
Maximum Split Clustering Under Connectivity
Constraints

Pierre HANSEN

GERAD and École des Hautes Études Commerciales
Département des Méthodes Quantitatives en Gestion

Brigitte JAUMARD∗

CRT, GERAD and Université de Montréal
Département d’Informatique et de Recherche Opérationnelle

Christophe MEYER
Université de Montréal

Département d’Informatique et de Recherche Opérationnelle

Bruno SIMEONE
University of Rome “La Sapienza”

Department of Statistics, Probability and Applied Statistics

Valeria DORING

École Polytechnique de Montréal

July, 2003

∗Corresponding author

Abstract

Consider N entities to be classified (e.g., geographical areas), a matrix of
dissimilarity between pairs of entities, a graph H with vertices associated with
these entities such that the edges join the vertices corresponding to contiguous
entities. The split of a cluster is the smallest dissimilarity between an entity of
this cluster and an entity outside of it. The single-linkage algorithm (ignoring
contiguity between entities) provides partitions into M clusters for which the
smallest split of the clusters, called split of the partition, is maximum. We study
here the partitioning of the set of entities into M connected clusters for all M
between N−1 and 2 (i.e., clusters such that the subgraphs of H induced by their
corresponding sets of entities are connected) with maximum split subject to that
condition. We first provide an exact algorithm with a Θ(N2) complexity for
the particular case in which H is a tree. This algorithm suggests in turn a first
heuristic algorithm for the general problem. Several variants of this heuristic are
also explored. We then present an exact algorithm for the general case based on
iterative determination of cocycles of subtrees and on the solution of auxiliary
set covering problems. As solution of the latter problems is time-consuming
for large instances, we provide another heuristic in which the auxiliary set
covering problems are solved approximately. Computational results obtained
with the exact and heuristic algorithms are presented on test problems from
the literature.

Keywords: Constrained clustering; Contiguity; Connectivity; Partition; Split.

Acknowledgements. The first two authors have been supported by FCAR
(Fonds pour la Formation de Chercheurs et l’Aide à la Recherche) grants 2001-
ER-70686 and grant N00014-92-J-1194 from the Office of Naval Research. Work
of the first author has also been supported by NSERC (Natural Sciences and
Engineering Research Council of Canada) grant GP0105574. It has also been
supported in part by AFOSR grant F49620-93-1-0041 to Rutgers University.
Work of the second author has been supported by NSERC Grant GP0036426,
by FCAR 90NC0305, and by a NSF Professorship for Women in Science at
Princeton University. Work of the third author was supported in part by the
Spezialforschungsbereich F003 “Optimierung und Kontrolle”, Projektbereich
Diskrete Optimierung. Work of the fourth author was done in part during two
visits to GERAD, Montréal.

1 Introduction

Many clustering algorithms (Hartigan 1975; Späth 1980; Gordon 1981; Kaufman

and Rousseeuw 1989) partition the entities of a given set into homogeneous and/or

well separated clusters. Homogeneity means that entities within the same cluster

should be similar to each other and separation that entities in different clusters should

be dissimilar from each other. Often, separation and homogeneity are conflicting

goals. In this paper, we focus on separation. In some applications it is desirable for

operational reasons to impose additional constraints on the clusters. Special purpose

algorithms or modified versions of standard methods are then required. Constrained

clustering has been reviewed by Gordon (1973, 1979, 1996), Lefkovitch (1980) and

Murtagh (1985). The constraints most often considered are bounds on the cardinality

or the weight of the clusters, and connectivity constraints, when areas in geographical

space (usually the plane) are classified.

A simple criterion for separation of the clusters of a partition is the split,

i.e., the smallest dissimilarity between entities in different clusters. Recall that the

single-linkage algorithm maximizes the split of all partitions it leads to (Delattre and

Hansen 1980). Strength and weaknesses of the single linkage algorithm, and hence

implicitly of the split criterion, have been extensively discussed in the literature, see

e.g., Jardine and Sibson (1971) for axiomatic arguments. Let us only recall here that,

as noted by Hubert (1973), the partitions obtained by the single linkage algorithm are

invariant to any monotone transformation of the dissimilarities. It is well known that

the single linkage algorithm suffers from the chaining effect: very dissimilar entities

at the endpoints of a chain of consecutive pairwise similar entities may be assigned

to the same cluster. Adding contiguity constraints may alleviate this defect. As

the split is a separation criterion, one should of course adopt a different criterion,

e.g., diameter or variance for applications in which homogeneity is more important

than separation. Maximum split partitions subject to constraints on the weight (or

cardinality) of the clusters are studied in Hansen, Jaumard and Musitu (1990). It

is shown there that finding such partitions is strongly NP-complete but can often be

done in reasonable computing time even for large data sets (a few seconds for 500

entities on a sun 3/50). Other algorithms for cardinality constrained clustering have

been proposed by Lebart (1978) and Diday et al. (1979).

From now on, we adopt again the split criterion and consider connectivity

constraints on the clusters. These constraints are usually expressed (e.g., Murtagh

1

1985) by introducing a contiguity graph H with vertices associated with the entities

(usually areas in geographical space) and edges joining pairs of contiguous entities

(usually areas with a common border). Connectivity constrained partitions are those

such that the subgraphs of H induced by the vertices associated with the entities of

each cluster are connected. The monotony invariance property cited above carries

over to this type of constrained clustering. Many authors (e.g., Scott 1971; Lebart

1978; Ferligoj and Batagelj 1982, 1983; Perruchet 1983) have proposed heuristics for

connectivity constrained clustering based on a modification of the general scheme for

agglomerative hierarchical clustering: at each iteration, two clusters are merged only if

they correspond to two contiguous regions. This rule implies that many feasible clus-

ters are excluded from the set of partitions considered. Moreover, the computational

complexity (see Garey and Johnson (1979) for definitions and notation, including the

θ and O symbols used throughout this paper) is slightly increased over that of the

best hierarchical agglomerative clustering algorithms. It goes from Θ(N2) for the

single-linkage algorithm to O(N2 log N) if an efficient implementation with heaps,

similar to that of Day and Edelsbrunner (1984) is used. Resorting to union-find data

structures (see, e.g., Aho, Hopcroft and Ullman (1974) for basic definitions) would

also lead to an implementation in O(N2 log N). As shown below, other heuristics

can be designed which have a slightly lower complexity and usually provide better

solutions as estimated by the value of the split. It is also possible to maximize exactly

the split subject to connectivity constraints. The two main algorithms of this paper

do so, when H is a tree and a general graph respectively.

An efficient modification of the single-linkage algorithm has been proposed by

Monestiez (1977) for a problem closely related to connectivity constrained maximum

split clustering. Only dissimilarities associated with pairs of entities corresponding

to the two endpoints of an edge of H are considered. Then a minimum spanning tree

of H is computed (with edges weighted by the dissimilarities), its edges ranked in

order of non-decreasing dissimilarity values, and added to an initially empty graph

one at a time, as in the Gower-Ross (1969) algorithm. Other versions, also proposed

by Monestiez (1977), use the variance criterion. Monestiez’s algorithm has several

advantages. First, it maximizes a specific criterion for all partitions it leads to. Let

us indeed define the border split of a cluster as the smallest dissimilarity between an

entity in that cluster and one outside it in a contiguous area. Let us further define the

border split of a partition as the smallest border split of its clusters. Then Monestiez’s

(1977) algorithm maximizes the border split of the partitions into N, N − 1, . . . , 2

2

clusters it leads to. The proof follows from Theorem 1 and Corollary 2 of Delattre

and Hansen (1980), after replacing all dissimilarities between pairs of entities not

corresponding to edges of H by arbitrarily large values. Second, Monestiez’s algorithm

is often extremely quick. In the general case its time complexity is in Θ(N2). If H

is planar, which is the case when areas in the plane or pixels in a grid are to be

clustered, this complexity becomes O(N log N), due to the ranking phase assuming

Cheriton and Tarjan’s (1976) O(N) algorithm is used to determine the minimum

spanning tree. Moreover, if dissimilarities are ordinal, bucket sort may be used and the

complexity reduces to Θ(N). Maximizing the border split of a partition is of interest

in many applications, such as finding contours in image processing or defining classes

in cartography. However, it is different from maximizing the split of a partition.

Indeed, two clusters may have very dissimilar entities across their borders and very

similar entities inside both of them. If it is desired to have all entities in different

clusters as dissimilar as possible in a threshold sense, one must use the split criterion

and not the border split one. This is what is done in this paper.

Note that dynamic programming algorithms for clustering problems in which

H is a path have been proposed by several authors (e.g., Fisher 1958; Rao 1971;

Lucertini, Perl and Simeone 1993; see also Bellman and Dreyfus 1962 as a reference

on dynamic programming). These algorithms yield connected clusters. They can

be easily adapted to the split criterion. Note also that univariate clustering can be

reduced to partitioning on a path.

The paper is organized as follows. Maximum split partitioning subject to

connectivity constraints is formulated mathematically in the next section, where it is

also shown to be strongly NP-complete. Properties of an exact solution are studied

in Section 3. The particular case where the contiguity graph H is a tree is conside-

red in Section 4. This corresponds to problems in biological classification in which

affine taxa in a phylogenic tree must be grouped in such a way that the clusters

are subtrees (Jardine and Sibson 1971). Maravalle and Simeone (1985) propose an

O(N3) algorithm for this case. Using a result of Rosenstiehl (1967) and of Delattre

and Hansen (1980), we obtain a Θ(N2) algorithm. This suggests a heuristic for

the general case, based on the selection of a spanning tree of H, which is discussed

in Section 5. Several variants of this heuristic are also explored. Exact solution

of maximum split clustering under connectivity constraints is studied in Section 6.

A solution is proposed which iteratively determines a spanning subforest F of H

(possibly with isolated vertices) whose trees correspond to clusters. This is done by

3

finding cocycles of subtrees (disconnected with respect to H) of a minimum spanning

tree of G with edges again weighted by the dissimilarities, and solving set covering

problems expressing that F must contain at least one edge of H belonging to each such

cocycle. The exact solution of all set covering problems may be very time consuming

for large problems. This suggests another heuristic, discussed in Section 7, in which

these covering problems are solved approximately. Experimental results with the

exact and heuristic algorithms are presented in Section 8. Conclusions are drawn in

Section 9.

2 Problem statement and complexity

Let O = {O1, O2, . . . , ON} denote a set of N = |O| entities and D = (dk`) a N × N

matrix of dissimilarities between pairs of these entities. A dissimilarity dk` is a real

number which satisfies the conditions dk` ≥ 0, dkk = 0 and dk` = d`k for k, ` =

1, 2, . . . , N . The more the entities Ok and O` differ one from the other, the larger

is the corresponding dissimilarity dk`. A partition PM = {C1, C2, . . . , CM} of the

entities of O into M clusters Cj (j = 1, 2, . . . ,M) is such that no cluster is empty,

any two clusters have an empty intersection and the union of all clusters is equal to

O. Let ΠM denote the set of partitions PM of O into M clusters. Recall that the

split s(Cj) of a cluster Cj is the smallest dissimilarity between an entity in Cj and an

entity outside Cj:

s(Cj) = min
k,`:Ok∈Cj , O` 6∈Cj

dk`

and the split s(PM) of the partition PM is the smallest split of its clusters:

s(PM) = min
j=1,2,...,M

s(Cj).

We recall here, for easier reference, some elementary concepts of graph theory

(see, e.g., Berge (1973) for a complete reference). In general, we denote by V (G) and

E(G) the set of vertices and the set of edges of a graph G, respectively. A weighted

complete graph G = (V, E(G)) is associated with O and D in the usual way, i.e.,

vertices vj ∈ V correspond to entities Oj ∈ O, and edges {vk, v`} ∈ E are weighted

by the dissimilarities dk`. Another graph H = (V, E(H)) with the same vertex set as

G is used to express the connectivity constraints. We call H the contiguity graph. An

edge {vk, v`} belongs to E(H) if and only if the entities Ok and O` are contiguous. A

4

path in H is a sequence of vertices (vk1 , vk2 , . . . , vkp) such that {vk`
, vk`+1

} ∈ E(H) for

` = 1, 2, . . . , p − 1; vk1 is the initial vertex and vkp the terminal vertex of the path,

which is said to join vk1 to vkp . If vk1 = vkp , the path is a cycle. All paths and cycles

considered below are elementary, i.e., all their vertices are distinct. A connected com-

ponent of a graph H is a maximal subset C of vertices such that for any two vertices

vk and v` in C, there is a path in H joining vk and v`. When V = C the graph H is

said to be connected. A forest is a graph without cycles. A tree is a connected forest.

A spanning forest of H is a forest F such that V (F) = V (H) and E(F) ⊆ E(H).

A spanning forest F is maximal if there is no spanning forest whose set of edges

properly includes E(F). A maximal spanning forest of a connected graph is a (span-

ning) tree. We assume below that the contiguity graph H is connected. If S ⊆ V ,

we denote by w(S) the cocycle of S, i.e., the set of edges of H which have one end-

point in S and the other in V \ S; moreover we denote by H(S) the subgraph of

H induced by S, i.e., the graph whose set of vertices is S and whose set of edges

is
{
{vk, v`} ∈ E(H) : vk, v` ∈ S

}
. A connected M-partition of O is a partition

PM = {C1, C2, . . . , CM} of O into M clusters, such that H(Cj) is connected for ev-

ery j = 1, 2, . . . ,M . We denote by ΠC
M(H) – or simply ΠC

M when the graph H is

understood – the set of all connected M -partitions of O.

The maximum split clustering problem under connectivity constraints may be

formulated:

Determine PM ∈ ΠC
M

such that s(PM) is maximum for M = 2, 3, . . . , N − 1.

A recognition form of this problem is:

connected max split graph clustering

Instance: Graph H = (V, E); N × N symmetric matrix (dk`) (with N = |V |) of

nonnegative rationals with zero diagonal elements; rational nonnegative number s;

integer M , 1 < M < N.

Question: Is there a connected M -partition PM of H such that s(PM) ≥ s ?

The following theorem suggests that the above problem may be computation-

ally hard to solve. For definitions of NP-completeness and related concepts, the reader

is again referred to Garey and Johnson (1979) or for a brief introduction, to Hansen,

Jaumard and Musitu (1990).

5

Theorem 1 connected max split graph clustering is strongly NP-complete.

Proof: Clearly the problem belongs to the class NP. In order to prove its NP-

completeness, we exhibit a reduction from the steiner problem on graphs, which is

known to be NP-complete (Garey and Johnson, 1979). The latter problem is defined

as follows.

steiner problem

Instance: Graph H ′ = (V ′, E ′); subset R ⊆ V ′; integer b ≤ N − 1, where N = |V ′|.

Question: Is there a tree T , which is a subgraph of H ′ that includes all vertices of

R and has at most b edges ?

A reduction of steiner problem to connected max split graph clustering

is readily obtained.

Take H = H ′; set dk` equal to 0 if vk, v` ∈ R or vk = v`, and dk` equal to

1 otherwise; set M to N − b and s to 1. We now show that steiner problem

has a yes-answer if and only if connected max split graph clustering has a

yes-answer. Suppose that steiner problem has a yes-answer. Define a partition

P as follows. One cluster of P is the vertex-set V (T) of T ; the remaining clusters

are the singletons {v} with v ∈ V \ V (T). P is connected, and since |V (T)| ≤ b + 1,

P consists of at least N − b = M clusters. Finally, s(P) = 1. If P has more than

M clusters, a partition with exactly M clusters and split ≥ 1 can be obtained by

merging some of the clusters (see Proposition 4 in the next Section).

Conversely, let PM = {C1, C2, ..., CM} be a connected partition with split at least 1

(and hence exactly 1) and M = N − b clusters. Notice that R must be contained

in some cluster Cj of PM , else s(PM) would be 0. Let T i be a spanning tree of

the connected subgraph H(Ci), i = 1, . . . ,M and let F be the spanning forest of H

whose connected components are T 1, T 2, ..., TM . The total number of edges of F is

N −M = b: hence, T j has at most b edges. Since T j includes all vertices of R, the

answer to steiner problem is yes.

Finally, to show that connected max split graph clustering is strongly

NP-complete (and so cannot be solved by a pseudo-polynomial algorithm unless P =

NP) we observe that it may be expressed in such a way that it is not a number

problem, i.e., that the length of the encoding of the largest coefficient is bounded.

Indeed, it suffices to replace the dissimilarity values by their rank number. Since this

6

transformation is monotone and the split is a threshold-type criterion (i.e., depends

on a single dissimilarity value), the optimal partitions are unchanged.

Remark 1. Since steiner problem remains NP-complete if H ′ is planar or bi-

partite, connected max split graph clustering remains NP-complete for such

classes of graphs. However, as shown in Section 4, the connected maximum split

clustering problem can be solved in polynomial time when H is a tree.

3 A combinatorial formulation and some

basic properties

In the present section we derive a combinatorial formulation of the maximum split

clustering problem under connectivity constraints; furthermore, we collect some theo-

retical properties which provide a basis for the algorithms to be discussed in Sections 4

to 7. The reader who is primarily interested in clustering applications may skip all

proofs in this section.

The length or weight of an edge {vk, v`} of G is defined to be the dissimilarity

dk` between entities Ok and O`. Let T = (V, E(T)) be a spanning tree of G with

minimal total length (i.e., a minimum spanning tree).

Proposition 1 The split of an arbitrary partition (connected or not) of V is always

equal to the length of some edge of T .

Proof: See Rosenstiehl (1967), Delattre and Hansen (1980).

Notice that, while a minimum spanning tree T is not necessarily unique (unless

all dissimilarity values are different), the list S of lengths of the edges of T is unique.

We define S ≡ [s1, s2, . . . , sN−1], where sj is the length of the jth shortest edge of T .

Remark 2. It is possible that, for some s ∈ S, there is no connected partition of H

whose split is equal to s, as shown by the following example.

Example 1. Let D be the dissimilarity matrix of Table 1 and let H be the graph of

Figure 1.

A minimum spanning tree T of G is shown in Figure 2. Here S = [1, 2, 2, 3, 4],

and one can check that there is no connected partition of H with split 3. Indeed,

7

1 2 3 4 5 6
1 0 3 4 6 1 8
2 3 0 5 2 4 3
3 4 5 0 9 4 7
4 6 2 9 0 2 4
5 1 4 4 2 0 6
6 8 3 7 4 6 0

Table 1: Dissimilarities (associated with edges of G)

v1

v2 v3

v4

v5v6

Figure 1: Contiguity graph H of Example 1

v1

v2 v3

v4

v5v6

Figure 2: Minimum spanning tree T of G for Example 1

entities O1 and O5 must belong to the same cluster since d15 = 1. This entails that

entity O6 must belong to the same cluster than O1 and O5 to satisfy the connectivity

constraints as vertex v6 belongs to all paths linking v1 to v5 (note that it is an

articulation point of graph H). Finally entities O2, O4 and O5 must be in the same

cluster since d24 = 2 = d45. The resulting partition {{v1, v2, v4, v5, v6}, {v3}} has a

split equal to 4.

For a given s ∈ S, let Gs be the graph (V, E(Gs)) where E(Gs) ≡
{
{vk, v`} ∈

E(G) : dk` < s
}
. Starting from any given minimum spanning tree T of G, define Ts

8

in a similar way, i.e., E(Ts) ≡
{
{vk, v`} ∈ E(T) : dk` < s

}
. Observe that Ts is a

spanning forest of Gs.

Proposition 2 A partition PM has split at least s if and only if for every edge {vk, v`}
of Ts, both vk and v` belong to the same cluster of PM .

Proof: Clearly PM has split at least s if and only if each connected component of Gs

is contained in some cluster of PM . Thus, in order to establish the proposition, it will

be enough to prove that Gs and Ts have the same connected components.

Since E(Ts) ⊆ E(Gs), every connected component of Ts is contained in some

connected component of Gs. Conversely, let γ be a path in Gs joining vk and v`. We

shall exploit the fact that one can always build the minimum spanning tree Ts via

Kruskal’s (1956) greedy algorithm. This algorithm, starting from E = ∅, selects, at

each iteration, the shortest edge e which has not been previously examined and then

inserts e into E, unless e forms a cycle together with the other edges of E. At the

end, one has E = E(T). Right after all edges {vk′ , v`′} such that dk′`′ < s have been

examined, one has E = E(Ts). If e is any edge of γ, then either e ∈ E(Ts) or e joins

two vertices in a same connected component of Ts. It follows that vk and v` belong

to the same connected component of Ts.

The next definition leads to a purely combinatorial reformulation of con-

nected max split graph clustering.

Definition 1 If F and F ′ are two forests having the same set of vertices, F wraps

F ′ if each connected component of F ′ is (vertex wise) contained in some connected

component of F .

Next, we introduce the following combinatorial problem:

forest wrapping

Given a (connected) graph H, a forest B having the same vertex set as H and an

integer M , 1 < M < N , is there a spanning forest F of H having at least M connected

components and such that F wraps B ?

Proposition 3 connected max split graph clustering is reducible to forest

wrapping.

9

Proof: Given a yes-instance of connected max split graph clustering, define

B to be Ts. Let PM = {C1, . . . , CM} ∈ ΠC
M(H). Let T j be a spanning tree of the

connected graph H(Cj), j = 1, . . . ,M , and let F be the spanning forest whose set

of edges is E(T 1) ∪ E(T 2) ∪ . . . ∪ E(TM). By Proposition 2, any two vertices in the

same connected component of Ts belong to the same cluster Cj of PM , and hence to

the same tree T j. Hence, F wraps B. Conversely, assume that F is a spanning forest

of H which wraps B and has at least M connected components V1, . . . , VM ′ . Then

PM ′ = {V1, . . . VM ′} is a connected partition and its split is at least s.

Notice that, when B has only one non-singleton connected component, forest

wrapping essentially becomes the Steiner problem on a graph.

For s ∈ S, define m(s) to be the maximum number of clusters in a connected

partition whose split is at least s, i.e., the maximum number of connected components

in a spanning forest F of H which wraps Ts. Note that F has m(s) connected

components if and only if F has the smallest number of edges among the spanning

forests wrapping Ts.

Proposition 4 For every M , 1 ≤M ≤ m(s), there is a PM ∈ ΠC
M(H) whose split is

at least s.

Proof: Let Pm(s) ∈ ΠC
m(s)(H). Since H is connected, there must be, in Pm(s), two

clusters Ci and Cj which are adjacent (i.e., there is an edge of H having one endpoint

in Ci and the other one in Cj). Merging Ci and Cj into a single cluster, one obtains a

connected partition with m(s)−1 components and with split at least s. Iterating this

procedure, one obtains the desired result. Notice that the connectivity of H plays an

crucial role here.

We shall denote by F (s) a spanning forest of H which wraps Ts and has the

smallest number of edges (briefly, an optimal forest).

For a given s ∈ S, let K1, . . . , Kq be the connected components of Ts: K1, . . . , Kq

define subsets whose vertices must be in a same connected component of F (s). The

next result allows us to merge some of these subsets:

Proposition 5 Let Ki and Kj be two connected components of Ts. If there exist

2 vertices u, v ∈ Ki that are disconnected in the subgraph of H induced by the set

of vertices V \ V (Kj), then the vertices of Ki and Kj must be in a same connected

component of F (s).

10

Proof: Since u and v belong to the same connected component of Ts, they must be in

the same cluster in PM . Let C be the connected component of F (s) that contains u

and v. By definition, there exists a path γ between u and v, with all vertices of γ in

C. By assumption, this path contains a vertex of Kj. Since all vertices of Kj must

be in the same component, it follows that C contains Kj.

Each time we merge two subsets Ki and Kj, we add an edge in Ts between one

arbitrary vertex of Ki and one arbitrary vertex of Kj, so that the resulting merged

subset is still a connected component of a forest. We denote this forest by T ′
s. Observe

that Proposition 5 remains valid for T ′
s.

The next result allows one to pinpoint a set Q of edges which must certainly

be contained in some F (s), thereby reducing the computational effort required to find

F (s).

Let K1, . . . , Kq be the connected components of T ′
s. Let F i be a maximal

spanning forest of H(Ki). Let Q =
q
∪

i=1
E(F i).

Proposition 6 There always exists an optimal forest F (s) whose set of edges con-

tains Q.

Proof: Let F (s) be an arbitrary optimal forest. Assume that
∣∣∣Q ∩ E

(
F (s)

)∣∣∣ = t,

where 0 ≤ t < |Q|. Consider an arbitrary edge e = {vk, v`} ∈ Q \ E
(
F (s)

)
. Since

vk, v` belong to the same connected component of T ′
s and since F (s) wraps T ′

s, there

must be a path γ in F (s) joining vk to v`. At least one of the edges e′ along γ must

belong to E
(
F (s)

)
\Q, otherwise the edges of γ together with e would form a cycle

contained in Q, which is impossible. By replacing e′ by e one obtains a spanning

forest F ′(s) which has the same number of edges as F (s) and still wraps T ′
s. Fur-

thermore, one has
∣∣∣Q ∩ E

(
F ′(s)

)∣∣∣ = t + 1. Iterating this procedure one obtains the

desired result.

We next mention a corollary of a result of Simeone (1978) which specifies a

family of subgraphs of H containing or giving an optimal solution.

Proposition 7 There exists a spanning tree Ĥ of H such that the optimal solutions

of connected max split graph clustering for H and Ĥ coincide.

11

Proof: See Maravalle and Simeone (1995).

In fact the result of Maravalle and Simeone (1995) is much more general than

Proposition 7, as it applies to connectivity constrained clustering with any criterion

which does not depend of the graph H. However, the proof of this result is not

constructive.

Finally, let us discuss some consequences of the results of this section.

Since the objective function of the maximum split clustering problem under

connectivity constraints is of the bottleneck type (max-min), it is natural to think of

a threshold algorithm for its solution: namely, given a certain threshold parameter s,

such an algorithm would try to find a connected partition whose split is at least s and

having a prescribed (or a maximum) number of clusters. Proposition 1 says that it is

always sufficient to consider at most N−1 special values of the threshold s, which are

easily obtainable via a minimum spanning tree computation. Proposition 2 provides

an efficient way to check that the split of a given partition is at least s. Proposition 3

provides a purely combinatorial formulation, i.e., forest wrapping, of connected

max split graph clustering. In Section 6 we shall investigate this formulation to

develop an exact algorithm for the latter problem. Proposition 4 implies that, once a

connected partition with split at least s and having the maximum number of clusters

has been found, it is quite easy to find a connected partition whose split is at least s

and having any prescribed smaller number of clusters. Finally, Propositions 5 and 6

enable us to simplify the problem by showing that certain edges must be present

in some or in all optimal forests. The above considerations lead to the algorithms

described in the next sections.

4 Maximum split clustering on trees

As mentioned in the introduction, the particular case of connected max split

graph clustering where the connectivity graph H is a tree has been studied by

Maravalle and Simeone (1985), Maravalle, Simeone and Naldini (1997). They provide

an O(N3) algorithm to solve it. We next present an algorithm whose worst case

complexity is Θ(N2).

When H is a tree, by deleting (or “cutting”) M − 1 edges of H but not their

endpoints, one obtains a forest with M components, and these components are the

12

clusters of a connected M -partition. Conversely, all connected M -partitions arise in

this way.

The algorithm ctree described below scans the edges of a minimum spanning

tree T of G in non-decreasing order of lengths, s1 ≤ s2 ≤ · · · ≤ sN−1 (ties are broken

arbitrarily). Let {vk, v`} be the current edge and let si = dk`. If we want to obtain a

connected partition with split > si, then vk and v` must belong to the same cluster

Cj. This implies that no edge along the unique path γ of H joining vk and v` must be

cut. Hence, all vertices along γ must belong to Cj. The algorithm shrinks all these

vertices into a single vertex in order to prevent edges along γ from being cut. We

denote by C(vk) the cluster of the current partition which contains Ok.

Algorithm CTREE

Step 1. Initialization

Compute a minimum spanning tree T of G = (V, E(G))

Rank the edges {vk, v`} of T in non-decreasing order of dk`;

Ck = C(vk)← {Ok} for k = 1, 2, ..., N ;

PN = {C1, C2, ..., CN} (PN is the granular partition in which all clusters are single-

tons); Ĥ ← H; M ← N ;

Step 2. Path shrinking

For i = 1, 2, . . . , N − 1 do

Let {vk, v`} be the ith edge of T ;

If C(vk) 6= C(v`) then

Let γ be the (unique) path joining C(vk) and C(v`) in Ĥ;

Let M ′ be the number of vertices of γ (vk and v` excluded);

M ←M −M ′ − 1;

For each vertex v of γ, merge C(v) with C(vk);

Shrink all vertices of γ into a single vertex;

Update Ĥ accordingly;

EndIf

Output the (connected) partition PM of H

EndFor.

Theorem 2 Let s ∈ S. Right after all edges of T with length smaller than s have

been processed, the current partition P is a connected partition of H with split at least

s and with a maximum number of clusters.

13

Proof: The result is a consequence of the following two remarks:

(i) For every pair of vertices vk, v` such that {vk, v`} ∈ E(T) and dk` < s, no edge

along the path γ of T joining vk and v` is cut in P . This follows from the fact

that, when edge {vk, v`} is processed, all vertices of γ are shrunk into a single

vertex. Notice that some of them might have been shrunk during previous

iterations.

(ii) All edges of H are cut in P , except for those specified in (i).

In view of Proposition 2, (i) implies that s(P) ≥ s. Moreover, the partition P is

connected by construction. Finally, (ii) implies that P has a maximum number of

clusters among all connected partitions with split at least s, since all such partitions

must satisfy (i) anyhow.

Algorithm ctree can be implemented so as to run in O(N2) time. Actually,

computing a minimum spanning tree of the (complete) graph G already takes O(N2)

time. Reading the dissimilarity matrix requires Ω(N2) time: thus the algorithm has

a complexity in Θ(N2), i.e., it is the best possible.

Note that the partition output by the algorithm has a split at least s, which

means that the split may be actually greater. It follows that the algorithm may

produce several partitions with the same split but with a different number of clusters.

In that case, the partition that is generally considered the most interesting is the one

with the largest number of clusters.

5 Some heuristics for general graphs

Algorithm ctree iteratively merges the vertices of the unique path γ of the tree Ĥ

between the vertices of Ĥ corresponding to the endpoints of the edge (vk, v`) of T

under consideration. Such a path is of course a shortest one in Ĥ. This observation

suggests a simple modification to be given to ctree, in order to obtain a heuristic,

called htree, for the general case. It suffices to specify that at each iteration one seeks

a shortest path γ between the vertices corresponding to vk and v` in Ĥ. Otherwise,

the rules are the same. Such an algorithm is called a greedy one because it optimizes

some criterion (here minimization of the reduction in number of clusters) at each

14

iteration in a myopic way. So after a few iterations one may obtain partitions whose

split is at least s for which the number of clusters is not the largest possible. The

complexity of htree is in O(N3).

Example 2. Consider the graph H of Figure 3 and any dissimilarity matrix where

d26 = 3, d68 = d79 = 5, d19 = 8, and all remaining dissimilarities are greater than

or equal to 8. Then S = [3, 5, 5, 8, . . .]. Choose s = 8. The edges of T8 are {v2, v6},
{v6, v8}, {v7, v9}.

11e

10v

1e

v2

v1

v3 v4

v5 v6

v7

v8v9

e2

e3

e4

e5

e6

e7

e8e9
e10

Figure 3: Contiguity graph of Example 2.

The heuristic htree finds the connected partition with 3 clusters shown in

Figure 4, while a connected partition with a maximum number of clusters (i.e., 4) is

shown in Figure 5.

10v

v2

v1

v3 v4

v5 v6

v7

v8v9

Figure 4: Partition found by htree (s ≥ 8)

15

10v

v2

v1

v3 v4

v5 v6

v7

v8v9

Figure 5: Optimal partition with maximum number of clusters (s ≥ 8)

As mentioned above, algorithm htree proceeds in a myopic way; moreover,

there may be arbitrary choices to make if, at a given iteration, there are several

shortest paths between the vertices vk and v` in H. Another way to obtain a heuristic,

based on ctree for the case where H is a general graph, which avoids the second

drawback, is to select some spanning tree TH of H and then apply ctree to it.

Proposition 7 provides motivation to do so. One criterion for selecting edges to

belong to this tree is that they belong to shortest paths between endpoints vk and v`

of edges of T . This idea can be implemented as follows:

Heuristic pathtree

Step 1. Minimum spanning tree

Compute a minimum spanning tree T of G = (V, E(G))

Step 2. Weighting edges

Weight the edges {vi, vj} of H by the number of edges {vk, v`} of T such that {vi, vj}
belongs to a shortest path between vk and v`;

Step 3. Maximum spanning tree

Find a maximum spanning tree TH of H with the weights so defined;

Step 4. Path shrinking

Apply ctree to TH .

The complexity of heuristic pathtree is in O(N3), due to Step 2.

Focusing on the dissimilarity matrix D = (dk`) suggests another, simpler way

to obtain a spanning tree TH :

16

Heuristic distree

Step 1. Weighting edges

Weight the edges of H by the corresponding dissimilarities;

Step 2. Minimum spanning tree

Find a minimum spanning tree TH of H with the weights so defined;

Step 3. Shrinking edges

Apply ctree to TH .

This heuristic has a complexity in Θ(N2). Algorithm distree is similar to

the first steps of the midas algorithm of Maravalle and Simeone (1995) for connected

partitioning with the minimum inertia criterion (the latter algorithm also includes

rules for improvement by tree-modification). The first two steps of distree are also

the same as those of the algorithm of Monestiez (1977) discussed above; the third one

is different as ctree, which exploits all dissimilarities, is then used instead of Gower

and Ross’ (1969) single linkage algorithm.

The three heuristics described in this section, as well as another one (derived

from the exact algorithm) presented in Section 7 are compared experimentally in

Section 8.

6 An exact algorithm for general graphs

In the present section we describe an iterative exact algorithm for solving the con-

nected max split graph clustering problem on a general graph. An informal

description is given in Section 6.1. A formal description follows in Section 6.2. Some

discussion on the number of iterations can be found in Section 6.3.

6.1 Informal description

As seen in Section 3, the problem can be reformulated as follows:

(P)
{

Given s ∈ S, find a spanning forest F of H
which wraps T ′

s and has the smallest number of edges.

The algorithm proposed below finds a solution to (P) by solving a sequence of

increasingly constrained set covering problems. The basic idea is the following. Let

17

K1, . . . , Kq be the connected components of T ′
s. Let Ki be one such component with

cardinality ≥ 2 and let vk, v` ∈ Ki, vk 6= v`. Consider now an arbitrary subset Vk` of

V which contains vk but not v`. We denote by Vk` the collection of all such subsets

Vk`.

Let ω(Vk`, v`) be the subset of edges {u, v} of H with u ∈ Vk` and v 6∈ Vk` such

that there exists a path from v to v` not going through any vertex from Vk`. Since

an optimal forest F wraps T ′
s, there must be a path γ in F joining vk to v`. At least

one of the edges of γ must belong to ω(Vk`, v`). To enforce this we write down the

constraint ∑
e∈ω(Vk`,v`)

xe ≥ 1,

where

xe =
{

1 if e ∈ F,
0 otherwise.

Hence, we can write down the following set covering problem, later called the

master set covering problem

(MSC)

min
∑

e∈E(H)
xe

subject to:∑
e∈ω(Vk`,v`)

xe ≥ 1, i = 1, . . . , q; vk, v` ∈ Ki; Vk` ∈ Vk`

xe ∈ {0, 1}, e ∈ E(H).

Any optimal solution to (MSC) must be a spanning forest of H wrapping T ′
s and

having a minimum number of edges.

The set covering problem (MSC) has only m = |E(H)| variables but a huge

number of constraints. Thus it is usually computationally infeasible to solve (MSC).

Hence, we shall take a constraint generation (or cutting plane) approach: instead of

solving (MSC) directly, we solve a nested sequence of set covering problems, the rth

of which involves a (usually small) subset Lr of constraints of (MSC), with L1 ⊆ L2 ⊆
· · ·.

An optimal solution to Lr yields a spanning forest Fr. If Fr wraps T ′
s then Fr is

an optimal solution to problem (P); if not, for each pair of vertices (vk, v`) such that vk

and v` belong to the same connected component of T ′
s but to two different connected

components Ci = Vk` and Cj = V`k of Fr, add to Lr the constraints corresponding to

ω(Ci, v`) and ω(Cj, vk). Observe that these constraints are present in (MSC) but are

absent from Lr, since they are violated by the optimal solution of the rth set covering

18

problem. Call Lr+1 the resulting set of constraints and iterate. Note that a same set

covering constraint can be obtained for different ω(C, v): in that case of course, we

generate the constraint only once.

In order to initialize the procedure, one takes F0 to be the forest whose con-

nected components are the single vertices of V . Clearly the algorithm is finite since

new constraints are added at each iteration and the total number of constraints is

bounded from above by N2N .

Example 3. Consider again Example 2, with s = 8. F0 is the forest consisting of

the 10 isolated vertices. The initial set L1 of constraints is

x1 + x2 ≥ 1 (ω({v2}, v6))
x6 + x7 ≥ 1 (ω({v6}, v2) and ω({v6}, v8))
x7 + x8 ≥ 1 (ω({v7}, v9))
x8 + x9 ≥ 1 (ω({v8}, v6))
x9 + x10 ≥ 1 (ω({v9}, v7))

(note that in the last constraint, the variable x11 does not appear because the only

path from v10 to v7 passes through v9).

One optimal solution to the first set covering problem corresponds to the forest F1

whose set of edges is {e1, e7, e9}. The connected components of F1 are {v1, v2}, {v3}, {v4},
{v5}, {v6, v7}, {v8, v9}, {v10}. Notice that v2 and v6 belong to different components

of F1, and so do v6 and v8, and v7 and v9. Hence, one obtains L2 by adding to L1 the

constraints

x2 + x3 ≥ 1 (ω({v1, v2}, v6))
x6 + x8 ≥ 1 (ω({v6, v7}, vi) for i = 2, 8, 9)
x8 + x10 ≥ 1 (ω({v8, v9}, v6) and ω({v8, v9}, v7)).

An optimal solution F2 to the second set covering problem corresponds to the set of

edges {e2, e6, e8, e10}. One obtains L3 by adding to L2 the constraints

x4 ≥ 1

x5 + x7 ≥ 1

x7 + x9 ≥ 1

x5 + x9 ≥ 1.

An optimal solution F3 corresponds to {e2, e4, e7, e8, e9}. One obtains L4 by adding

the constraints

x5 + x10 ≥ 1

x6 + x10 ≥ 1.

19

An optimal solution F4 corresponds to {e2, e4, e7, e8, e9, e10}. This time F4 wraps T8.

Thus, F4 yields an optimal forest for s = 8. (One sees that F4 coincides with the

forest shown in Figure 5.)

One possible refinement of the algorithm is to use Propositions 5 and 6 to detect

edges which must be present in an optimal forest F (s). This is done by replacing Ts

by T ′
s.

Example 4. Consider again Example 2, with s = 8. At the beginning, the con-

nected components of T ′
8 = T8 are {v1}, {v2, v6, v8}, {v3}, {v4}, {v5}, {v7, v9} and

{v10}. Applying two times Proposition 5 shows that v3 and v4 must be in the same

cluster than v2, which we can express by adding to T8 the edges {v2, v3} and {v2, v4},
obtaining the new forest T ′

8. The connected components of T ′
8 are K1 = {v1},

K2 = {v2, v3, v4, v6, v8}, K3 = {v7, v9}, K4 = {v5}, K5 = {v10}. Since all paths

in H from v7 to v9 pass through a vertex from K2, we can merge K2 and K3 by

Proposition 5. The edges of a maximal spanning forest of the subgraph H(K2 ∪K3)

induced by K2∪K3 are e3, e4, e7, e8, e9. All these edges must be present in an optimal

forest F (8) by Proposition 6. The set of edges of the initial spanning forest F0 is

E1 = {e3, e4, e7, e8, e9}. Hence the connected components of F0 are {v2, v3, v4}, {v5},
{v6, v7, v8, v9} and {v10}. The initial set L1 of constraints is

x5 + x10 ≥ 1 (e.g., ω({v2, v3, v4}, v6))

x6 + x10 ≥ 1 (e.g., ω({v6, v7, v8, v9}, v2)).

The optimal solution of the set covering problem consists of the edge e10. The forest

F1 consisting of e10 and of the edges of E1 wraps T8 and hence it is an optimal F (8).

Therefore P4 =
{
{v1}, {v2, v3, v4, v6, v7, v8, v9}, {v5}, {v10}

}
is a connected partition

with split at least 8 and having the maximum number of clusters.

A further refinement of the exact algorithm consists in finding suboptimal —

rather than optimal — solutions to the set covering problems by means of some fast

heuristic, as long as new constraints are generated. As soon as a suboptimal solution

of some set covering problem yields a wrapping forest (possibly not having a minimum

number of edges), this problem is solved again, but this time up to optimality i.e.,

by an exact algorithm. Notice, however, that the optimal solution of the covering

problem so obtained may not correspond to a wrapping forest. In this case the

algorithm goes on, solving again heuristically and then exactly set covering problems

until the exact algorithm yields a solution which corresponds to a wrapping forest.

20

6.2 Formal description

We now give a formal description of the full version of the algorithm.

Algorithm ccmsc

Step 1: (Initialization)

Compute a minimum spanning tree T of G with respect

to lengths of the edges given by the dissimilarities;

S ← list of lengths of the edges of T , sorted in non-decreasing order;

s← first value of S; Ts ← G(V, ∅)

Step 2: (Preprocessing)

Use Proposition 5 to compute the forest T ′
s;

Use Proposition 6 to compute a set of edges E1 that must be present

in an optimal forest F (s);

Let F be the forest (V, E1);

heur ← false;

Let SC be the trivial set covering problem

min

∑
e∈E(H)\E1

xe

s.t. xe ∈ {0, 1}, e ∈ E(H) \ E1;

Step 3 (Wrapping test and constraint generation)

For all {vk, v`} in a same connected component of T ′
s do

If vk, v` belong to 2 different connected components C ′, C ′′ of F then

Update SC by adding the constraints
∑

e∈ω(C′,v`)

xe ≥ 1 and
∑

e∈ω(C′′,vk)

xe ≥ 1;

EndIf

EndFor;

If no constraint has been added then go to 5;

Step 4: (Heuristic solution of set covering subproblem)

heur ← true;

Find a suboptimal solution x̃ to SC by a heuristic;

Let F be the forest whose set of edges is E1 ∪ {e ∈ E(H) : x̃e = 1};
Go to 3;

Step 5: (Optimality test)

If heur = false then go to 7 {an optimal forest F (s) has been found};

Step 6: (Exact solution of set covering subproblem)

heur ← false

21

Find an optimal solution x∗ to SC;

Let F be the forest whose set of edges is E1 ∪ {e ∈ E(H) : x∗
e = 1};

Go to 3;

Step 7: (Output optimal partition)

M ← N − |E(F)|;
Let PM be the connected partition whose M clusters are the

connected components of F ; { in general s(PM) ≥ s};
Output s, M, PM , s(PM);

Step 8: Next split value

Let s be the smallest value in S satisfying s > s(PM);

If s does not exist then stop;

Let Ts be the forest {V, E(Ts)} with E(Ts) =
{
{vk, v`} ∈ E(T) | dk` < s

}
;

Go to 2.

Note that in Step 8, we can start from the tree Ts′′ obtained for the value s′′ of

the previous iteration and add the edges {vk, v`} such that s′′ ≤ dk` < s. Similarly, in

Step 2, the preprocessing can be somewhat sped up by considering only the changes

brought by the new edges.

Observe that the ccmsc algorithm usually provides optimal partitions for

some values of M but not for all; in other words, only some of the values of the

split s ∈ S correspond to optimal partitions under connectivity constraints with a

maximum number of clusters. For some applications, it may be desirable to find

partitions with a given number M of connected clusters and the largest possible split

under such conditions. One may proceed as follows. First, compute the split s of

the partition with M clusters using the single linkage algorithm (s is equal to the

(M − 1)th value of S). Next, apply the ccmsc algorithm with S = {s}. The variant

of the ccmsc algorithm so obtained will be denoted ccmsc(s). Let M ′ denote the

number of clusters obtained. If M ′ < M , apply ccmsc(s′) algorithm where s′ is

equal to the largest value of S smaller than s. Repeat the process until M ′ ≥ M . If

M ′ > M , use Proposition 4 to merge clusters until M ′ = M (note that this merging

step cannot result in an increase of the split).

6.3 Remark on the complexity of the algorithm

The ccmsc algorithm has to solve repeatedly set covering problems, which are NP-

hard. In this section, we show that it is even not possible in general to bound the

22

number of set covering problems to solve by a polynomial in N (or equivalently the

number of constraints in the last solved set covering problem).

Let us consider the graph H drawn in Figure 6 with N = p2 + 2. Assume

1 e
4 e

5 e
e

2

6
3

p+2
v

2p+1

e

p+1
vv

7

v

6
v

5
v

4
v

3
v

2
v

p

e
e

p +1
v 2

v
N

1
v

Figure 6: Contiguity graph H

that the dissimilarity between vertices v1 and vN is 1, that the dissimilarity between

vertices v1 and v2 is 2 and that the other dissimilarities are ≥ 2. For simplicity we

assume that all set covering problems are solved exactly (this is for example the case

if the heuristic is very good).

For the first threshold split value s = 1, the algorithm finds the granular

partition with N clusters, with split equal to 1. The next value in S is s = 2. The

forest T ′
s = Ts is reduced to the edge {v1, vN}, F is the forest composed of the N

isolated vertices and E1 = ∅. Since {v1, vN} belongs to T ′
s but v1 and vN are in

different connected components of F , we add the following constraints to the set

covering problem in Step 3:

x1 + . . . + xp ≥ 1

x|E(H)|−p+1 + . . . + x|E(H)| ≥ 1.

23

Observe that since we are minimizing
|E(H)|∑

i=1
xi, any variable not appearing in the con-

straints will be at 0 in any optimal solution. Observe furthermore that when we add

set covering constraints, new variables can be introduced only when the correspond-

ing edge is incident to an edge whose variable was at 1 in the optimal solution of the

previously solved set covering problem. This implies that at least during a certain

number of iterations, the constraints of the set covering problems can be partitioned

in two groups: one involving variables corresponding to edges that are close to v1, and

the other one involving variables corresponding to edges close to vN . The set covering

problems themselves can be decomposed accordingly. From now on, we focus on the

partial set covering problems associated to v1.

A subgraph of H is said to be a v1-rooted subtree if it is a tree containing

the vertex v1. Given a graph G, the v1-connected component of G is the connected

component of G containing v1. Note that a given set of vertices can be the v1-

connected component vertex set of more than one v1-rooted subtree.

We first need the following Lemma:

Lemma 1

As long as the set covering constraints associated to v1 and vN do not include common

variables, the ccmsc algorithm generates a sequence of blocks B(1)
v1

, B(2)
v1

, . . . , B(k)
v1

, . . .

of subgraphs of H, where:
a) each block B(k)

v1
contains v1-rooted subtrees of H with exactly k edges;

b) all v1-rooted trees of B(k)
v1

have a different v1-connected component vertex set;
c) for each possible v1-connected component vertex set with k + 1 vertices, there

exists in B(k)
v1

a v1-rooted tree with this v1-connected component vertex set.
The order in which the trees appear in a particular block is not relevant.

Proof: Since the set covering constraints are added at each iteration, the se-

quence of optimal values is non-decreasing, hence the sequence of solutions generated

has the block-structure indicated in the Lemma. Note also that since the set cov-

ering constraints are defined with respect to the connected component vertex set of

the current v1-rooted subtree, we cannot generate two subtrees with the same con-

nected component vertex set: this shows the point b). It remains to show that 1) no

subgraph of H other than trees containing v1 can be generated and that 2) for all

v1-connected component vertex set of size k +1, a v1-rooted subtree is generated. We

proceed by induction on k. The property is true for k = 1: at the beginning, the set

covering problem (recall that we consider only the part corresponding to v1) contains

24

the unique constraint

x1 + . . . + xp ≥ 1 (1)

expressing that at least one edge leaving v1 must be chosen. An optimal solution

of this set covering problem is obtained by fixing an arbitrary xi to 1. The new set

covering constraint that is added is then of the form

p∑
j=1,j 6=i

xj +
∑

e∈E(H):e={vi+1,v},v 6=vi

xe ≥ 1.

Again an optimal solution is obtained by fixing a variable x` to 1 (note however that

we must have ` 6= i, otherwise the just introduced constraint would be violated).

Using the same reasoning, we see that the algorithm enumerates the p solutions of

value 1. Each of these solutions corresponds to a v1-rooted subtree of H of size 1.

No other solution of value 1 can be obtained, since it would violate the constraint

(1). Moreover with each v1-connected component of 2 vertices we can associate a

v1-subtree.

Now assume that the property is true up to k. We want to show that it is still true up

to k+1. Assume first that a subgraph G of H that is not a v1-rooted tree is generated.

By the nature of the set covering constraints, G must be a forest, otherwise we could

strictly improve the solution by removing one of the edges of a cycle. Consider now

the connected component G′ of G containing v1: G′ is a v1-rooted subtree of H of size

≤ k. By the induction assumption, the set covering problem contains a constraint

relative to G′ (or more precisely, to its v1-connected component vertex set). Clearly

this constraint is violated by G, which shows that only v1-rooted subtrees of H can

be generated.

Now assume that there exists a v1-connected component vertex set S of H, with

k+2 vertices, that violates the set covering constraint associated with a v1-connected

component vertex set S ′ of size ≤ k + 2 previously generated. We show that this

leads to a contradiction. Since |S| ≥ |S ′| and S ′ 6= S, we cannot have S ⊆ S ′, hence

there exists a vertex u ∈ S \ S ′. Since S is v1-connected, there exists a path in H

joining v1 to u. But this path necessarily contains an edge joining a vertex of S ′ to a

vertex of S \ S ′, hence the set covering constraint corresponding to S ′ is satisfied, a

contradiction. Therefore all v1-connected component vertex sets of size k + 2 will be

generated, which completes the proof.

Proposition 8 The ccmsc algorithm can take a super-polynomial number of itera-

tions on some instances.

25

Proof: Consider again the graph H of Figure 6. By Lemma 1, the algorithm enu-

merates all v1-connected component vertex sets of the graph H in increasing order of

size. The shortest path between v1 and vN has length p + 1, hence there is still no

interference between the partial set covering problems corresponding to v1 and those

corresponding to vN when the algorithm enumerates the v1-connected component

vertex sets with bp
2
c + 1 vertices. This gives a lower bound of

(
p

b p
2
c

)
on the number

of iterations, which corresponds to the number of the v1-connected component vertex

sets with vertices in {v2, . . . , vp+1} (in addition of the vertex v1). Since p = O(
√

N),

the result follows.

Remark 3. The above result also holds for more general graphs and for more general

dissimilarity distributions. In particular, all what is needed in the proof of Proposition

8 is that the graph H satisfies the following properties:

• v1 has at least p neighbours v2, . . . , vp+1, with p = O(
√

N), such that from each

of these vertices there exists a path to vN not passing through v1;

• There exists at least 2 vertex-independent paths between v1 and vN (this ensures

that no preprocessing due to Proposition 5 occurs in Step 2);

• The shortest path between v1 and vN has length ≥ p + 1.

Note also that Proposition 8 is still true if instead of considering v1-connected com-

ponent vertex sets with bp
2
c + 1 vertices with p = O(

√
N), we consider v1-connected

component vertex sets with bp
c
c + 1 vertices with p = O

(
N

1
c′

)
where c and c′ are

integer constants ≥ 2.

Finally there may be more than one dissimilarity with value 1. The simplest way

to obtain such an instance is to consider c′′ copies of H, where c′′ is a constant, and

merge the vertices v1 of each copy together in order to obtain a connected graph.

7 Another heuristic for general graphs

Exact solution of the set covering subproblems is by far the most time-consuming part

of the ccmsc algorithm. Quite often the heuristic of Step 4 is sufficient to find an

optimal solution and Step 6 only aims at proving optimality of this solution. When

large instances or dense contiguity graphs H are considered, computing time necessary

for exact solution becomes prohibitive. Then another heuristic for connected max

26

split graph clustering is obtained by only solving heuristically the set covering

problems. Modifications to be made to the ccmsc algorithm are: (i) deletion of Steps

5 and 6 and (ii) move to Step 7 instead of Step 5 when Step 3 shows a wrapping has

been obtained. We call hcover the heuristic obtained in this way.

The set covering algorithm used in ccmsc and hcover is close to that of

Fisher and Kedia (1990). We used the primal heuristic and the first and third dual

heuristics that they proposed.

8 Computational experience

All heuristic algorithms (htree, pathtree, distree, hcover) as well as the exact

ccmsc algorithm for general graphs proposed in this paper have been tested on a

sun Enterprise-10000 computer (400 Mhz, 64 G). Seven test problems have been

considered. The first five of them (tuscany, rome, campany, latium, upper

latium) are regional clustering problems from Maravalle and Simeone (1995). Their

characteristics are recalled in Table 2. The graph H expresses contiguity between

Test problem N |E(H)| density = |E(H)|
N

characteristics

tuscany 287 773 2.69 1
rome 121 302 2.50 1
campany 81 165 2.04 6
latium 412 566 1.37 1
upper latium 210 331 1.58 5
paris 90 444 4.93 -
usa 48 212 4.42 -

Table 2: Characteristics of the test problems

districts in the city for the rome problem. For the other four problems, the ver-

tices represent towns and the edges represent major roads between towns. Thus all

graphs are planar or nearly planar. Dissimilarities are Euclidean distances between

measurements of 1 to 6 socio-economic characteristics. Two additional test problems

(paris, usa) have been constructed. For the paris problem, the entities correspond

27

to the districts of Paris and its surroundings. The graph H represents the contigu-

ity between districts. For the usa problem, the entities correspond to the states of

usa and the graph H represents the contiguity between states (the states Hawai and

Alaska were removed in order to have a connected graph). For these four problems,

the dissimilarity values are drawn at random in a uniform distribution on the interval

[0, 1]. The dissimilarity matrices and the contiguity graphs for all these 7 instances

are available on the web site www.crt.umontreal.ca/∼sphinx1.

The remaining of this section is organized as follows. In Section 8.1, we com-

pare the performance of the four heuristics for all values of the threshold split on the

Campany instance. In Section 8.2, we do a similar analysis for the other instances

but for a small subset of the threshold values. Finally in Section 8.3, we consider the

variant of the exact ccmsc algorithm that gives a partition with the largest possible

split for a specified number of clusters.

8.1 Heuristic solution of Campany for all values of the thresh-
old

We first solved the Campany instance for all values of the threshold split by the four

heuristics (recall that the threshold values are considered in increasing order). The

computing times (in seconds) were the following: htree: 0.05s, pathtree: 0.14s,

distree: 0.04s, hcover: 1107182s (12 days 19 hours 33 minutes). The distribution

of the time for hcover is given in Figure 7. We observe that the computing time

is reasonable for roughly the 17 smallest threshold values and the 27 greatest values,

but explodes for intermediate values.

Since solving exactly campany was not possible, we evaluate the quality of

the heuristics with respect to the best value found by the 4 heuristics. Figure 8 rep-

resents the difference with respect to the best value (i.e., the number of clusters), for

each heuristic and for each value of the threshold. The best results are obtained by

the htree and hcover heuristics. Heuristic distree performs particularly badly

for the first half of the threshold values: this is due to the fact that the 2 clusters

that have to be merged at the very beginning are connected together by a long path,

and hence all clusters that are on this path must also be merged with the 2 clusters.

Another way to look at the results of Figure 8 is given in Table 3, which gives

for each heuristic the number of times the solution found was the best one, the second

28

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70 80

co
m

pu
tin

g
tim

e
(in

 s
ec

on
ds

)

index of the split threshold

Figure 7: Repartition of the computing time for hcover

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

re
la

tiv
e

of

 c
lu

st
er

s

index of the split threshold

htree
distree

pathtree
hcover

Figure 8: Difference to the best value for the 4 heuristics

29

best one, the third best one, etc... Note that htree finds the best solution slightly

more often than hcover does. However if we consider rank 1 and 2 together, hcover

wins clearly, at least with respect to the quality of the solution found (hcover

takes considerably much more time through). distree and pathtree are clearly

outclassed.

| htree | distree | pathtree | hcover

--

1 | 47 | 8 | 3 | 45

2 | 19 | 22 | 13 | 33

3 | 14 | 23 | 41 | 2

4 | 0 | 27 | 23 | 0

Table 3: Number of times each rank is obtained for Campany

Table 4 gives some more additional indicators for the first 10% smallest thresh-

old values, the last 10%, and some intermediate values. For hcover, these indicators

are defined as follows: merge1 is the number of merges starting from the canonical

partition (i.e., the partition where each entity defines a cluster) in order to obtain Ts;

merge2 is the number of additional merges done using the preprocessing of Proposi-

tion 5 to obtain T ′
s; iter is the number of iterations through Step 4 of the algorithm.

This number also corresponds to the number of set covering problems solved. The

indicators ncon and nvar represent respectively the number of constraints and vari-

htree pathtree distree hcover
i si M split M split M split M split merge1 merge2 iter ncon nvar tcpu

2 8.01 79 8.01 78 8.01 68 8.01 79 8.01 1 0 3 6 27 0.00
3 8.22 73 8.22 73 8.22 53 8.22 72 8.22 2 0 60 135 94 17.89
4 10.52 72 10.52 72 10.52 52 10.52 71 10.52 3 0 60 135 94 18.02
5 13.56 71 13.56 68 13.56 51 13.80 70 13.56 4 0 60 135 94 17.70
6 13.80 69 13.80 63 13.80 51 13.80 69 13.80 5 0 27 89 78 4.48
7 14.10 65 14.10 60 14.10 49 15.24 62 14.33 6 0 44 175 121 18.47
8 14.33 64 14.33 59 14.33 49 15.24 64 14.33 7 0 21 93 90 3.75
9 15.24 62 15.24 58 15.24 49 15.24 63 15.24 8 0 31 136 89 9.26
17 17.28 43 17.28 38 17.28 30 17.28 41 17.28 16 0 123 831 164 282.60
25 19.95 34 19.95 27 19.95 22 19.95 27 19.95 24 0 533 2896 168 5229.28
33 22.67 25 22.67 20 22.67 19 22.67 22 23.25 32 0 572 3218 168 6501.25
40 23.86 20 23.86 15 23.86 16 23.86 23 23.86 41 4 102 570 132 185.40
50 25.69 14 25.69 10 25.86 12 26.59 17 25.69 49 8 35 135 90 15.98
58 27.45 11 27.45 9 28.99 11 27.67 15 27.45 57 5 18 47 59 2.35
66 29.92 6 31.78 5 31.78 6 37.94 10 31.78 65 5 1 2 13 0.00
74 38.07 4 38.07 3 38.07 5 38.07 7 38.07 73 1 0 0 0 0.00
75 39.62 3 41.00 2 41.00 4 41.00 6 39.62 74 1 0 0 0 0.01
76 41.00 3 41.00 2 41.00 4 41.00 5 41.00 75 1 0 0 0 0.01
77 41.03 2 44.57 1 ∞ 3 44.57 3 44.57 76 2 0 0 0 0.01
78 44.57 2 44.57 1 ∞ 3 44.57 3 44.57 77 1 0 0 0 0.01
79 50.49 1 ∞ 1 ∞ 2 51.56 2 51.56 78 1 0 0 0 0.00
80 51.56 1 ∞ 1 ∞ 2 51.56 2 51.56 79 0 0 0 0 0.01

tcpu 0.05 0.14 0.04

Table 4: Results of the heuristics for Campany (N = 81)

30

ables in the last set covering problem solved. Finally tcpu is the total computing time

in seconds.

We observe that for the largest values of the threshold, the preprocessing step

is sufficient to solve the problem with hcover and the computing time is very small.

For intermediate values of the threshold, when the preprocessing does not allow any

reduction of the problem, hcover can take much more time than the other heuristics

while giving a solution of poorer quality.

8.2 Heuristic solution of the other instances

In most practical applications, the partitions of interest are those with a relatively

small number of clusters. Such partitions are obtained for the largest threshold values.

Table 5 presents the results obtained by the heuristics on the other instances when

seeking a partition with split at least equal to the ith threshold value si, for large

i. A limit of 10 hours was set for each run. The sign > in the tcpu column means

that the problem was not solved within that time. Since for the htree, pathtree

and distree heuristics, the program gives in one run the results for all values of the

threshold, the overall computing time is indicated in the last line for these heuristics.

hcover almost always provide the best results, within a reasonable computing time.

The most notable exception is for the Rome instance: for i = 98, hcover finds a

partition with 12 clusters after more than 16000s, whereas htree was able to find a

partition with 14 clusters in less than 1s. For i = 86 and i = 110, hcover is not even

able to finish within the allowed computing time. hcover is also not able to solve

the Paris2 instance for i = 64. Among the tree-based heuristics, htree generally

gives the best results, except for Latium and Upper Latium where it is clearly

beaten by distree.

31

htree pathtree distree hcover
i si M split M split M split M split merge1 merge2 iter ncon nvar tcpu

Tuscany
231 1.20 32 1.20 31 1.20 31 1.20 35 1.20 230 20 1 4 20 0.08
259 2.10 13 2.50 13 2.50 12 2.50 15 2.50 258 14 0 0 0 0.05
278 10.10 4 12.90 4 12.90 4 12.90 5 10.50 277 5 0 0 0 0.05
279 10.50 4 12.90 4 12.90 4 12.90 5 10.50 278 4 0 0 0 0.05
280 12.90 4 12.90 4 12.90 4 12.90 4 12.90 279 4 0 0 0 0.05
281 13.30 3 14.30 3 14.30 3 14.30 3 14.30 280 4 0 0 0 0.06
282 14.20 3 14.30 3 14.30 3 14.30 3 14.30 281 3 0 0 0 0.05
283 14.30 3 14.30 3 14.30 3 14.30 3 14.30 282 2 0 0 0 0.05
284 25.80 2 29.30 2 29.30 2 29.30 2 29.30 283 2 0 0 0 0.05
285 29.30 2 29.30 2 29.30 2 29.30 2 29.30 284 1 0 0 0 0.05
286 62.70 1 ∞ 1 ∞ 1 ∞ 1 ∞ 285 1 0 0 0 0.04

tcpu 0.66 1.84 0.47

Rome
86 2.63 23 2.63 13 2.63 12 2.63 - - - - - - - >
98 5.12 14 5.12 7 5.12 5 6.19 12 5.12 97 1 956 3260 132 16865.16
110 9.20 4 12.91 3 12.91 4 12.91 - - - - - - - >
112 12.56 4 12.91 3 12.91 4 12.91 4 12.91 111 0 273 957 121 1509.11
113 12.91 4 12.91 3 12.91 4 12.91 4 12.91 112 0 104 347 113 219.67
114 15.59 3 16.98 2 43.66 3 16.98 3 16.98 113 0 152 489 113 457.50
115 16.98 3 16.98 2 43.66 3 16.98 3 16.98 114 4 0 0 0 0.01
116 17.29 2 43.66 2 43.66 2 43.66 2 43.66 115 4 0 0 0 0.01
117 20.78 2 43.66 2 43.66 2 43.66 2 43.66 116 3 0 0 0 0.01
118 23.38 2 43.66 2 43.66 2 43.66 2 43.66 117 2 0 0 0 0.00
119 43.66 2 43.66 2 43.66 2 43.66 2 43.66 118 1 0 0 0 0.01
120 70.28 1 ∞ 1 ∞ 1 ∞ 1 ∞ 119 1 0 0 0 0.01

tcpu 0.11 0.30 0.07

Latium
331 1.70 21 1.70 21 1.70 25 1.70 27 1.70 325 57 4 15 21 0.24
372 2.80 14 3.10 14 3.10 18 3.10 19 3.10 371 21 3 6 13 0.16
403 17.30 2 243.00 3 26.60 6 26.60 6 26.60 402 4 0 0 0 0.11
404 25.50 2 243.00 3 26.60 6 26.60 6 26.60 403 3 0 0 0 0.11
405 26.60 2 243.00 3 26.60 6 26.60 6 26.60 404 2 0 0 0 0.11
406 29.50 2 243.00 2 243.00 5 29.50 5 29.50 405 2 0 0 0 0.11
407 48.60 2 243.00 2 243.00 4 80.80 4 80.80 406 2 0 0 0 0.10
408 80.80 2 243.00 2 243.00 4 80.80 4 80.80 407 1 0 0 0 0.11
409 130.10 2 243.00 2 243.00 3 243.00 3 243.00 408 1 0 0 0 0.09
410 243.00 2 243.00 2 243.00 3 243.00 3 243.00 409 0 0 0 0 0.06
411 529.90 1 ∞ 1 ∞ 2 529.90 2 529.90 410 0 0 0 0 0.06

tcpu 1.00 2.66 0.99

Upper Latium
169 4.84 19 4.84 15 4.84 16 4.84 29 4.84 168 10 11 42 86 0.88
190 14.01 8 14.01 4 14.01 10 14.01 16 14.00 189 4 3 6 34 0.05
201 33.99 4 48.14 2 56.97 7 33.99 9 33.99 200 1 0 0 0 0.04
202 48.14 4 48.14 2 56.97 6 48.14 8 48.14 201 1 0 0 0 0.03
203 54.26 3 54.26 2 56.97 4 54.26 6 54.25 202 1 1 2 7 0.04
204 56.97 2 56.97 2 56.97 3 56.97 4 56.96 203 3 0 0 0 0.04
205 57.93 1 ∞ 1 ∞ 2 239.85 2 239.84 204 4 0 0 0 0.03
206 103.73 1 ∞ 1 ∞ 2 239.85 2 239.84 205 3 0 0 0 0.03
207 239.85 1 ∞ 1 ∞ 2 239.85 2 239.84 206 2 0 0 0 0.02
208 246.92 1 ∞ 1 ∞ 1 ∞ 1 ∞ 207 2 0 0 0 0.02
209 780.07 1 ∞ 1 ∞ 1 ∞ 1 ∞ 208 1 0 0 0 0.02

tcpu 0.26 0.72 0.21

Paris
64 1.49 13 1.49 10 1.49 9 1.49 18 1.49 63 7 3 6 16 0.02
73 1.87 11 1.87 7 1.97 6 1.87 15 1.87 72 3 0 0 0 0.00
82 3.02 9 3.29 4 3.29 1 ∞ 8 3.29 81 1 0 0 0 0.00
83 3.29 8 3.29 4 3.29 1 ∞ 8 3.29 82 0 0 0 0 0.00
84 3.47 7 3.47 3 3.47 1 ∞ 7 3.47 83 0 0 0 0 0.00
85 4.49 6 4.49 2 4.67 1 ∞ 6 4.48 84 0 0 0 0 0.01
86 4.67 5 4.67 2 4.67 1 ∞ 5 4.67 85 0 0 0 0 0.00
87 4.75 4 4.78 1 ∞ 1 ∞ 4 4.78 86 0 0 0 0 0.00
88 5.39 3 5.39 1 ∞ 1 ∞ 3 5.39 87 0 0 0 0 0.01
89 6.28 2 6.28 1 ∞ 1 ∞ 2 6.27 88 0 0 0 0 0.01

tcpu 0.08 0.19 0.06

USA
35 3.74 12 3.82 8 3.82 9 3.82 13 3.82 34 1 0 0 0 0.01
39 3.97 9 3.97 6 3.97 5 3.97 10 3.96 38 0 0 0 0 0.00
44 5.95 5 5.95 4 5.95 3 5.95 5 5.94 43 0 0 0 0 0.01
45 6.14 4 6.14 3 6.14 2 6.70 4 6.14 44 0 0 0 0 0.00
46 6.30 3 6.30 2 6.70 2 6.70 3 6.30 45 0 0 0 0 0.00
47 6.70 2 6.70 2 6.70 2 6.70 2 6.70 46 0 0 0 0 0.00

tcpu 0.02 0.06 0.02

Table 5: Comparison of the heuristics32

8.3 Performance of the exact algorithm for the search of par-
titions with specified number of clusters and largest pos-
sible split

Finally results with the exact ccmsc algorithm are reported in Table 6.

M nbcalls M ′ iter-heur iter-exact mmax split cpu heur cpu exact tcpu

Tuscany
7 7 8 0 0 0 6.70 0 0 0.29
8 6 8 0 0 0 6.70 0 0 0.25
9 6 10 0 0 0 5.40 0 0 0.23

10 5 10 0 0 0 5.40 0 0 0.21
29 8 32 9 5 7 1.30 0.01 0.00 0.46

Rome
3 5 3 0 0 0 16.983 0 0 0.04
4 - - - - - - - - >
5 - - - - - - - - >

Campany
7 2 7 0 0 0 38.07 0 0 0.01
8 2 8 0 0 0 37.94 0.00 0.00 0.01

16 8 16 37 18 17 27.67 1.43 0.17 1.69
24 ≥ 9 ≥ 19 ≥ 533 ≥ 117 ≥ 373 ≥ 25.69 ≥ 503.70 ≥ 17188.05 >
65 - - - - - - - - >
73 7 73 430 37 288 8.22 191.69 421.22 613.33

Latium
8 4 8 0 0 0 15.70 0 0 0.38
9 5 9 3 1 6 9.80 0 0 0.53

10 10 10 21 7 6 7.10 0 0 1.33
41 17 45 87 33 23 1.20 1.14 0.05 4.66

Upper Latium
7 3 8 1 1 2 48.14 0 0 0.10
8 2 8 1 1 2 48.14 0 0 0.06
9 2 9 0 0 0 33.99 0 0 0.06

10 4 10 0 0 0 20.08 0 0 0.12
21 11 21 36 14 10 7.4189 0.02 0.00 0.61

Paris
7 1 7 0 0 0 3.47 0 0 0.00
8 1 8 0 0 0 3.29 0 0 0.00
9 3 9 0 0 0 2.80 0 0 0.02

18 9 18 12 4 6 1.51 0 0 0.07

USA
4 1 4 0 0 0 6.14 0 0 0.01
5 1 5 0 0 0 5.95 0 0 0.01

10 1 10 0 0 0 3.96 0 0 0.00

Table 6: Performance of the exact algorithm

33

We use the variant of the ccmsc algorithm which provides the optimal parti-

tion for a fixed value of M . As explained at the end of Section 6.2, this may require

several applications of algorithm ccmsc(s): the parameter nbcalls indicates the num-

ber of calls to ccmsc(s). M ′ is the number of clusters of the partition found after

the last call of ccmsc(s). The parameters iter-heur and iter-exact are, respectively,

the total numbers of heuristic and exact applications of the set covering algorithm in

the overall process; cpu-heur and cpu-exact are the corresponding computing times.

The parameter mmax corresponds to the maximum number of constraints in all set

covering problems solved. Finally tcpu gives the total computing time.

The computing times for the Rome problem was prohibitive, even for M = 4 (the

algorithm get stuck when trying to solve exactly a set covering problem with 302 vari-

ables and 1266 constraints). However the other problems, including large ones, could

be solved optimally for values of M going up to 9 to 16, depending on the problem.

As in most applications, the user is only interested in small number of clusters, the

exact ccmsc algorithm is therefore quite efficient and competitive with the heuristics

as for the computing times.

9 Conclusions

Connectivity constraints are among the most frequent types of constraints encoun-

tered in cluster analysis. Maximizing the split, i.e., the measure of separation used

in the single-linkage algorithm, subject to such constraints is strongly np-hard. How-

ever, it is possible to solve exactly many such problems with possibly several hundred

entities using tools from combinatorial optimization (graph theory and set covering

algorithms) provided the number of clusters is not too large. Moreover, if the con-

tiguity graph is a tree, this problem can be solved in Θ(N2) time with algorithm

ctree. Very large problems, or difficult ones for which partitions into many clusters

are sought, can be solved heuristically. A heuristic version of the set covering type

algorithm, hcover, can give very good results but may be very time consuming. The

3 other heuristics, which are different adaptations of ctree, provide in a very short

amount of time results whose quality however depends on the instances. In view of

these short computational times, an improved procedure can be obtained by running

the 3 heuristics and keeping the best solution of each (actually we can consider only

htree and distree as pathtree turns out to be then dominated).

34

References

[1] A. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, 1974.

[2] R. E. Bellman and S. E. Dreyfus. Applied dynamic programming. Princeton

University Press, Princeton, N. J., 1962.

[3] C. Berge. Graphs and hypergraphs. North Holland, Amsterdam, 1973.

[4] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM J.

Comput., 5:724–742, 1976.

[5] H. E. Day and H. Edelsbrunner. Efficient algorithms for agglomerative hierar-

chical clustering methods. Journal of Classification, 1:7–24, 1984.

[6] M. Delattre and P. Hansen. Bicriterion cluster analysis. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI, 2(4):277–291, 1980.

[7] E. Diday and collaborateurs. Optimisation en classification automatique. Tome

1,2. Le Chesnay: Institut National de Recherche en Informatique et Automa-

tique, 1979.

[8] A. Ferligoj and V. Batagelj. Clustering with relational constraints. Psychome-

trika, 47(4):413–426, 1982.

[9] A. Ferligoj and V. Batagelj. Some types of clustering with relational constraints.

Psychometrika, 48(4):541–552, 1983.

[10] M. L. Fisher and P. Kedia. Optimal solution of set covering / partitioning

problems using dual heuristics. Management Science, 36(6):674–688, 1990.

[11] W. D. Fisher. On grouping for maximum homogeneity. Journal of the American

Statistical Association, 53:789–798, 1958.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, 1979.

[13] A. D. Gordon. Classification in the presence of constraints. Biometrics, 29:821–

827, 1973.

35

[14] A. D. Gordon. Methods of constrained classification. In R. Tomassone, editor,

Analyse de Données et Informatique, pages 161–171. INRIA, Le Chesnay, 1979.

[15] A. D. Gordon. Classification: Methods for the Exploratory Analysis of Multi-

variate Data. Monographs on Applied Probability and Statistics. Chapman &

Hall, New-York, 1981.

[16] A. D. Gordon. A survey of constrained classification. Computational statistics

& Data Analysis, 1:17–29, 1996.

[17] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster

analysis. Applied Statistics, 18:54–61, 1969.

[18] P. Hansen, B. Jaumard, and K. Musitu. Weight-constrained maximum split

clustering. Journal of Classification, 7:217–240, 1990.

[19] J. A. Hartigan. Clustering Algorithms. Wiley, New-York, 1975.

[20] L. Hubert. Monotone invariant clustering procedures. Psychometrika, 38(1):47–

62, 1973.

[21] N. Jardine and R. Sibson. Mathematical taxonomy. Wiley, New-York, 1971.

[22] L. Kaufman and P. T. Rousseeuw. Finding Groups in Data: An Introduction to

Cluster Analysis. Wiley, New-York, 1989.

[23] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proc. Am. Math. Soc., 7:48–50, 1956.

[24] L. Lebart. Programme d’agrégation avec contraintes. Les Cahiers de l’Analyse

des Données, III(3):275–287, 1978.

[25] L. P. Lefkovitch. Conditional clustering. Biometrics, 36:43–58, 1980.

[26] M. Lucertini, Y. Perl, and B. Simeone. Most uniform path partitioning and its

use in image processing. Discrete Applied Mathematics, 42(2-3):227–256, 1993.

[27] M. Maravalle and B. Simeone. A greedy algorithm for maximum split clustering

on trees. Research Report 4 (serie A), Dipartimento di Statistica, Probabilità e

Statistiche Applicate, Università degli studi di Roma “La Sapienza”, 1985.

[28] M. Maravalle and B. Simeone. A spanning tree heuristic for regional clustering.

Communications in Statistics - Theory and Methods, 24:625–639, 1995.

36

[29] M. Maravalle, B. Simeone, and R. Naldini. Clustering on trees. Computational

Statistics and Data Analysis, 24:217–234, 1997.

[30] P. Monestiez. Méthode de classification automatique sous contraintes spatiales.

Statistique et Analyse des Données, 3:75–84, 1977.

[31] F. Murtagh. A survey of algorithms for contiguity-constrained clustering and

related problems. The Computer Journal, 28:82–88, 1985.

[32] C. Perruchet. Constrained agglomerative hierarchical classification. Pattern

Recognition, 16(2):213–217, 1983.

[33] M. R. Rao. Cluster analysis and mathematical programming. Journal of the

American Statistical Association, 66:622–626, 1971.

[34] P. Rosenstiehl. L’arbre minimum d’un graphe. In P. Rosenstiehl, editor, Théorie

des Graphes, Rome, I.C.C., pages 357–368. Dunod, 1967.

[35] A. J. Scott. Combinatorial Programming, Spatial Analysis, and Planning.

Methuen, London, 1971.

[36] B. Simeone. Optimal graph partitioning. Atti Giornate di Lavoro AIRO, Urbino,

pages 57–73, 1978.

[37] H. Späth. Cluster Analysis Algorithms for Data Reduction and Classification of

Objects. Chichester, Horwood, 1980.

37

