some Motivations for Studying the Class of Discretely
Constrained Equilibrium Problems

@ These problems can apply integer/binary restrictions to equilibriums problem
for more realism, richer applications (e.g., game theory plus go-no go
decisions, if-then thresholds)

> Allowing for autonomy in infrastructure networks/supply chains (e.g., energy)
that need some additional logic constraints and/or distributional or other
equity enforcement (e.g., discrete design variables), or multi-sector coupling
(combined with logic variables)

> Allowing for mixed equilibrium systems that involve volumes as well as discrete
units (e.g., road traffic volume but accounting for a discrete number of
emergency vehicles)

» Equilibrium problems combined with combinatorial optimization

> Relaxation of multi-agent, non-cooperative markets with discrete restrictions
(e.g., unit commitment in power), for example [10]
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Overview

0O@0000000

The Big Picture

Convex Opt. Non-Convex Opt.

convex non-
convex

QP
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Overview
[e]e] lele]elele]

The Bigger Picture Including the Mixed Complementarity
Problem (MCP)

Complementarity
Problems

KKT conditions

Other non-
optimization based
problems

e.g., spatial price
equilibria, traffic

equilibria, Nash-
Cournot games
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Overview
[e]e]e] le]elele]

The Bigger Picture with Discrete/Integer Restrictions

Convex Opt.

convex

Non-Convex Opt.

non-
convex

Qp

Complementarity
Problems

LP=linear program
ILP=integer linear program
QP=quadratic program
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Spatial Price Equilibrium Problem (example of an MCP)

@ Consider the classical Transportation Problem with z;; the (primal) flow
variables, 1;, 0; the dual variables (Lagrange multipliers) at respectively,
supply node ¢ and demand node j

@ Not so realistic since 1; and ¢; should be elastic not fixed

@ Want to have the dual variables a function of the primal variables (z;;) but
this can’t be done with a linear program ('Catch 22') situation)

o KKT optimality conditions will include: 1; + ¢;; > 0;, Vi, j
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Spatial Price Equilibrium Problem (example of an MCP)

o z;;:= flow from supply i to demand j, S; 1=} x5, Dj := >, wij
@ ;(S;) := inverse supply function
@ §,(D;):= inverse demand function

@ c;;:= marginal transport cost

Overall MCP in terms of (nonnegative) flows x;; is thus:
0 < szj +cij —0; (Zx”> Lz >0 (1)
J i

° xz;; >0=1y (Z x”) + ¢ =05 (>, xi;) or marginal cost = marginal
benefit
® U; (Z ac”) +cij — 05 (3, xi5) > 0= x;; = 0 or no flow when marginal
" @/ ‘cost is higher than marginal benefit

"/wme

Gabriel (UMD/NTNU ) DC-MCP 26 October 2022 10/34



SPE Example with 4 Supply Nodes, 5 Demand Nodes [4]

@ Consider a solution of the SPE with numbers on arcs referring to an
equilibrium flow (color-coded by supply node).

@ Problem: Supply node 4 is inactive! This might be a warehouse or depot
so costly to keep running.

@ Want to keep the equilibrium notion but reroute flows somehow? How to do
this?
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SPE Example with 4 Supply Nodes, 5 Demand Nodes,
Equity-Enforcing Constraints [4]

o If >0, @ij < i then }  m;; >0.2557, 5" x5, re-routing equilibrium flows.

e With §; a minimum flow threshold (contractual?) and 0.25 the minimum
guranteed flow % (of total flows) for supply node i.

@ See the new solution below with d; = 3,Vi. Want to generalize this MCP
example, this leads to the DC-MCP.
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Overview
0O@0000

Complementarity Problems, Mixed Complementarity
Problems (MCP) [5]
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( Mixed) Nonlinear Complementarity Problem MNCP

Having a function F : R" — R",find an x € R™, y € R™ such that
Fl.(x,y)ZO,xi ZO,E.(x,y)*x,. =0fori=1,...,n
Fl.(x,y)=0,yl. free, for i=n, +1,...,n
Example
Fi(x,%,,) X +x,
F(x,x,0)=| FK(x,%,») |= X =W so we want to find x,,x,, ), s.t.
F(x,x,,y,) X +x,+y -2
X +x,20 520 (x+x)*x=0
x-»20 %20 (x—-y)*x,=0
X +x,+y-2=0 y, free
One solution: (x,,x,,,) =(0,2,0), why? Any others?

If all functions (linear) affine, we get the linear complementarity problem (LCP) o ...
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Overview
00@000

Sources for Complementarity Problems: Linear
Programming

Consider a (primal) linear program in the variables € R™:

ming o
st. Az >b (y)
x>0

and corresponding dual linear program in the variables y € R™
mazx, by

st. ATy <ec (x)
y=>0

and complementary slackness for both primal and dual problems:
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Sources for Complementarity Problems: LP Primal and

Dual Feasibility, Complementary Slackness

We can rewrite things a bit to get the following equivalent form. Find
x € R",y € R™ such that:

0<c—ATy Laz>0 (5a)
0<Az—-bly>0 (5b)
This is exactly the (monotone) linear complementarity problem (LCP) in

nonnegative variables (x,y) and is exactly the KKT optimality conditions as
applied to the primal LP. Here

row = (E0 ) = (50 ) @

(¢ 0 —AT N (o
& -5 )0)
/4/;;\,?\9\
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Overview
000080

Sources for Complementarity Problems: KKT Optimality
Conditions for Nonlinear Programs

Consider a nonlinear program of the following form where
ftR*" =R g:R*"—=Ri=1,....mhj:R*—=R,j=1,...,p

ming f(x) (8a)
st gi(z) <0 i=1,...,m (\) (8b)
hj(z) =0 i=1...,p (%) (8¢)

The KKT conditions are to find primal variables x € R™ and Lagrange multipliers
A € R, v € RP such that:

0=Vf(z —Q—ZVgh Y —l—ZVh x)v;,x free (9a)
og—g(x)LAzo
j@/ 0 =h(x), - free
/4/;;\,?\9\
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Overview
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Selected Sources for Complementarity Problems: KKT
Optimality Conditions for Nonlinear Programs

Putting all these conditions together, we get a mixed complementarity problem of
the following form. Find vectors A € R, x € R™,~v € RP such that:

V() + 32 Vai(@)Ai + 32, Vhji(z)y;

F(z, A7) = —g(x)
h(z)
with
0=F,(z, A7) x free (10a)
0 <Fy(z, A7) 1LA>0 (10b)
0=F,(x,\,7) 7y free (10c)

f@;ﬁ = Connection to game theory problems
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Mathematical Formulations: DC-MCP
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Mathematical Formulations: DC-MCP
(o] le}

The Bounded MCP (generalizes MCP [4, 5])

For the following two definitions, ' : R™ — R™ is a given function and the vectors
l,u € R"U {00,400} with | < u.
@ Definition: The bounded mixed complementarity problem is to find a vector

x € R" so that
Fi(z) >0 z; =1
F; (Z‘) =0 i<z <uy (11)
Fi(z) <0 z =y
This generalizes the earlier MCP that had (I;,u;) = (0,00) (nonnegative
variables) or (1;,u;) = (—o0,00) (free variables).

o Definition: Let S C R" be a given subset of the variables = in a bounded
MCP as given above. The DC-MCP is to find a solution x to (11) that also
satisfies z; € Z,Vi € S.
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Mathematical Formulations: DC-MCP
[e]e] J

DC-MCP, Encoding Integer Values

@ In most cases, the set S refers to integer-valued variables but could be more
generally discrete levels.

o If a variable x;,7 € S is to be binary, then F;(x) = x;(1 — x;) = 0, with

l; = —o0,u; = +o0.
@ More generally for integer values {—mq,—mq +1,...,0,1,...,ma}, we have
FZ(SC) = (7m1 — IL'Z) X ... (Il) X ... (’ITLQ 71‘1) = 0, with ll = —00,U; = +00.

o Can add additional constraints on the continuous and integer-valued variables
in a designated set X; see for example, the next slides on the median
function.

@ Can also just add auxiliary (e.g., binary) variables for example to the MINLP
formulation shown in the next slides.

@®NTNU
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Mathematical Formulations: DC-MCP
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© Mathematical Formulations: DC-MCP
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Mathematical Formulations: DC-MCP
[e] lelele)
H Function

As described in [9] and [3], the bounded MCP(F’) can be equivalently recast as
finding the zero of the function H : R™ — R™ defined by

H;(z) = x; — mid(l;, u;, x; — Fi(x)), Vi (12)

where mid(a, b, ¢) represents the median of the three scalars a, b, c.
Consider an example where H : R? — R? with

Fi(z,y) =z +vy, (l1,u1) = (0, +00) (13a)
F2(x7y) =Y, (l2a u2) = (_OO? +OO) (13b)

) - (s ) - (17

Sy (13c)
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Mathematical Formulations: DC-MCP
[e]e] le]e)

H is in General Non-smooth, Example for F': R? — R?

Thus,
e = { L 0SS o
- { s )
e - P

which for z = 0 fixed, is continuous in y but kinked, hence non-differentiable in
the sense of Fréchet at the point y = 0 as shown.
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Figure 1 Example of the mid function being non-smooth.

Gabriel (UMD/NTNU ) DC-MCP 26 October 2022 24 /34



Mathematical Formulations: DC-MCP
0O00e0

DC-MCP Definition

Definition: A vector pair (x,y) is a relaxed DC-MCP solution if it solves (15).

min || H (z, y)| (15a)
st.x; € Ry,i€ I,\D, (15b)
x; € Zy,i € Dy, (15¢)
y; € R ,j€I\D, (15d)
yj € Z,j €D, (15e)
e Where H is given in (12), ||-|| is any vector norm, I, I, are the index sets,

respectively for z,y and D, D, are respective subsets.

o If for a solution to this optimization problem: (z*,y*), |H(z*,y*)|| =0,

s, then (z*,y*) is also a DC-MCP solution.
@ Can add any integer if-then type constraints (or other constraints) like for the
g equity-enforcing SPE example via the set X.
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Mathematical Formulations: DC-MCP
[e]e]ele] ]

MINLP Problem for the Bounded MCP

min = Z (2 +27) + Z (w) +wj) (16a)
z,y,zt, 2= ,wt,w—,bb icl, jel,

—Mgi S T — Fl(l‘,y) — U4 S M(l —E),Vz’ S Ix
—M(2—bi—’5i> SZ;L—Z;—LL'Z+11§M<2—I)1—EZ)
-M (bZ—ng) < Zz+ _Zi_ —T; + U, SM(bz—ng)
w*—w;:Fj(x,y),VjEIy

J
2; € Ry i€ I,\Dy,x; € Zy,i € Dy, by, by € {0,1},Vi € I,
@ y; € R,j€I\Dy,y; €ZjeED,
e 2,27 2 0,Vi € Ly, w) ,wy >0,Vj €,
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Mathematical Formulations: DC-MCP
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Mathematical Formulations: DC-MCP
(o] Jele)

Example of Continuous-Variable Formulation (see [7] for
other examples)

Here is an example of a continuous reformulation of the DC-MCP noticing that
we can reformulate it as the following system of inequalities (z now is the set of
nonnegative and free variables combined):

(ui — ;) Fi(x) =20, ie€{l,...,n} (17b)
x; € [li,ui], iE{l,...,n} (17C)

assuming I; < u; for each i. Now the binary-constrained MCP (BC-MCP) which
we consider for the next few slides, in addition has:

z;€{0,1}, ieSC{l,... ,n} (18)
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Mathematical Formulations: DC-MCP
[o]e] o)

Example of Continuous-Variable Formulation:
Complementarity-Constrained Formulation (CCF)

Note that z; € {0, 1} is equivalent to
xT; € [0, ].] g R, iL’Z(]. — £CZ) =0.
Thus, we can replace the BC-MCP equivalently by

(.’El—ll)FZ(JJ)SO ie{l,...,n} ( )
(u; — ) Fi(x) >0, ie{l,...,n} (19b)
x; € [li,w] ie{l,...n} (19¢)
OS(l—Z‘Z)LZ‘ZZO 1€S8 ( )
The MPEC-like condition (19d) is again a complementarity problem.
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Mathematical Formulations: DC-MCP
[o]e]e] )

Relaxed Complementarity-Constrained Problem (RCCF-¢)

@ For computational reasons, better to not solve the above directly as an NLP.

@ For example, can try the regularization scheme of Scholtes, which relaxes the
MPEC constraint (19d) to get the following formulation:

(x; — L) Fi(x) <0, ie{l,...,n} (20a)
(ui—xi)F( )>0, ie{l,...,n} (20b)
€ lli,u], ie{l,...,n} (20¢)

xi(l —z;)<e €8 (20d)
€0,1, ieS (20e)

where € > 0 is a given regularization parameter that is iteratively decreased. See
[7] for detalls on theoretical and numerical results and other continuous-variable

Gabriel (UMD/NTNU ) DC-MCP 26 October 2022 30/34



Selected Theoretical and Numerical Results

[ 1]

Selected Theoretical Results: Median Function Formulation

The following result shows the correspondence between the above problem (16)
and solving the DC-MCP expressed as (15). For each i € I, assume that [; < u;.

Theorem

@ Consider any feasible solution (ar,y,z+,z_,w+,w_,b,5> to (16). Then, for

z =l -2, w & w;-r—w;,zi = H; (z,y),Yi € I,,w; = H; (z,y),Yj € I,

@ Consider any optimal solution (x*,y*, 2 27wt w b, l?‘) to (16).

Then at most one of (z;"*, zl_*) is nonzero and at most one of (w;", wi_) is
nonzero.

* *

@ Consider any optimal solution (af",y*,z+ , 27 ,w+*,w**,b*,b~*> to (16)

with corresponding optimal objective function value f*. Then,

|H(z*,y*)||; = f* =0« (z*,y") solve the DC-MCP (11).
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Selected Theoretical and Numerical Results
oe

Selected Numerical Results: Median Function Formulation

[[Problem # [ na [ ny [[_There is a continuous solution [[ Type of 1]
I 1T i [[that is integer? [[_Problem 1]
[1a [ 10 [ 10 [T ves, by construction [[Small lllustrative 1]
1D [ 10 [[ 10 [ no [[_Small lllustrative 1]
[ 1 [ 10 [[ 10 [ no [[_Small lllustrative 1]
[ [[ 1000 ][ 1000 [ yes, by construction [ Large random 1]
[[1e [[_1000 [[ 1000 [[ yes, but not known in advance [[ Large random ||
[[2a [ 4 [[ o [ ves [[_Energy duopoly |
[[2p [ 4 [[ o [[_no [[_Energy duopoly 1
[[2c1 4 T o [ no [[_Energy duopoly 1]
[[2c2 4 T o [ no [[_Energy duopoly 1]
[ 3 [ 12 [[ o [[_yes, but not known in advance [[ Spatial Price Equilibrium ]
[ 3 [ 12 [[ o [[_yes, but not known in advance [[ Spatial Price Equilibrium ]
[[3c [ 12 [[ o [[__yes. but not known in advance [[ Spatial Price Equilibrium ]

Table 1: Summary of numerical results.
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Conclusions/Next Steps
[ ]

Main Conclusions

@ DC-MCP approach can apply integer restrictions to an equilibrium problem
setting for more realism, richer applications (e.g., SPE)

> Allowing for autonomy in infrastructure networks/supply chains (e.g., energy)
that need some additional logic constraints and/or distributional or other
equity enforcement (e.g., discrete design variables), or multi-sector coupling
(combined with logic variables)

» Allowing for mixed equilibrium systems that involve volumes as well as discrete
units (e.g., road traffic volume but accounting for a discrete number of
emergency vehicles)

» Equilibrium problems combined with combinatorial optimization (generalizing
the SPE example)

> Relaxation of multi-agent, non-cooperative markets with discrete restrictions
(e.g., unit commitment in power), for example [10]

@ There are many approaches to solving DC-MCPs involving complementarity
and optimization modeling, some mentioned here, others in the References
S, and other literature

H@,me s Lots of directions to explore both theoretically and numerically @NTNU
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