Stochastic approximation based approaches for remote estimation with packet drops

Jayakumar Subramanian
Joint work with Jhelum Chakravorty and Aditya Mahajan
McGill University
GERAD Student Day
April 11, 2017

This work has been accepted in ACC 2017
The Remote Estimation Problem

\(X_t \xrightarrow{} \text{Transmitter} \xrightarrow{U_t} \text{Erasure Channel} \xrightarrow{Y_t} \text{Receiver} \xrightarrow{} \hat{X}_t \)

(Regenerative) Error Process

\[
E_{t+1} = \begin{cases}
 aE_t + W_t, & \text{if } Y_t = \mathcal{C} \\
 W_t, & \text{if } Y_t \neq \mathcal{C}.
\end{cases}
\]

Objective Functions

\[
C^*_\beta(\lambda) := C_\beta(f^*, g^*; \lambda) = \inf_{(k)} D_\beta^{(k)}(e) + \lambda N_\beta^{(k)}(e), \quad \lambda \geq 0
\]

\[
D^*_\beta(\alpha) := D_\beta(f^*, g^*) = \inf_{(k): N_\beta^{(k)} \leq \alpha} D_\beta(k),
\]
1. Renewal Monte Carlo
2. 1000 Sample averages

1. Kiefer Wolfowitz - Costly
2. Robbins Monro - Constrained

Stochastic Approximation Algorithm

Threshold → + → Policy Evaluation → Cost

Policy Improvement

Stochastic Approximation

Policy Evaluation

Policy Improvement

Cost

SA in Remote Estimation
Results

Figure: The sample paths for costly and constrained cases for $p_d = 0.3$. Bold lines represent the sample means for 100 runs and shaded regions correspond to mean ± twice standard deviation.
Conclusions & Future Work

Conclusions

- We present stochastic approximation algorithms to compute optimal thresholds for remote state estimation over communication channels with packet drops.
- We verified accuracy of these methods by comparing with analytical results for no packet-drop case.
- Policy evaluation: Regenerative nature of the error process and associated renewal relations.
- Policy improvement: Structural result that threshold based strategies are optimal.

Future Work

- Extension to Gilbert-Elliott channels
- Extension to higher dimensions

Thank you.