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Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2025-06) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: Q. Zhou, M. Gümüş, S. Miao (January
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– Library and Archives Canada, 2025

GERAD HEC Montréal
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Abstract : Motivated by our collaboration with an online platform operating in North America, we
explore the joint optimization of the order fulfillment process with personalized delivery options in the
context of e-commerce. Customers can choose from personalized fulfillment options to proceed with
the purchase or leave with no purchase. The retailer periodically makes fulfillment decisions and relies
on multiple logistic providers to perform the fulfillment operations. We model customer behavior
with a general discrete choice model and formulate the joint optimization as a stochastic dynamic
program. We propose a tractable deterministic approximation and develop a computationally efficient
heuristic with a provable performance guarantee. We also extend the proposed heuristic to scenarios
when customer behaviors are more complex and affected by fulfillment speed, cost, and order value.
Using real datasets collected from our industrial partner, we demonstrate the value of personalizing
fulfillment options for the customers and jointly optimizing the options with fulfillment assignments.
Our results show that demand management via personalized fulfillment options is prominent when
customers favor quicker fulfillment and when the fulfillment capacity is limited. However, an optimized
fulfillment operation becomes more critical when customers are more willing to wait.

Keywords: Fulfillment optimization, personalized delivery, e-commerce

Résumé : Motivés par notre collaboration avec une plateforme en ligne opérant en Amérique du Nord,
nous explorons l’optimisation conjointe du processus d’exécution des commandes avec des options
de livraison personnalisées dans le contexte du commerce électronique. Les clients peuvent choisir
parmi des options d’exécution personnalisées de procéder à l’achat ou de repartir sans avoir acheté.
Le détaillant prend périodiquement des décisions d’exécution et fait appel à plusieurs fournisseurs
logistiques pour effectuer les opérations d’exécution. Nous modélisons le comportement du client à
l’aide d’un modèle général de choix discret et formulons l’optimisation conjointe sous la forme d’un
programme dynamique stochastique. Nous proposons une approximation déterministe traçable et
développons une heuristique efficace en termes de calcul avec une garantie de performance prouvée.
Nous étendons également l’heuristique proposée à des scénarios où les comportements des clients sont
plus complexes et affectés par la vitesse d’exécution, le coût et la valeur de la commande. En utilisant
des ensembles de données réelles collectées auprès de notre partenaire industriel, nous démontrons la
valeur de la personnalisation des options d’exécution pour les clients et de l’optimisation conjointe des
options avec les affectations d’exécution. Nos résultats montrent que la gestion de la demande par le
biais d’options d’exécution personnalisées est importante lorsque les clients préfèrent une exécution plus
rapide et lorsque la capacité d’exécution est limitée. Cependant, une opération d’exécution optimisée
devient plus critique lorsque les clients sont plus disposés à attendre.

Mots clés : Optimisation de l’exécution, livraison personnalisée, commerce électronique

Acknowledgements: The authors thank GERAD for funding the presentation of this work at 2024
INFORMS Annual Meeting.
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1 Introduction

Customer shopping behaviors have been significantly reshaped since the COVID-19 pandemic. There is

a persistent trend of customers favoring online shopping, leading to e-commerce accounting for nearly

19% of global retail sales, reaching approximately $5.2 trillion (eMarketer 2023). This trend also

catalyzes the adoption of online shopping in previously unexpected sectors, such as grocery shopping.

A recent industry report valued the global online grocery market at $50.28 billion in 2022, estimating

it to reach a value of $305.13 billion by 2030, with an annual growth rate of 26.8% throughout the

forecast period (Grand View Research 2022).

As customers increasingly gravitate towards online shopping, they are drawn to retailers providing

personalized delivery services. While fast and cheap fulfillment remains preferable for most consumers,

a rising number of shoppers now express heterogeneous preferences for receiving their orders. Speed,

cost, convenience, and eco-friendliness are among the key factors that impact customer preference for

fulfillment options (Digital Commerce 360 2023). Thus, offering diversified options such as standard

shipping, express shipping, attended home delivery, and out-of-home delivery has become increasingly

popular among practitioners. However, although various options can help increase conversions, they

complicate the fulfillment operations and require seamless integration of multiple fulfillment methods

to cater to the varied needs of the customers (Wolfe 2024). As a result, online retailers are urged to

pair diversified customer expectations with complex and expensive fulfillment operations. It is crucial

for online retailers to ensure that they not only meet these expectations but also optimize the delivery

process. The primary objective of this paper is to address these challenges by jointly optimizing the

personalized fulfillment options and the fulfillment process within an e-commerce context.

The setting of this paper is motivated by our collaboration with one of the online grocery platforms

in North America. This company enables online shoppers to purchase groceries from various suppliers,

offering them personalized fulfillment options at checkout. As depicted in Figure 1, customers are

presented with a three-level choice. They have to choose either home or out-of-home delivery options,

then specify a delivery date and (if needed) a pickup location such as a convenience store, a restaurant,

or a warehouse. In addition, they also need to indicate a time slot for the pickup. To facilitate these

services, the company partners with third-party trucking companies and local convenience stores,

restaurants, etc.

Figure 1: The personalized delivery options page from our industrial partner

The core challenge faced by our partner involves efficiently managing these varied fulfillment options

to optimize customer satisfaction and operational efficiency. They encounter difficulties in predicting
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customer preferences for different fulfillment options and coordinating the logistic capacities of various

partners. The complexity is further amplified by fluctuating demand patterns and the need to minimize

costs while maintaining service quality.

To address these issues, we adopt a general discrete choice model, which allows us to incorpo-

rate various customer behaviors when they shop online. Additionally, we develop a stochastic model

that jointly optimizes the display of fulfillment options and the operations of fulfilling orders. This

model aims to balance the trade-offs between customer satisfaction, characterized by the availability of

preferred fulfillment options, and operational efficiency, which involves minimizing logistics costs and

optimizing resource allocation. The integration of these models provides a comprehensive approach

to enhance the decision-making process in e-commerce fulfillment, contributing to both theoretical

understanding and practical improvements in e-commerce supply chain management.

1.1 Main contributions

We consider a multi-period joint optimization of personalized fulfillment options and assignments for

companies involved in delivery and fulfillment services. Such companies include e-commerce platforms

like Amazon or delivery services like Instacart, Shipt, and our industrial partner, specializing in local

grocery delivery. The decisions include what fulfillment options to show customers and how to fulfill

orders, aiming to maximize total expected profits. To the best of our knowledge, this is among the

first studies in the literature to address the dynamic aspect of fulfillment flexibility and assignment

problems. This focus is notable, given the significant impact of the problem in enabling companies

to satisfy customers and maximize profits in e-commerce contexts. Our results and contributions are

summarized as follows:

1. We formulate the problem as a joint stochastic program incorporating a general discrete choice

model, where each fulfillment option specifies the latest fulfillment time and a fixed surcharge. We pro-

pose a tractable deterministic (fluid) approximation, replacing random variables with their expected

values and constraining fulfillment option display decisions to be static and randomized. We show that

this deterministic approximation serves as an upper bound for our original problem. Furthermore, fo-

cusing on the deterministic setting, we show that an optimal list of fulfillment options must be efficient

in that it maximizes expected revenue while optimizing fulfillment resource utilization. However, this

result cannot be extended to the original stochastic setting, which motivates to adjust an option list

dynamically.

2. We develop a two-phase algorithm called the “Economic option, Rounded and Threshold ful-

fillment” policy (ERT) as depicted in Figure 2. In the initial (offline) phase, ERT generates a set

of efficient assortments and solves the deterministic relaxation to form referenced assortment and ful-

fillment decisions. In the subsequent (online) phase, ERT iteratively engages in personalization and

fulfillment stages throughout the planning cycle. During the delivery personalization stage, the al-

gorithm starts with efficient assortments. It dynamically excludes economically nonviable fulfillment

options based on customer location and the current state of orders to be fulfilled. In the fulfillment

stage, the algorithm consolidates all orders. Then, it allocates them to the appropriate warehouses

according to a threshold-based policy determined based on a fulfillment cost function.

3. We provide a performance guarantee for the ERT algorithm. Our analysis shows that the

optimality gap of ERT increases at a rate of O(TMK
√
KΛN), with T representing the number of

fulfillment cycles, M the number of warehouses, N the number of customer locations, K the maximum

length of a fulfillment window offered to customers, and Λ the largest customer arrival rate. Specifically,

the sub-linear growth in N and Λ suggests that ERT achieves asymptotic optimality as the number

of customer locations or the number of arriving customers per location increases, a scenario commonly

encountered by numerous online retailers, including our industrial partner.

4. Beyond these methodological contributions, our study generates managerial insights for an

effective joint strategy in managing demand (through personalized fulfillment options) and capacity
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Figure 2: The overall diagram of our proposed (ERT) algorithm

(via fulfillment assignments), substantiated with real datasets collected from our industrial partner.

Our numerical study indicates that while optimizing personalized fulfillment options and assignments

is crucial, their roles vary in different scenarios. More specifically, when customers favor quicker

fulfillment options, demand management is prominent. Conversely, capacity management becomes

more critical when customers prefer more cost-effective (but slower) fulfillment options. Furthermore,

demand management is more pivotal when fulfillment capacity is limited, but as capacity increases,

the focus shifts toward capacity management.

1.2 Organization

The remainder of this paper is organized as follows. In §2, we review the related literature. We

present the detailed model formulation in §3 and introduce choice-based deterministic relaxation in §4.
Utilizing the solution to the relaxation, we develop a heuristic and show its theoretical performance

guarantee in §5. We conduct extensive numerical studies of our proposed heuristic policy and present

managerial insights in §6. In §7, we extend the formulation to the scenario where customers are

sensitive to both the speed and the cost of a fulfillment option and demonstrate the consistency and

robustness of the proposed heuristic with additional numerical studies. §8 concludes the paper.

2 Literature review

Our paper falls within the general theme of fulfillment optimization (refer to reviews by Acimovic and

Farias 2019 and Qi et al. 2020). However, to the best of our knowledge, ours is among the first to

explore fulfillment optimization with personalized delivery options. There are three streams of research

closely related to our paper.

E-commerce order fulfillment. The first stream investigates e-commerce fulfillment. Prior work in

this stream has examined order consolidation (Xu et al. 2009), single- and multi-item fulfillment under

limited inventory conditions (Acimovic and Graves 2015, Jasin and Sinha 2015), and omnichannel

retailing (Andrews et al. 2019).

Two specific sub-streams are particularly relevant to our study. The first involves the integration

of pricing and fulfillment issues. In this context, Lei et al. (2018) and Harsha et al. (2019) examined

the joint pricing and fulfillment problem, while Lei et al. (2022) expanded the scope to include pricing,

display, and fulfillment. Notably, Lei et al. (2018) approached the problem as a stochastic program,

devising a two-tier approximation method. Initially, they utilized a deterministic approximation,

which, due to its complexity and non-linearity, was further approximated by a solvable linear program

through discrete price adjustments. This facilitated the development of heuristic policies based on the

model’s outputs. Our paper differs from existing literature as we manage demand realization more

subtly to take advantage of strategically postponing fulfillment.
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The second sub-stream focuses on the strategic benefits of delaying fulfillment decisions. For

instance, Mahar and Wright (2009) investigated a quasi-dynamic assignment policy in an omnichannel

retail setting with a linear cost structure. Wei et al. (2021) analyzed optimal order consolidation

policies, providing heuristic solutions based on structural properties. Finally, Xie et al. (2023) studied

online resource allocation with delayed decision-making to leverage real-time demand data. They

demonstrated that the performance gap between their online algorithm with delays and the offline

optimal policy reduces exponentially as the delay period increases. We add to this literature stream

by incorporating personalized delivery options.

Choice-based revenue management. The second stream is related to revenue management (RM) and

assortment optimization. Comprehensive reviews are available in Kök et al. (2009) and Gallego and

Topaloglu (2019). Our focus is on the subset of research utilizing choice-based demand models in RM,

as our paper explores demand realization through such models. Talluri and Van Ryzin (2004) examined

a single-resource RM issue employing a general discrete choice model. They introduced two pivotal

concepts: efficient sets and nested-by-fare order. By formulating the problem as a dynamic program

(DP), they demonstrated that optimal assortments are efficient sets. Furthermore, they established

that optimal assortments adhere to a nested-by-fare order under several specific choice models. Liu and

Van Ryzin (2008) expanded the efficient set concept to network revenue management (NRM) within a

general discrete choice model framework. They proved that only efficient sets form optimal assortments

in the choice-based deterministic relaxation formulation. Unlike in the single-resource scenario, this

principle does not universally apply to our DP formulation. Specific choice models provide insights

into efficient sets, as discussed in Gallego and Li (2017) and Cao et al. (2022). Our paper focuses on

developing an implementable heuristic with a provable performance guarantee based on solving the

deterministic relaxation with efficient sets.

Flexible products. The third stream is related to network revenue management (NRM) with flexible

products. Gallego and Phillips (2004) describe a flexible product as a set of alternatives offered to

a market, where the seller later assigns a specific alternative to the purchaser. In our context, an

e-commerce company accepts orders encompassing various fulfillment options (akin to products) and

later fulfills these orders from a selection of warehouses (comparable to alternatives). Gallego et al.

(2004) explored NRM with flexible products under both independent and dependent demand scenarios,

employing a general choice model. They demonstrated the asymptotic optimality of deterministic

relaxation for both cases. Notably, they used a column generation algorithm to resolve the deterministic

relaxation for demand influenced by customer choices. Gönsch et al. (2014) extended the work and

introduced heuristic policies derived from linear programming approximations. Subsequently, Cheung

and Simchi-Levi (2016) concentrated on an approximate yet efficient solution for the choice-based

deterministic relaxation, proposing a Potential-based algorithm with proven efficiency: a polynomial-

time method for solving the deterministic relaxation to any desired level of accuracy.

More recently, Ma et al. (2020) developed an approximate dynamic programming (DP) algorithm

for solving the choice-based network RM problem. They utilized an availability tracking basis for

value function approximation, showing that their heuristic’s total expected revenue reaches at least a

1/(1 + L) fraction of the optimal total expected revenue, where L represents the maximum number

of resources a product consumes. Zhu and Topaloglu (2023) expanded this methodology to flexible

product scenarios. The primary challenge in such settings is the availability of remaining capacity

information. To overcome this, they introduced an auxiliary variable to track remaining resource ca-

pacities, optimistically approximating the value function with this variable. They established that the

approximate DP method retains the same constant performance bound even in the context of flexible

products. Our paper differs from the previous research in this stream by proposing an asymptotically

optimal heuristic based on deterministic relaxation that can be solved efficiently with a commercial

convex optimization solver.
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3 The model

We consider an online retailing company, referred to as the DM, that aims to improve its fulfillment

system over a finite horizon. In particular, the DM utilizes a combination of (both in-house and third-

party) logistic carriers to carry out fulfillment operations. To cover the total fulfillment cost, as is

typical in the industry, the DM relies on two revenue sources. The first one is a fixed percentage of

the basket value (i.e., the fulfillment reserve), and the second is an additional fare customers pay for

shipping (i.e., the fulfillment surcharge). The DM’s objective is to balance the revenue and cost terms

associated with the delivery process.

We adopt the following notation. The DM sells products to customers in N distinct locations,

each of which can be conceptualized as a combination of a specific geographic location and a specific

combination of products that generates some fulfillment reserve. The DM aggregates orders and ships

them in batches from M warehouses over a fixed period called a fulfillment cycle. The planning

horizon is divided into T fulfillment cycles. Each order has a specific time frame, referred to as

fulfillment window, spanning k fulfillment cycles (where k = 1, . . . ,K), within which the order must

be fulfilled. Customers are offered a menu of fulfillment options when they check out their shipping

carts. Each option specifies a fulfillment window and a fulfillment surcharge. Customers may proceed

with the purchase or leave without the purchase. The DM must assign the submitted orders to one of

its M warehouses and deliver them within the specified fulfillment window. To maximize the expected

profit associated with the fulfillment process, the DM decides which fulfillment options to show to each

customer and when and from which warehouse to fulfill each order within its fulfillment window.

Throughout this paper, we define [n] as the set {1, 2, · · · , n} and denote R+ denote [0,+∞). We

use i ∈ [M ] to denote the i-th warehouse, j ∈ [N ] for the j-th location, τ ∈ [T ] for the τ -th fulfillment

cycle, and k ∈ [K] to denote the remaining cycles in the fulfillment window.

3.1 Fulfillment options

A fulfillment option consists of a guaranteed latest fulfillment window and a surcharge. We initially

impose the following assumption regarding different fulfillment options for ease of exposition. This

assumption will be relaxed in §7.
Assumption 1. There are K fulfillment options in total, S = {(1, r1), (2, r2), · · · , (K, rK)}.

In alignment with the standard notation used in the assortment literature, we denote an assortment

as S ⊆ S, representing a list of specific fulfillment options. We utilize the notation k ∈ S to indicate

a specific option within an assortment, characterized by a fulfillment window of k and a surcharge of

rk. This notation should not lead to confusion within the context of this paper: when we mention

k ∈ [K], it refers to a fulfillment window, whereas k ∈ S denotes a fulfillment option. The set of all

possible assortments is represented by N , and |N | = 2K under Assumption 1.

A customer decides whether to proceed with a purchase by selecting from the available fulfillment

options based on a known discrete choice model denoted as {πk(·) : k ∈ S}. Specifically, if the DM

presents an assortment S ∈ N , the customer will choose a fulfillment option k ∈ S and purchase

with a probability πk(S). Additionally, the customer may opt not to proceed with the checkout with a

probability π∅(S). This scenario, known as cart abandonment, occurs when the customer is dissatisfied

with the provided fulfillment options.

3.2 Demand

We assume that customers arrive from location j (or customer j for short) during a fulfillment cycle τ

follow a Poisson process with a time-dependent arrival rate of λj,τ (t), where t represents the elapsed

time since the start of the current fulfillment cycle. This arrival process is independent across locations

and need not be homogeneous in τ and t. Without loss of generality, we normalize the duration of each
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fulfillment cycle to the interval [0, 1], with t = 0 marking the beginning of cycle τ and t = 1 indicating

its closure (just before the fulfillment decision is made). We denote D̃j,τ (t) the cumulative arrivals of

customer j by time t during cycle τ . Furthermore, we let D̃j,τ := D̃j,τ (1) represent the total number

of customers from location j arrive during cycle τ . Consequently, D̃j,τ follows a Poisson distribution

with parameter Λj,τ :=
∫ 1

0
λj,τ (t)dt. That is,

P{D̃j,τ = n} =
(Λj,τ )

n

n!
e−Λj,τ

When a customer arrives, the probability that she will choose fulfillment option k, given an assortment

S is offered, is πk(S). We determine the assortment based on a decision rule Sj,τ (t). This decision rule

may vary depending on the customer location j, the fulfillment cycle τ , and the elapsed time t within

the cycle. We denote Dk,j,τ (t) as the cumulative number of customers from location j who choose

fulfillment option k by the elapsed time t in cycle τ , representing the realized demand.

It is important to note that while the cumulative arrival process D̃j,τ (t) follows a Poisson distri-

bution, the realized demand Dk,j,τ (t) for each fulfillment option k ∈ [K] may not necessarily follow a

Poisson distribution. This deviation arises because even though Dk,j,τ (t) is derived from D̃j,τ (t), it is

influenced by the selected fulfillment option, which in turn is influenced by the decision rule Sj,τ (t).

Since the decision rule Sj,τ (t) is dynamic and may depend on the history of realized demand, Dk,j,τ (t)

also becomes dependent on past events, losing the memoryless property, which is characteristic of a

Poisson process. This intricate interplay between assortment rules and realized demand poses signifi-

cant computational challenges. To tackle these complexities, in the next section, we propose employing

a heuristic approach based on deterministic approximation, which captures the impact of decision rules

on the demand realizations in a tractable fashion.

3.3 System dynamics

We define the “pre-assortment” state, denoted as xk,j,τ (t), as the cumulative unfulfilled orders received

from location j that have k remaining cycles left in the fulfillment window at the beginning of time t

during fulfillment cycle τ . Similarly, the “post-assortment” state, denoted as yk,j,τ (t), represents the

cumulative unfulfilled orders at the end of time t. When a new customer arrives at time t and an

assortment S is displayed, if customer j and selects fulfillment option k, then yk,j,τ (t) = xk,j,τ (t) + 1.

Otherwise, yk,j,τ (t) = xk,j,τ (t). Additionally, we define xk,j,τ := xk,j,τ (0) as the pre-assortment state

of fulfillment cycle τ and yk,j,τ := yk,j,τ (1) as the post-assortment state of that cycle. Thus, we have
the following relationship

yk,j,τ = xk,j,τ +Dk,j,τ

We point out that all the states xk,j,τ and yk,j,τ are subject to two sources of randomness: the arrivals

of customers are stochastic, and the fulfillment options they choose, conditioned on some assortments

offered, are also stochastic.

At the end of the fulfillment cycle τ , the DM makes a fulfillment decision denoted by uτ = (uk,j,i,τ ≥
0 : k ∈ [K], j ∈ [N ], i ∈ [M ]). In particular, uk,j,i,τ corresponds to the number of orders shipped by

fulfillment cycle τ from warehouse i to demand location j to satisfy the unfulfilled orders with k cycles

left in fulfillment window. The DM cannot ship products in advance to locations for potential future

demand realizations. To ensure that, we impose the following feasibility constraints for all k ∈ [K],

j ∈ [N ], and τ ∈ [T ]: ∑
i∈[M ]

uk,j,i,τ ≤ yk,j,τ

Next, we define the state update equations. Following the fulfillment decision uτ , unfulfilled orders

remain in the system with their remaining cycles in the fulfillment window reduced by one. Among

these unfulfilled orders, if any have only one fulfillment cycle remaining (i.e., y1,j,τ −
∑

i∈[M ] u1,j,i,τ ),
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they exit the system and incur penalty costs. The system dynamics can be expressed as follows:

xk,j,τ+1 =

{
yk+1,j,τ −

∑
i∈[M ] uk+1,j,i,τ k < K

0 k = K

3.4 Revenue and cost

Our focus on optimizing the delivery system involves revenue and cost terms associated with the

delivery process. The DM offsets the delivery costs by collecting income from two revenue sources for

each order. The first source is the fulfillment reserve, a fixed percentage of the order’s basket value.

Let pj represent the basket size for a customer at demand location j. An order from that customer has

a κpj reserve to cover the fulfillment cost, where κ specifies the fixed percentage. The second source

is the shipping surcharge rk, which varies based on the delivery option k chosen by the customer.

To sum, we denote rk,j as the revenue collected by the DM to cover the cost of delivery and define

it as follows: rk,j := rk + κpj where k specifies the fulfillment option and j specifies the customer

location. This two-part strategy is common in the industry, where the first term is derived from the

displayed price, and the second term corresponds to a separate shipping cost. Finally, the DM does

not generate revenue if the customer abandons the cart. Therefore, the expected revenue generated

during the fulfillment cycle τ can be calculated as follows:

E

∑
k,j

rk,jDk,j,τ


Next, we consider the cost term. Recall that our industry partner utilizes a variety of third-party

carriers to fulfill the orders. Each carrier commits a unique capacity in terms of weight and charges

a flat rate for each fulfilled order. Initially, our partner prioritizes using a more cost-effective carrier.

However, if the logistics capacity is insufficient to meet demand from the cheaper carrier, our partner

turns to a carrier with a higher unit cost. This results in a piecewise linear function representing the

lower envelope of the total cost curve faced by the retailer, with each breakpoint reflecting cumulative

capacity. To model this setup, we assume that the fulfillment cost function is convex and increasing

in the total number of products shipped from each warehouse i ∈ [M ]. To summarize, we define

Ci : R+ → R+ to denote the fulfillment cost function and make the following assumption:

Assumption 2. Ci(z) is convex and increasing in z and its derivative C ′
i(z) < C for all z ∈ R+, where

0 < C < ∞.

The fulfillment cost for warehouse i, given its fulfillment vector ui,τ , can be obtained as

Ci

 ∑
k∈[K]

∑
j∈[N ]

wjuk,j,i,τ

 = Ci

(
wTui,τ

)
where wj is the billable weight of the order associated with location j, and w = (wk,j : ∀ k ∈ [K], j ∈
[N ]), wk,j = wj , is the vector of billable weights. We define w := maxj wj as the largest billable

weight.

Note that the assumption C < ∞ in Assumption 2 is made primarily for the sake of technical

analysis. It can be relaxed because the marginal cost can always be capped by the maximum penalty

cost maxj bj without loss of generality.

Finally, if the DM cannot fulfill the order from location j within its fulfillment period k using the

committed logistic capacity, it incurs a unit penalty bj . This penalty can be considered the shipping

rate of an expedited service that can fulfill an order from j with a single fulfillment window. We assume

C ′
i(0) < maxj bj to avoid triviality, which implies there exists a third-party carrier whose shipping rate
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is lower than the expedited shipping service. Using the state and action defined above, we can calculate

the total number of outstanding orders from location j in cycle τ fulfilled with the expedited service

by y1,j,τ −
∑

i∈[M ] u1,j,i,τ . Multiplying this by location-specific unit penalty cost bj and summing over

all locations j ∈ [N ], we obtain the total penalty cost as follows:
∑

j∈[N ] bj(y1,j,τ −
∑M

i=1 u1,j,i,τ ).

3.5 Joint optimization

The DM’s objective is to maximize its expected profit by deciding which fulfillment options to offer at

any time and how to fulfill orders at the end of each fulfillment cycle. We can formulate this problem

as a joint stochastic optimization called OPT.

V ∗(x) = max
S,u

E

∑
τ∈[T ]

∑
j∈[N ]

∑
k∈[K]

rk,jDk,j,τ


− E

{ ∑
τ∈[T ]

 ∑
i∈[M ]

Ci(w
⊤ui,τ ) +

∑
j∈[N ]

bj

y1,j,τ −
∑
i∈[M ]

u1,j,i,τ


+
∑

k∈[K]

∑
j∈[N ]

bjxk,j,T+1

s.t. xk,j,1 = xk,j , ∀ k, j (1a)

yk,j,τ = xk,j,τ +Dk,j,τ , ∀ k, j, τ (1b)

xk,j,τ+1 = yk+1,j,τ −
∑
i

uk+1,j,i,τ , ∀ k < K, j, τ (1c)

xK,j,τ+1 = 0, ∀ j, τ (1d)∑
i

uk,j,i,τ ≤ yk,j,τ , ∀ k, j, τ (1e)

uk,j,i,τ ≥ 0 ∀ k, j, i, τ (1f)

Sj,τ (t) ∈ N , ∀ j, τ, t ∈ [0, 1] (1g)

In OPT, the first part of the objective function is the expected revenue. The second part is the

expected costs, which consist of three components: the first one is the fulfillment cost, the second one

is the penalty cost, and the third one is the terminal cost, meaning all unfulfilled orders at the end of

the horizon are handled with expedited shipping services. For the constraints, (1a) specifies the initial

condition, (1b) to (1d) describe the system dynamics, (1e) and (1f) requires fulfillment decisions to be

feasible, and (1g) ensures the assortment must be selected from the possible fulfillment option set. We

point out that the random variable Dk,j,τ depends on Sj,τ (t). All constraints must hold almost surely.

Theoretically, OPT can be solved using dynamic programming (DP). Formally, let Vτ (xτ ) denote

the optimal value function at the beginning of the fulfillment cycle τ given the unfulfilled orders xτ .

Define Gτ as the profit function of fulfillment cycle τ , which is formulated as follows:

Gτ (xτ , uτ , Sτ ) =
∑
k,j

rk,jDk,j,τ −

∑
i

Ci(w
⊤ui,τ ) +

∑
j

bj

(
x1,j,τ +D1,j,τ −

∑
i

u1,j,i,τ

)
where Dk,j,τ is a random variable that depends on the fulfillment options offered Sτ . The DP formu-

lation can be defined as follows:

Vτ (xτ ) = max
Sτ ,uτ

E {Gτ (xτ , uτ , Sτ ) + Vτ+1(xτ+1)}

with the boundary condition VT+1(x) = −
∑

k,j bjxk,j .
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The above DP is computationally intractable. First, the distribution of Dk,j,τ remains unknown,

as it is contingent on the assortment decisions Sj,τ (t). Even if we restrict our attention to finite and

pre-determined assortment decisions, potentially enabling us to identify the family of distributions

of Dk,j,τ , solving above DP is still computationally intractable due to the curse of dimensionality.

Consequently, our emphasis shifts towards devising computationally tractable heuristic policies and

demonstrating provably effective performance.

4 Choice-based deterministic approximation

To serve our basis for computationally tractable heuristics, we define deterministic programming as

follows: There will be Λj,τ customers come to the system from location j in cycle τ . For each arrived

customer, if the DM offers an assortment S, and a deterministic and fractional proportion of πk(S)

of the customer’s order is fulfilled using option k, while a fraction π∅(S) is not fulfilled due to cart

abandonment. Thus, the DM collects only a partial reward
∑K

k=1 rk,jπk(S). We consider a strategy

such that during cycle τ , we offer assortment S to γj,τ (S) proportion of customers from location j.

Under this strategy, the realized demand indexed with k, j, τ can be calculated as
∑

S Λj,τγj,τ (S)πk(S)

The deterministic programming can then be formulated as follows, which we refer to as DET.

V D(x) = max
γ,u

∑
τ

∑
j

∑
k

∑
S

rk,jΛj,τγj,τ (S)πk(S)

−
∑
τ

∑
i

Ci(w
⊤ui,τ ) +

∑
j

bj

(
y1,j,τ −

∑
i

u1,j,i,τ

)
−
∑
k,j

bjxk,j,T+1

s.t. xk,j,1 = xk,j , ∀ k, j (2a)

yk,j,τ = xk,j,τ + Λj,τ

∑
S

γj,τ (S)πk(S), ∀ k, j, τ (2b)

xk,j,τ+1 = yk+1,j,τ −
∑
i

uk+1,j,i,τ , ∀ k < K, j, τ (2c)

xK,j,τ+1 = 0, ∀ j, τ (2d)∑
i

uk,j,i,τ ≤ yk,j,τ , ∀ k, j, τ (2e)∑
S

γj,τ (S) = 1, ∀ j, τ (2f)

uk,j,i,τ ≥ 0 ∀ k, j, i, τ (2g)

γj,τ (S) ≥ 0, ∀ j, τ, S ∈ N (2h)

First, we establish that the optimal function value V D(x) for DET serves as an upper bound for the

optimal expected profit V ∗(x) in OPT. We defer all the proofs to the electronic companion.

Proposition 1. V ∗(x) ≤ V D(x)

Note that DET constitutes a convex optimization problem with linear constraints, which implies

that it may be solved by commercial solvers. However, it poses two challenges. Firstly, since we define

a decision variable for each assortment, the number of decision variables grows exponentially with the

number of fulfillment options. A common approach to address this issue is the column generation

technique. Nonetheless, implementing this technique in DET presents difficulties, primarily because

the fulfillment cost function Ci lacks a specific functional form, complicating the derivation of a dual

formulation. Secondly, unlikeOPT,DET eliminates all sources of randomness. As discussed in §5, the
solution obtained from DET does not effectively adapt to demand realizations and dynamic changes
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in fulfillment capacity, leading to suboptimal performance in practice. By addressing the second issue

delegated to the next section, in this section, our focus is to tackle the first challenge by characterizing

specific structural properties of an optimal solution to DET. Specifically, in what follows, focusing

on efficient assortments, we will demonstrate that only a limited number of assortments suffices to be

considered in the optimal solution of DET.

An assortment is deemed efficient when it presents the most advantageous balance between ex-

pected revenue and capacity usage. In other words, an assortment S is considered efficient if there does

not exist another fulfillment assortment that can yield higher revenue while requiring the same or less

capacity. However, the challenge is that the exact capacity consumption for each warehouse remains

unknown when an assortment decision has to be made. This is due to the flexibility in the fulfillment

operations, which allows decisions to be made at the end of each fulfillment cycle. We resolve that

issue by consolidating the available capacity from all warehouses when making an assortment deci-

sion. Following the seminar work Talluri and Van Ryzin (2004), we identify a necessary and sufficient

condition for an assortment S to be efficient.

To proceed, we introduce the following notation and the formal definition of an efficient assortment.

Let Rj(S) denote the expected revenue generated by offering assortment S to customer j and Q(S)

denote the probability of purchase when S is offered:

Rj(S) =
∑
k

rk,jπk(S)

Q(S) =
∑
k

πk(S) = 1− π∅(S)

We can now define an efficient assortment as follows:

Definition 1 (Efficient assortments). An assortment S ∈ N is efficient for customer j if there does not

exist a set of convex weights α(S) satisfying
∑

S α(S) = 1 and α(S) ≥ 0 such that

Rj(S) <
∑
S′

α(S′)Rj(S
′)

Q(S) ≥
∑
S′

α(S′)Q(S′)

Otherwise, the assortment S is inefficient for customer j.

We denote the set of efficient assortments as Ej . The following result characterizes a necessary and

sufficient condition for an assortment S to be efficient:

Lemma 1 (Talluri and Van Ryzin 2004). For customers j, an assortment S is efficient, i.e., S ∈ Ej if

and only if, there exists some real number θj ≤ 0 such that S is the optimal solution to

max
S′

Rj(S
′) + θjQ(S′)

The following proposition shows that we can solve DET optimally by restricting our attention only

to the set of efficient assortments.

Proposition 2. If γ∗
j,τ (S) > 0 for some j and τ is an optimal solution to DET, then S is an efficient

assortment.

The proof consists of two steps: First, we show that if γ∗
j,τ (S) > 0, then S solves the following

problem

max
S′

Rj(S
′) +

∑
k

θk,jπk(S
′)

for some θj = (θ1,j , · · · , θK,j). Second, we show that θk,j are identical and non-positive for all k.

Finally, by Lemma 1, S must be efficient.
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Proposition 2 has two critical implications. First, even though the number of assortments in N
grows exponentially in K, it suffices to consider only a subset of N to solve DET, namely, the set

of efficient assortments Ej for all j. Now, it begs the question: What is the time complexity of

constructing the set of all efficient assortments? Despite lacking strong theoretical tractability for a

general choice model, empirical results have shown that they often can be quickly determined with

the “largest marginal revenue” algorithm (Talluri and Van Ryzin 2004) for many widely adopted

choice models, e.g., multinomial logit model, generalized attraction model, and nested logit model (see

Gallego and Topaloglu 2019). Indeed, in §7, we extend the “largest marginal revenue” algorithm by

adding tie-breaking rules and show it works very well for our numerical study. Therefore, throughout

the rest of the paper, we make the following assumption:

Assumption 3. We can construct a set of efficient assortments Ej for each j associated with a given

choice model {πk(·) : k ∈ S} and a list of rewards {rk,j : k ∈ [K], j ∈ [N ]}.

The second implication from Proposition 2 is as follows: If we interpret −θk,j as the marginal value

of satisfying a customer j with fulfillment option k, the second step in the proof of Proposition 2 then

suggests that all the resources consumed by the customer j choosing fulfillment options k ∈ [K] are

balanced at the optimal solution across all k. Considering a fulfillment option as a product and a

warehouse as a resource in the context of a choice-based network revenue management with multiple

resources, this result extends the discussions of efficient sets to the case of flexible products.

4.1 Efficiency of optimal assortment to the original problem

Even though we restrict our attention to efficient assortments throughout the rest of the paper and

show that it results in an effective algorithm with provable worst-case bounds, we would like to briefly

comment on whether the optimal assortment for the original problem OPT satisfies the efficiency

condition stated in Definition 1. To check this, we need to analyze the DP formulation of OPT.

Specifically, let Vτ (xτ (t), t) denote the maximum total expected profit that can be obtained since time

t during fulfillment cycle τ with pre-assortment state xτ (t). We omit the dependence of x on τ and t

and simply write it as Vτ (x, t). Let δt satisfies λj,τ (t)δt ≪ 1 for all j. We can formulate the original

problem as follows:

Vτ (x, t) =max
Sj

∑
j

λj,τ (t)δt

[∑
k

πk(Sj) (rk,j + Vτ (x+ ek,j , t+ δt))

]

+

∑
j

π∅(Sj) + 1−
∑
j

λj,τ (t)δt

Vτ (x, t+ δt) + o(δt)

=
∑
j

λj,τ (t)δt

[
max
Sj

∑
k

πk(S) (rk,j +∆V (x, t+ δt))

]
+ Vτ (x, t+ δt) + o(δt)

where the boundary condition is

Vτ (yτ , 1) = max
u

−

∑
i

Ci(w
⊤ui) +

∑
j

bj

(
u1,j −

∑
i

u1,j,i

)+ Vτ+1(xτ+1)

where xτ+1 is the pre-assortment state for the fulfillment cycle τ + 1, and it is obtained by the

system dynamics. Vτ+1(·) is the maximized expected profit since cycle τ + 1. In the DP formulation,

ek,j ∈ RKN is a unit vector where the k, j-th element is one and the rest are zero, and

∆V (x, t+ δt) = Vτ (x+ ek,j , t+ δt)− Vτ (x, t+ δt)

represents the difference in expected profit with or without this additional order ek,j . It can be

interpreted as a measure of the marginal fulfillment cost of that order. Note that with one more order
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to fulfill, Vτ (x + ek,j , t + dt) ≤ Vτ (x, t + dt), and hence ∆V (x, t + dt) ≤ 0. Taking limit as δt ↓ 0, we

know the expected profit Vτ (x, t) needs to satisfy the Hamilton-Jacobi-Bellman (HJB) equation:

∂Vτ (x, t)

∂t
=
∑
j

λj,τ (t)

[
max
Sj

∑
k

πk(S) (rk,j +∆V (x, t))

]

and that the optimal assortment to show to a customer from j should solve the following problem

max
S

R(S) +
∑
k

∆V (x, t)πk(S)

Note that ∆V (x, t) depends on k via vector ek,j . Hence, for an optimal assortment to the original

stochastic problem to be efficient, we must show that ∆V (x, t) is identical for all k. Unfortunately,

this is not true in general. Consider the following case: Suppose t = 1, and xτ satisfies x1,j,τ > 0 for

all j, xk,j,τ = 0 for all k, j, and all x1,j,τ will be fulfilled completely but there is no additional capacity

to take another order with k = 1. In that case, we must have ∆V (x, t) = −bj for k = 1. In contrast,

we can take an order with k > 1 and postpone its fulfillment to a later fulfillment cycle, resulting in

∆V (x, t) ≥ −bj for all k > 1 (Zhou et al. 2023, Proposition 2). Therefore, there is no guarantee that

equality will always be maintained. According to Definition 1, efficient assortments may cease to be

efficient for the original stochastic problem OPT depending on the state realization.

5 Proposed algorithm and performance analysis

The analysis in the previous section suggests the following two-step computationally tractable policy:

In the first step, we construct all efficient option lists, denoted by Ej , for all j. In the second step,

we solve DET with Ej to compute probability γ∗
j,τ (S) and fulfillment decisions u∗

k,j,i,τ . We then offer

the customer from location j an assortment S with probability γ∗
j,τ (S) and use rounded version .

This approach, referred to as “Certainty Equivalent” policy in the literature, is a classic and widely

used heuristic known for its computational tractability and typically near-optimal performance, both

theoretically and in practice.

However, this policy may not work well in our original setting. As implied by Proposition 2, when

an efficient assortment S is offered to a customer j, the marginal fulfillment cost θk,j are balanced

in DET for all k ∈ S. However, the stochasticity in demand realization violates this balance since

we have shown that ∆V (x, t) may not be identical in §4.1, which results in S not being optimal for

the original problem. We consider these options that violate the balance of the marginal fulfillment

cost economically nonviable, which we will define formally later. We then remove them from the set

of efficient assortments to ensure that the remaining fulfillment options remain economically viable.

An approach for identifying economically nonviable assortments involves utilizing dynamic marginal

fulfillment cost, denoted as ∆V (x, t). However, computing these costs is intractable due to the curse

of dimensionality. We approximate it with the lowest fulfillment cost increment if we accept an order,

which involves solving a multi-cycle fulfillment problem. Before getting into the details, let us elucidate

this concept with an example. For simplicity, we assume that the DM operates a single warehouse and

has access to a limited fulfillment capacity Ξ at a unit rate c. The DM has no access to expedited

fulfillment if the total quantity exceeds the capacity. We can model this using a linear fulfillment cost

function on bounded support and setting the penalty cost to bj = ∞. Thus, the marginal fulfillment

cost is c if the total fulfillment does not exceed Ξ; otherwise, it is ∞ and economically nonviable.

Let us consider the company has already accepted some orders, denoted as x = (xk,j : k ∈ [K], j ∈
[N ]), at the start of time t in fulfillment cycle τ . When deciding to offer the fulfillment assortment

S to a focal customer. If option k = 1 is included in S, the lowest fulfillment cost increment is c if∑
j x1,j + 1 ≤ Ξ, otherwise, the lowest fulfillment cost increment will be ∞. Furthermore, the cost

increment also depends on the subsequent fulfillment cycles as accepting a new order with k = 1
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triggers a chain reaction: The DM might need to defer another order with a longer fulfillment window

to accommodate this immediate order. For instance, the focal customer selects the fulfillment option

k = 1, resulting in an order with k = 2 being postponed. In this case, the cost increment associated

with option k = 1 will still be ∞ if condition
∑

j x2,j + 1 ≤ Ξ does not hold. Consequently, it is

imperative to ensure that the current and subsequent fulfillment cycles have adequate capacity. This

chain reaction can potentially impact the subsequent K − 1 fulfillment cycles. Generally, offering

any fulfillment option k necessitates evaluating economic viability for the subsequent fulfillment cycles

beginning with the k-th cycle. In other words, to ascertain whether there is sufficient capacity to

accept an order with a given fulfillment option k, it becomes essential to address a (K + 1− k)-cycle

fulfillment problem.

Formally, when customer j arrives, the pre-assortment state is xτ (t) = (xk,j,τ (t) : k ∈ [K], j ∈ [N ]),

t ∈ [0, 1]. The focal customer is presented with an assortment S and selects a fulfillment option k′ ∈ S

with a probability πk′(S). Consequently, the post-assortment state becomes yτ (t) = xτ (t) + ek′,j . We

solve the following problem:

F(xτ (t)) = min
ũ

τ+K−1∑
τ ′=τ

∑
i

Ci(w
⊤ũi,τ ′) +

∑
j

bj

(
ỹ1,j,τ ′ −

∑
i

ũ1,j,i,τ ′

)
s.t. ỹk,j,τ = xk,j,l,τ (t) + 1(k=k′), ∀ k, j

ỹk,j,τ ′+1 = ỹk+1,j,τ ′ −
∑
i

ũk+1,j,i,τ ′ , ∀ k < K, j, τ ′ < τ +K − 1∑
i

ũk,j,i,τ ′ ≤ ỹk,j,τ ′ , ∀ k, j, τ ′

ũk,j,i,τ ′ ≥ 0, ∀ k, j, i, τ ′

(3)

The above is a pure fulfillment problem, assuming the existing orders are x, with no anticipation of

additional demand. The chain reaction described earlier is implicitly managed by the system dynamics.

Note that F(x) can be solved efficiently as we do not require fulfillment action to be integral. The

function F(x) can be considered as the minimum cost to fulfill x orders optimally. Therefore, F(xτ (t)+

ek′,j)−F(xτ (t)) can be interpreted as an approximation to the marginal fulfillment cost ∆V k′,j
τ (x, t)

incurred by accepting order with fulfillment option k′ at time t during cycle τ . An option k′ is deemed

economically nonviable if its associated revenue is smaller than the minimum marginal fulfillment cost.

With that, we can formally define an economically viable fulfillment option.

Definition 2 (Economically nonviable assortments). We say the fulfillment option k′ ∈ S is economically

nonviable for customer from location j if rk′,j < F(xτ (t) + ek′,j) − F(xτ (t)); Otherwise, we say k′ is

economically viable.

For all k′ ∈ S, we determine its viability by solving the above fulfillment problem. If k′ is nonviable,

we remove it from the assortment and only show the economically viable options. If there is no

viable option, we offer the customer S = ∅. The heuristic policy is described in Algorithm 1, and

we name it the Economic Assortment Threshold Fulfillment Policy (EATF). Note that by design

EATF is a dynamic policy and depends on the pre-assortment state xk,j,τ (t). Steps 1 and 2 in

Algorithm 1 represent the offline phase in which the set of efficient assortments are constructed and

DET is optimized. For each fulfillment cycle τ , steps 4 to 12 dynamically determine the personalized

fulfillment options by eliminating economically nonviable options from the efficient assortment, and

steps 14 to 23 provide the threshold-based fulfillment assignments, which facilitates the structural

property of an optimal fulfillment decision with arbitrary demand (see Lemma 3).

The determination of the personalized fulfillment options is also illustrated in Figure 3, where

we assume to show an efficient assortment S = {(k1, rk1
), (k2, rk2

), (k3, rk3
)} to a customer j during

fulfillment cycle τ . The figure depicts the marginal fulfillment cost for each option as a rectangle. At

elapsed time t1, since options are viable by Definition 2, we show the entire efficient assortment S. The
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customer chooses to purchase, leading to an increase in the state. Therefore, when another customer j

arrives at time t2, the marginal fulfillment cost increases such that option k3 is nonviable. We remove

it from S and only show the customer options k1 and k2. Later, at time t3, a new customer j arrives.

The calculated marginal fulfillment cost of k1 at time t3 exceeds its revenue, so k1 becomes nonviable

and removed. Only k2 is offered to the customer.

Algorithm 1: Economic Assortment Threshold Fulfillment Policy (EATF)

Input: Customer arrival rate vector Λj,τ , revenue parameters rj,k, the fulfillment cost function Ci(·), the
penalty vector bj , ∀ j ∈ [N ], and the choice model πk(S).

Output: SERT = {Sj,τ (t)} and uERT = {uk,j,i,t}
1 Construct the set of all efficient option lists Ej for all j ∈ [N ].
2 Solve DET to obtain γ∗

j,τ (S) for all S ∈ Ej , u∗
k,j,i,τ , and yk,j,τ .

3 for each cycle τ ∈ [T ] do
4 for a particular time t within each cycle τ do
5 if a customer arrives from location j then
6 First, choose one option list S ∈ E with probability γ∗

j,τ (S).

7 for each option k′ ∈ S do
8 Remove that option if it is economically nonviable by using Definition 2, i.e.,

Sj,τ (t) = Sj,τ (t) \ {k′}.
9 end

10 Finally, offer a personalized delivery assortment Sj,τ (t) to the customer.

11 end

12 end
13 At the end each cycle τ , aggregate all orders and generate fulfillment decisions as follows.
14 Set Ui,τ = 0 for all i, and Iτ = [M ].
15 for each order received from location j ∈ [N ] in descending order by bj do
16 for each delivery option k = 1, 2, · · · ,K do
17 for each warehouse i ∈ Iτ do

18 Calculate a scale factor ρk,j,i,τ =
u∗
k,j,i,τ

yk,j,τ

19 Determine fulfillment quantity by

uk,j,i,τ =


ρk,j,i,τyk,j,τ if C′i

(
Ui,τ + wjρk,j,i,τyk,j,τ

)
≤ bj

z that solves C′i (Ui,τ + wjz) = bj if C′i (Ui,τ ) < bj ≤ C′i
(
Ui,τ + wjρk,j,i,τyk,j,τ

)
0 otherwise

20 Update Ui,τ = Ui,τ + wjuk,j,i,τ .
21 Remove warehouse i from from Iτ if C′i (Ui,τ ) ≥ bj .

22 end

23 end

24 end

25 end

Figure 3: Illustration of dynamically eliminating economically nonviable fulfillment options for some customer j

Remark 1. During any fulfillment cycle τ , we have the following observations. (i) If some fulfillment

option k′ ∈ S is nonviable for demand location j at time t, then it must remain nonviable to the end

of this fulfillment cycle. This is because the post-assortment state is monotonically increasing within

the fulfillment cycle. (ii) If some fulfillment option k′ ∈ S is nonviable at time t, any fulfillment option

k ∈ S such that rk,j < rk′,j and k < k′ must also be nonviable. This is because the fulfillment option
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k cannot have a lower marginal fulfillment cost than option k′ since otherwise, we can always fulfill

an order with option k′ earlier. (iii) For a similar reason, if some fulfillment option k′ ∈ S is viable

at time t, then any fulfillment option k ∈ S such that rk,j ≥ rk′,j and k > k′ must also be viable.

Such observations are crucial for implementing EATF as it reduces the number of times we solve

problem (3).

Next, we upper bound the performance of our algorithm EATF in the following theorem:

Theorem 1. Let Λ = maxj,τ Λj,τ , w = maxj wj . Then, the optimality gap of EATF is bounded by

V ∗(x)− V EATF(x) ≤ wCMTK

√
1

2
ΛKN

Delegating the detailed proof of Theorem 1 to the electronic companion, here, we outline the main

steps of our proof: First, we define a hypothetical policy (denoted by HYP) that utilizes the same

efficient assortments constructed by step 1 of EATF algorithm. However, HYP does two things

differently. First, it does not eliminate economically nonviable assortments dynamically. Second, it

disregards the implicit capacity constraint on fulfillment and incurs higher costs for fulfilling excessive

orders. Let V HYP(x) be the expected total profit of applying this policy. Using sample path arguments,

we show that EATF cannot yield worse performance than HYP, i.e., V HYP(x) ≤ V EATF(x). Then,

in the second step, we characterized the optimality gap of the hypothetical policy and established that

it is upper bounded by wCMTK
√

1
2ΛKN .

The performance bound characterized in Theorem 1 shows that the optimality gap of EATF is

growing linearly with respect to the number of warehouses M and sub-linearly with respect to the

number of locations N and the maximum cycle arrival rate Λ. It has the following implications.

The total amount of realized demand increases linearly as either the number of locations N or the

cycle arrival rate Λj,τ increases. Since the fulfillment cost is increasing and convex in the quantity of

fulfillment, the total cost grows at least linearly in both N and Λj,τ . But the optimality gap grows

sub-linearly, implying that the relative optimality gap converges to 0 as either N or Λj,τ (hence Λ)

increases. Consequently, our policy becomes asymptotically optimal in large N or Λ. This implication

is particularly crucial in online retailing, where there are typically a vast number of demand locations,

and the arrival rate is increasing steadily.

6 Experiment 1: The performance evaluation of EATF

In this section, we conduct a sensitivity analysis to evaluate the performance of EATF and generate

additional insights. First, we introduce three benchmark policies. Subsequently, we calibrate a choice

model that satisfies Assumption 1 using the real data from our industrial partner. This model is

extended to encompass a more complex and realistic representation of customer behavior in §7. Finally,
we examine the value of jointly optimizing assortments and fulfillment decisions by comparing EATF

to the benchmark policies across different scenarios derived from the estimated choice model.

We use an upper bound of the percentage profit loss of a policy as the performance measure. It

is calculated as (V DET − V policy)/V DET × 100%, where V policy is the expected profit obtained from

some policy, and V DET is the expected profit from DET.

6.1 Benchmark policies

E-commerce practitioners often have distinct teams responsible for designing the fulfillment options

at checkout and making fulfillment decisions. Consequently, each team may act based on their per-

spectives without considering the entire system. To emulate these operations, we introduce three

benchmark policies. These policies are characterized by whether or not assortment and fulfillment

decisions are optimized. The policies are summarized in Table 1:
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Table 1: Summary of the Policies.

Fulfillment

Optimized (TF) Myopic (MF)

Assortment
Optimized (EA) EATF EAMF

Static (FA) FATF FAMF

The first benchmark consists of a fixed-assortment strategy combined with a myopic fulfillment

strategy, referred to as the FAMF policy. This policy presents a pre-determined and fixed assort-

ment to customers throughout the horizon. Fulfillment decisions are made by solving the following

optimization problem:

min
u

∑
i

Ci(ui) +
∑
j

bj

(
yk,j −

∑
i

uk,j,i

)
s.t.

∑
i

uk,j,i ≤ yk,j , u ≥ 0

The fixed assortment strategy is selected as follows: We evaluate all possible assortments for each

simulation case and choose the one with the best performance as the fixed assortment for that particular

case. This policy mimics a DM’s operations when they know customer preferences but does not

optimize the assortment or fulfillment decisions.

The second benchmark policy only optimizes its assortment decisions but not the fulfillment ones.

It solves the following assortment optimization problem under capacity constraints (specified in §6.2.2)
to determine the assortment decisions, while fulfillment decisions are made in the same manner as in

FAMF.

max
γ

∑
τ

∑
j

∑
k

∑
S

rk,jΛj,τγj,τ (S)πk(S)

s.t.
∑
j

∑
k

∑
S

Λj,τγj,τ (S)πk(S) ≤ Ξ, ∀ τ

∑
S

γj,τ (S) ≤ 1, ∀ j, τ

γj,τ (S) ≥ 0, ∀ j, τ, S ∈ N

Ξ specifies the fulfillment capacity for each cycle. We refer to this as the Efficient Assortment Myopic

Fulfillment policy (EAMF). It is important to note that, for each fulfillment cycle, EATF dynamically

adjusts assortment decisions based on the remaining fulfillment capacity, whereas EAMF remains

stationary.

In contrast to the second policy, the last one only optimizes the fulfillment decisions. It fixes an

assortment and solves DET, then determines the actual fulfillment in the same manner as EATF.

It may adopt a different, but best, fixed assortment for different cases. We refer to it as the Fixed

Assortment Threshold Fulfillment policy (FATF).

6.2 Calibration

Our industrial partner is a growing online grocery retailer that began business within the province and

is gradually expanding nationwide. Customers visit its website to shop for groceries. At the checkout,

they have to choose either home-delivery or self-pickup and specify a date. Due to the retailer’s business

scale and the operational limit, orders are fulfilled once every week. Thus, customers select the week

they wish to receive their orders. A shipping surcharge is displayed based on the selected fulfillment
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option, allowing customers to explore the cost differences among various options and choose their

preferred ones. The transaction is complete once the fulfillment option is finalized and the payment is

processed. The retailer fulfills orders from a single warehouse within the customer-selected fulfillment

window, using either a local trucking company or a national carrier; both incur flat-rate costs.

The dataset comprises 6,511 transactions (including abandoned transactions) from 2,961 customers

from 476 cities across Canada from January 1, 2023, to December 31, 2023. Our analysis focuses on

2,833 transactions from 21 cities, as the local trucking company and self-pickup service are available

only to customers in these cities. Due to practical constraints, customers from other locations can only

choose home delivery with the national carrier. The dataset contains detailed information on each

order, including the number of products, total basket value, the selected fulfillment option, customer

location, and whether the transaction was completed.

6.2.1 Basic attraction choice model.

The dataset allows us to calibrate a basic attraction choice model for customer behavior, adhering

to Assumption 1. To achieve that, we construct three fulfillment options based on the length of the

fulfillment window: fulfill by this week with a mean surcharge of 6.46 Canadian dollars (Option 1),

fulfill by next week with a mean surcharge of 4.37 Canadian dollars (Option 2), and fulfill after two

weeks with a mean surcharge of 1.69 Canadian dollars (Option 3). We then estimate the attraction of

each option (denoted by a) based on the proportion of customers who selected the corresponding time

frame. Normalizing the attraction of abandonment to one (a∅ = 1.00), we find a1 = 3.47, a2 = 10.48,

a3 = 0.12. These results indicate that Option 2, which balances waiting time and fulfillment surcharge,

is the most attractive to customers.

6.2.2 Baseline setup.

We introduce a baseline simulation setup calibrated using real data with certain simplifications. We

assume a homogeneous demand generation process: customers from different locations arrive following

the same stationary Poisson process and choose a fulfillment option following the same choice model.

In addition, each order has an identical basket value and generates the same gross profit. These

assumptions will be generalized in §7. The billable weight is set to one due to the lack of specific

information.

Regarding the fulfillment network, we set M = 1 and N = 21, as the retailer fulfills orders from 21

cities using a single warehouse. Customers have three options regarding the fulfillment window, i.e.,

K = 3. We consider a planning horizon of one year, which includes 52 fulfillment cycles (T = 52).

Each week, customers arrive at the system following a stationary Poisson process with an intensity of

19.5 (λj,τ = 19.5 for all j and τ). Each order is valued 140.00 Canadian dollars (pj = 140.00 for all

j). Based on the discussion with our industrial partner, we set the percentage applied to each basket

size as 5% (κ = 0.05). Together with the fulfillment surcharge, the revenue generated by each option

is r1,j = 13.46, r2,j = 11.37, and r3,j = 8.69 Canadian dollars, respectively.

The retailer employs two trucking companies to fulfill the orders. It can fulfill up to 220 orders

per week using the local trucking company for 8.00 Canadian dollars per order. The retailer turns

to the national carrier for orders exceeding this number, which can provide sufficient capacity for

16.00 Canadian dollars per order. Thus, we define a two-segment piecewise linear convex function

C(z) = max{8z, 16z − 1760} to model the retailer’s fulfillment cost. We assign a large value to

the penalty cost (e.g., bj = 20 for all j) to avoid using expedited fulfillment service. Clearly, using

the national carrier results in a profit loss due to the higher cost than the revenue. We refer to

the fulfillment capacity as the maximum fulfillment quantity by the local trucking company and the

relative capacity as the ratio of fulfillment capacity to the expected number of arriving customers

(
∑

j λj,τ = 21× 19.5 = 409.5). In the baseline case, the capacity is Ξ = 220, and the relative capacity

is 53.7%.



Les Cahiers du GERAD G–2025–06 18

In what follows, we investigate the value of jointly optimizing the assortments and fulfillment

decisions by comparing EATF to the benchmark policies under various scenarios.

6.3 Varying customers preferences

We modify the parameters of the choice model to investigate these policies under various customer

behaviors. Our estimated choice model represents a market where most customers prefer a balance

between fulfillment cost and waiting time. We simulate different customer preferences by swapping the

attraction values among the choices. For instance, swapping the values a1 and a2 imitates a scenario

where customers prefer faster fulfillment (Case 2). We also increase a∅ to 3.0 to simulate the scenarios

when more customers abandon carts if they are dissatisfied with offered fulfillment options.

To summarize, we create 6 cases: Case 1 represents the actual market, Case 2 represents customers

who prefer faster fulfillment, Case 3 represents customers who prefer cheaper fulfillment, and Cases 4

to 6 replicate Cases 1 to 3 with a higher abandonment probability. We report the percentage profit

loss in Table 2. Note that a smaller profit loss indicates a better policy performance. Unsurprisingly,

we observe that EATF outperforms all benchmark policies in all scenarios.

Table 2: Comparison of EATF with respect to various benchmark policies under different customer preferences

Case (a0, a1, a2, a3) ERT OL OF SM

1 (1.00, 3.47, 10.48, 0.12) 2.7% 4.0% 21.5% 24.7%

2 (1.00, 10.48, 3.47, 0.12) 2.8% 3.8% 33.1% 35.9%

3 (1.00, 0.12, 3.47, 10.48) 1.6% 22.2% 68.0% 68.3%

4 (3.00, 3.47, 10.48, 0.12) 2.8% 4.2% 3.7% 3.8%

5 (3.00, 10.48, 3.47, 0.12) 2.8% 4.1% 20.7% 24.1%

6 (3.00, 0.12, 3.47, 10.48) 1.4% 25.7% 3.6% 28.5%

Upon closer examination, it is evident that demand management (via optimizing assortment de-

cisions) is more crucial than capacity management (via optimizing fulfillment decisions) when fewer

customers abandon their carts. This can be seen by comparing EAMF to fixed-assortment policies

in Cases 1 to 3. Moreover, when customers prefer fast fulfillment in Cases 1 and 2, many will choose

Option 1. This necessitates fulfilling most orders by the end of this week, leaving little room for opti-

mized fulfillment decisions to improve performance. As a result, all the additional benefits stem from

dynamic assortment management, reflected in the smaller percentage profit losses of EATF compared

to EAMF. In contrast, when customers prefer cheaper fulfillment in Case 3, more orders will have

longer fulfillment windows. This scenario requires careful consideration of fulfillment capacity and

active postponement of some fulfillments to later cycles. Thus, joint optimization leads to significant

improvements.

Analyzing Cases 4 to 6, where the abandonment probability is higher, provides further insights.

Customer dissatisfaction with fulfillment options leads to increased cart abandonment in these cases.

This emphasizes the importance of offering attractive fulfillment options but simplifies the assortment

decisions. Specifically, in Cases 4 and 6, where customers less prefer fast fulfillment, fixed-assortment

policies achieve comparable, sometimes even better, performance than EAMF. In contrast, EATF

still performs better than the benchmarks, highlighting its consistency and robustness.

6.4 Varying number of locations

This section aims to investigate the benefits of adopting EATF when the retailer expands the business

to a larger area. We vary the value of N from 5 to 50. In the meantime, we increase the local fulfillment

quantity so that the relative fulfillment capacity remains unchanged. The capacity is set to 220
21 N . We

report the results in Table 3, columns 2 to 5.
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Table 3: Comparison of EATF with various benchmark policies under different number of customer locations

Actual Market Counterfactual Market

N ERT OL OF SM ERT OL OF SM

5 6.0% 7.9% 21.4% 28.3% 2.6% 45.8% 45.1% 68.4%

10 4.1% 5.6% 21.5% 26.1% 2.2% 33.2% 31.5% 68.1%

20 2.9% 4.0% 21.6% 24.8% 1.3% 24.9% 22.0% 68.2%

30 2.3% 3.3% 21.5% 24.3% 1.3% 19.7% 16.5% 68.3%

40 2.0% 2.8% 21.5% 23.9% 1.2% 19.0% 14.8% 68.3%

50 1.9% 2.6% 21.4% 23.7% 1.0% 15.7% 11.6% 68.1%

Consistent with previous results, EATF performs the best in all cases. Moreover, the profit loss

decreases as N increases. This supports our theoretical performance guarantee in Theorem 1, implying

that the retailer will benefit from expanding the business to a larger area, provided it can increase the

fulfillment capacity accordingly. In contrast, the profit losses for FATF and FAMF do not decrease

as N increases.

Regarding EAMF, the profit loss also decreases similarly to EATF. To further understand whether

the asymptotic optimality arises from joint optimization or assortment optimization, we repeat the

test in a counterfactual market where customers are more price-sensitive and willing to wait (i.e., Case

3 in §6.3). The results, shown in Table 3, columns 6 to 9, reveal that better fulfillment decisions are

crucial in this scenario. Therefore, we conclude that asymptotic optimality is a unique benefit of joint

optimization.

6.5 Varying fulfillment capacity

This section examines the benefit of EATF when the retailer negotiates different capacities with the

local trucking company. We adjust the maximum fulfillment quantity from the local trucking company

so that the relative capacity varies from 30% to 80%. We report the simulation results in Table 4.

Table 4: Performance comparison of EATF with benchmark policies under different fulfillment capacity

Relative capacity ERT OL OF SM

80% 1.5% 6.5% 2.1% 2.1%

70% 2.5% 3.5% 5.8% 9.1%

60% 2.6% 3.8% 14.5% 17.7%

50% 2.9% 4.1% 26.5% 29.9%

40% 3.1% 4.5% 45.0% 48.3%

30% 3.7% 5.3% 75.4% 78.7%

As observed, EATF outperforms the benchmarks in all the cases. Interestingly, when capacity

is relatively insufficient (less than or equal to 70%), meaning the availability of cheaper logistics is

limited, the retailer must control the quantity of realized demand with optimized assortment decisions.

If too many orders are realized (as with FATF and FAMF), the expected profit will be lower due

to excessive usage of the more expensive carrier. However, the results change drastically when the

capacity is relatively sufficient (80%). EAMF tends to accept more orders with a lower surcharge

than the other three policies, which backfires. It has to use the national carrier more to fulfill those

orders, resulting in a profit loss. This interesting finding emphasizes the necessity to align demand

management with capacity management.
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6.6 Additional scenarios

We also investigate the performance of EATF in scenarios when more customers will buy groceries

from the retailer (i.e., increasing arrival rate) and when the retailer opens additional warehouses (i.e.,

increasing the number of warehouses M). We observe that EATF achieves better performance if more

customers from current locations will buy from the retailer, implying it is asymptotically optimal in

arrival rate. This result also supports the performance guarantee in Theorem 1. Regarding the number

of warehouses, policy performance seems unaffected by M . It implies that EATF is still applicable if

the retailer is going to open more warehouses as it expands the business. All details are available in B.

7 Extension to complex customer preference

Previous sections are based on Assumption 1, which essentially implies that customer preference for

fulfillment options is solely influenced by the speed (i.e., the maximum duration they have to wait

before receiving their orders). However, real-world customer behaviors are more complex. Customers

have heterogeneous preferences for shipping speeds and costs, and their choices may be influenced by

how much product they buy (we refer to it as the basket value). For example, customers who purchase

large baskets may be less sensitive to shipping surcharges as the surcharges account for only a tiny

proportion, while those with smaller baskets may be more sensitive. Therefore, online retailers have

incentives to offer customers different combinations of fulfillment windows and shipping surcharges.

For example, our industrial partner provides various options with varying surcharges for the same

fulfillment window.

This section extends the formulation and the EATF policy to scenarios with such preferences.

Specifically, we denote pqj as the basket size of type q from demand location j, where q ∈ [Q] and

j ∈ [N ]. A customer from demand location j is considered to be of type q with probability vqj , and∑
q∈[Q] v

q
j = 1 for all j. Thus, if a customer of type q visits the store, she results in an order with a

fulfillment reserve of κpqj with probability vqj . In addition to the customer types, we extend the main

model to adjust fulfillment surcharge based on the customer type dynamically. To operationalize this,

we define a discrete set of surcharge prices R. The set of fulfillment options is therefore represented

as S = {(k, r) : k ∈ [K], r ∈ R}, which implies that the retailer may assign different surcharges to a

delivery option with k fulfillment window. We denote N the powerset of S. Each customer is going

to choose one option from an assortment S ∈ N with probability π(k,r)(S | q), reflecting her decision

depends on the basket value.

The sequence of events is as follows. First, a customer from location j arrives at the system. Then,

she reveals her type and forms an online shopping cart with basket value pqj . After that, the online

retailer forms a list of fulfillment options S and shows it to the customer at checkout. Finally, the

customer chooses a delivery option and completes the purchase or leaves with an abandoned cart.

Denote Dq,r
k,j,τ the number of customers who are type q and come from location j and choose a delivery

option (k, r) during fulfillment cycle τ . Hence, we can calculate the expected revenue as follows:

E{Revenue} =
∑
k,j,τ

∑
r∈R,q∈[Q]

(r + κpqj)E{D
q,r
k,j,τ}

To formulate the DP, we only need to replace the revenue part in (1) with the above term and

update the system dynamics according to yk,j,τ = xk,j,τ +
∑

q,r D
q,r
k,j,τ . Moreover, to get a modified

DET formulation, we offer assortment S to γq
j,τ (S) proportion of q-typed customers from location j

during cycle τ . Hence,

E{Dq,r
k,j,τ} = Λj,τv

q
j

∑
S

γq
j,τ (S)π(k,r)(S | q)
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and the modified DET is as follows.

V D(x) = max
γ,u

∑
τ

∑
j

∑
q

∑
S

∑
(k,r)∈S

(r + κpqj)Λj,τv
q
jγ

q
j,τ (S)π(k,r)(S | q)

−
∑
τ

∑
i

Ci(w
⊤ui,τ ) +

∑
j

bj

(
y1,j,τ −

∑
i

u1,j,i,τ

)−
∑
k,j

bjxk,j,T+1

s.t. xk,j,1 = xk,j , ∀ k, j

yk,j,τ = xk,j,τ +
∑
q,S

∑
r: (k,r)∈S

Λj,τv
q
jγ

q
j,τ (S)π(k,r)(S | q), ∀ k, j, τ

xk,j,τ+1 = yk+1,j,τ −
∑
i

uk+1,j,i,τ , ∀ k < K, j, τ

xK,j,τ+1 = 0, ∀ j, τ∑
i

uk,j,i,τ ≤ yk,j,τ , ∀ k, j, τ∑
S

γq
j,τ (S) = 1, ∀ q, j, τ

uk,j,i,τ ≥ 0 ∀ k, j, i, τ
γq
j,τ (S) ≥ 0, ∀ q, j, τ, S

The above formulation suffers from the exponentially large number of decision variables of γq
j,τ (S),

which has the dimension of NTQ · 2K|R|.

Despite that, our main results still hold with this formulation. Specifically, V D(x) provides an upper

bound for V ∗(x) (Proposition 1). In addition, the expected revenue and the purchase probability of

type q customer, when the assortment S is offered, is

Rq
j (S) =

∑
(k,r)∈S

(r + κpqj)π(k,r)(S | q)

Qq(S) =
∑

(k,r)∈S

π(k,r)(S | q)

After that, we modify the definition of efficient assortment with respect to customer location j and
type q. As a result, we can modify Proposition 2 to the following

Proposition 3. If γq,∗
j,τ (S) > 0 for some q, j and τ is an optimal solution to DET, then S is an efficient

assortment.

The proof also consists of two steps: First, we show that if γq,∗
j,τ (S) > 0, then S solves the problem

max
S′

Rq
j (S

′) +
∑
k,r

θk,jπ(k,r)(S
′ | q)

for some θj = (θ1,j , · · · , θK,j). Second, we show that θk,j are identical and non-positive for all k.

Finally, by Lemma 1, S must be efficient. The proof is almost identical to that of Proposition 2 and

thus is omitted.

Proposition 3 implies that we can solve the problem with the EATF policy in Algorithm 1 with

minor modification. Specifically, we have to find the efficient set Eq
j for each customer location j

and type q. This is because different typed customers have different preferences, and customers from

various locations contribute different fulfillment reserves.

However, we cannot directly apply the largest marginal revenue algorithm in Talluri and Van Ryzin

(2004) to this case since the assumption that revenues associated with each fulfillment option are

monotonic does not hold, resulting in potentially multiple delivery options satisfying the maximum
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marginal revenue ratio. We modify that algorithm by adding a tie-breaking rule: for any customer

type q, we pick the option that yields the smallest purchase probability Qq(S). By iteratively adding

a new option at each step, we can construct all efficient assortments as characterized in Proposition 4.

We use Ω(Sm) to represent the assortment set under consideration during the m-th recursion.

Ω(Sm) = {S ∈ N : Rq
j (S) ≥ Rq

j (Sm), Qq(S) ≥ Qq(Sm), S /∈ Eq
j } (4)

Proposition 4. Algorithm 2 finds all efficient assortments for q typed customer from location j.

Finally, after replacing the set of efficient assortments with those generated by Algorithm 2, we can

then use the same EATF approach described in Algorithm 1 to solve the joint optimization problem.

Algorithm 2: Modified Largest Marginal Revenue Algorithm

Input: Set of fulfillment window [K], set of surcharges R, reward parameter κpqj , and choice model

π(k,r)(S | q).
Output: The efficient assortment set Eqj

1 Start from S0 = ∅, m = 0, and Eqj = {S0}.
2 while Ω(Sm) ̸= ∅ do

3 Θ =S′∈Ω(Sm)

R
q
j (S

′)−R
q
j (Sm)

Qq(S′)−Qq(Sm)

4 Set Sm+1 =S′∈Θ Qq(S′), breaking ties arbitrarily if there are multiple assortments with the same
minimum Qq(S′).

5 Update Eqj = Eqj ∪ {Sm+1} and m← m+ 1.

6 end

7.1 Experiment 2: Complex customers’ behaviors

In this section, we apply EATF to a more realistic scenario that adheres to our partner’s business

model and operations. According to §6.2, most orders are fulfilled within two weeks. Thus, we identify

fulfillment options with two windows: a fast option (fulfilled by this week) and a slow one (fulfilled by

next week). In addition, our partner offers two types of fulfillment services (home delivery or a self-

pickup) and determines the surcharge based on the speed, the service, and the basket value. Therefore,

we identify four fulfillment options: home delivery by this week (Option 1), home delivery by next

week (Option 2), self-pickup by this week (Option 3), and self-pickup by next week (Option 4).

We calibrate three types of customers. High-value customers submit orders with the highest basket

values, medium-value customers with medium basket values, and low-value customers with the lowest

basket values. The basket values are determined using the average value of orders within specific

percentiles: from the minimum to the 50th percentile for low-value customers, from the 50th to 80th

percentile for medium-value customers, and from the 80th percentile to the maximum for high-value

customers. The basket values for high-, medium-, and low-value customers are 249.70, 132.31, and

64.06 Canadian dollars, respectively. Additionally, each customer reveals their type as low, medium,

or high with probabilities of 0.5, 0.3, and 0.2, respectively.

Next, we calibrate the fulfillment surcharge for each option. We aggregate the dataset to customer

type-fulfillment option level and use the average surcharge. The displayed surcharge for each fulfillment

option for each customer type is shown in Table 5. After that, we calibrate a basic attraction choice

model for each customer type similar to §6.2.1 and summarize the attractions in Table 6. The rest of

the calibration follows the baseline setup in §6.2.

We modify the distribution of customer types to create two additional cases: Case 2 has a larger

proportion of high-value customers, and Case 3 has a larger proportion of medium-value customers.

We compare EATF to the benchmark policies described in §6.1. The results are shown in Table 7.

The results underscore the consistent advantage of employing EATF across various market con-

ditions. This is evident as it adapts well to different distributions of customer types, continually
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outperforming benchmark policies. This suggests that joint optimization of assortments and fulfill-

ment decisions is crucial for maximizing profits, especially in markets with heterogeneous customer

behaviors.

Table 5: Fulfillment surcharges for each option for each customer type

Option 1 Option 2 Option 3 Option 4

Low 11.49 8.69 0 0

Medium 5.62 3.58 0 0

High 8.16 5.87 0 0

Table 6: Attraction of each option for each customer type

Option 1 Option 2 Option 3 Option 4

Low 1.77 4.93 0.97 1.13

Medium 5.46 24.32 1.68 3.25

High 3.36 21.27 1.24 3.42

Table 7: Comparing EATF to benchmark policies in various markets

Case (βlow, βmid, βhigh) ERT OL OF SM

1 (0.5, 0.3, 0.2) 2.3% 2.8% 16.4% 18.5%

2 (0.2, 0.3, 0.5) 1.9% 2.0% 14.8% 16.5%

3 (0.3, 0.5, 0.2) 2.1% 2.4% 21.6% 23.8%

The results also indicate that our partner should prioritize demand management, as it significantly

mitigates profit loss, as demonstrated by the EAMF policy. This suggests that if the retailer must

choose between optimizing delivery assortment decisions and delivery fulfillment decisions, the former

yields a larger benefit. With closer investigation, we observe that Options 3 and 4 are not included

in any efficient assortment for any customer type. This is mainly because they are free of charge but

require the same fulfillment capacity compared to Options 1 and 2. Only home delivery options are

considered in EATF and EAMF. Due to the high attraction of the slow home delivery (Option 2)

but limited fulfillment capacity, both EATF and EAMF show fast home delivery (Option 1) to most

customers, resulting in little room to postpone fulfillment and balance capacity strategically.

8 Conclusion

In collaboration with one of the online grocery platforms in Canada, this paper investigates the ful-

fillment optimization problem with personalized delivery choices. A primary challenge for the online

retailer is to decide which delivery options to offer, given customer heterogeneity for differentiated

delivery options, and how to fulfill these orders with multiple logistic providers. To the best of our

knowledge, our paper is among the first in the literature to address this problem.

To address this challenge, we developed an algorithm called ERT that runs in two phases. In

the first (offline) phase, considering the customer heterogeneity for differentiated delivery options,

ERT generates a set of efficient option lists that maximizes the expected revenue while achieving the

best possible utilization of fulfillment resources. It then calculates the optimal certainty equivalent

fulfillment decisions using the those lists. In the second (online) phase, ERT iterates between the

personalization and fulfillment stages for the planning cycle. At the delivery personalization stage,

ERT starts with an efficient option list and dynamically removes the economically nonviable options

based on the customer’s location and the current state of unfulfilled orders. At the fulfillment stage,

the algorithm aggregates all the orders and assigns them to the appropriate warehouses according to
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the certainty equivalent plan as much as possible. ERT is proved to have a worst-case optimality gap

that grows sub-linearly in the number of demand locations and demand arrival rate. This implies that

ERT is asymptotically optimal as the customer network expands, which corresponds to a typical case

faced by many online retailers, including our industrial partner.

We performed two series of simulations. First, by calibrating a choice model that adheres to As-

sumption 1, we illustrate the value of joint fulfillment and personalized delivery optimization. Second,

we calibrate a more complex choice model that better describes the industrial partner’s business op-

erations. We demonstrate the consistency and robustness of our proposed heuristics across various

scenarios.

Our numerical experiments reveal several managerial insights. First, while optimizing personalized

fulfillment options and assignments are both crucial, their significance varies across different scenarios.

Specifically, when customers prioritize faster fulfillment, demand management is more critical, whereas

capacity management plays a minor role. Conversely, capacity management gains importance when

customers prefer more cost-effective fulfillment options. Second, online retailers who serve larger areas

and/or have more customers from each location benefit more from adopting the ERT policy as it is

asymptotically optimal. Third, demand management takes precedence when fulfillment capacity is

limited, but the focus shifts toward capacity management as capacity increases.

Finally, we would like to conclude by exploring potential avenues for future research. Firstly, our

paper assumes that efficient option lists are constructed based on a known choice model. However,

in reality, the parameters of a choice model need to be probed and learned jointly, along with the

optimal lists and fulfillment decisions. This can be conducted within an online learning framework.

Secondly, we assume flat-rate fulfillment costs for all logistic providers. Future research could extend

this framework by considering a different fulfillment cost structure. For example, the fulfillment cost

consists of fixed and variable parts, which incentivizes operations to ship a large number of orders to

pickup locations to lower the average per-order cost. Indeed, our industrial partner is actively forming

new pickup partnerships with local convenience stores, believing it is crucial to improve service further

and reduce operational costs. We firmly believe that our paper spurs further research on the above

extensions, offering valuable insights to the managers of online retailers in improving their customer

satisfaction through delivery personalization while minimizing the cost of fulfillment.

A Proofs

A.1 Proposition 1

Before proving Proposition 1, we present a technical lemma and its proof.

Lemma 2. Let f(x) be concave in x, and c is a vector of constant. Then, the following parametric

optimization is concave in β

P (β) := max
x

f(x) + c⊤β s.t. Ax ≤ β

Proof. Consider two parameters β1 and β2, and x∗
1 and x∗

2 are maximizers for P (β1) and P (β2),

respectively. Let λ ∈ [0, 1]. Note that

A(λx∗
1) +A((1− λ)x∗

2) ≤ λβ1 + (1− λ)β2

which implies x = λx∗
1 + (1− λ)x∗

2 is feasible for P (λβ1 + (1− λ)β2). Therefore

P (λβ1 + (1− λ)β2) ≥ f(λx∗
1 + (1− λ)x∗

2) + c⊤(λβ1 + (1− λ)β2)

≥ λf(x∗
1) + (1− λ)f(x∗

2) + c⊤(λβ1 + (1− λ)β2)

= λ(f(x∗
1) + c⊤β1) + (1− λ)(f(x∗

2) + c⊤β2)

= λP (β1) + (1− λ)P (β2)
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The second inequality holds since f is a concave function.

Proof of Proposition 1. Consider an arbitrary feasible joint strategy ρ = (Sρ, uρ) to OPT, where

Sρ is the assortment decisions and uρ is fulfillment assignments, and denote D = (Dk,j,τ∈ Z : k ∈
[K], j ∈ [N ], τ ∈ [T ]) a sample path of realized demand generated under Sρ. We consider the following

deterministic programming conditioning on D,

V (x | D) = max
u

∑
τ

∑
j

∑
k

rk,jDk,j,τ

−
∑
τ

∑
i

Ci(w
⊤ui,τ ) +

∑
j

bj

(
y1,j,τ −

∑
i

u1,j,i,τ

)
−
∑
k,j

bjxk,j,T+1

s.t. xk,j,1 = xk,j , ∀ k, j
yk,j,τ = xk,j,τ +Dk,j,τ , ∀ k, j, τ

xk,j,τ+1 = yk+1,j,τ −
∑
i

uk+1,j,i,τ , ∀ k < K, j, τ

xK,j,τ+1 = 0, ∀ j, τ∑
i

uk,j,i,τ ≤ yk,j,τ , ∀ k, j, τ

uk,j,i,τ ≥ 0 ∀ k, j, i, τ

Note that V (x | D) is a pure fulfillment optimization problem. We wish to show

V ∗(x) ≤ E[V (x | D)] ≤ V (x | E[D]) ≤ V D(x)

The first inequality. Since ρ is feasible to OPT, uρ must be a feasible fulfillment assignment when the

realized demand is D. Hence, uρ is feasible to V (x | D). Taking expectations yields that the expected

profit under joint strategy ρ is upper bounded by E[V (x | D)]. Since ρ is arbitrary, the relation must

also hold for the optimal joint policy ρ∗.

The second inequality. we claim that V (x | D) is concave in D. To show that, first note that the

objective function in V (x | D) is concave in x and that the constraints are linear. The concavity

follows the technical Lemma 2. Then, by Jensen’s inequality, we have E[V (x | D)] ≤ V (x | E[D]).

The last inequality. It is sufficient to show that we can construct a feasible assortment policy γj,τ (S)

for V D(x) such that
∑

S Λj,τγj,τ (S)πk(S) = E[Dk,j,τ ] for all k, j, τ . Let u∗ an optimal fulfillment

assignment to V (x | E[D]). Then (γj,τ (S), u
∗) is a feasible joint strategy for V D(x), implying V D(x)

serves as an upper bound. The constructed assortment policy γj,τ (S) should solve the following

problem for all j and τ :∑
S

γj,τ (S)Λj,τπk(S) = E[Dk,j,τ ], ∀ k∑
S

γj,τ (S) = 1

γj,τ (S) ≥ 0, ∀S
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The above system of equations can be compressed as

Aγ =


1 1 · · · 1

Λj,τπ1(S1) Λj,τπ1(S2) · · · Λj,τπ1(S|N |)
...

...
...

...

Λj,τπK(S1) Λj,τπK(S2) · · · Λj,τπK(S|N |)




γj,τ (S1)

γj,τ (S2)
...

γj,τ (S|N |)

 =


1

E[D1,j,τ ]
...

E[DK,j,τ ]


It is easy to show that the matrix A has a full-row rank, which guarantees a solution of γ. For

example, let N = (S1, S2, · · · , S|N |). Moreover, S1 = ∅, S2 = {1}, S3 = {2}, · · · , SK+1 = {K}. We

can construct such a solution as follows: γj,τ (S1) = 1 −
∑K

k=1
E[Dk,j,τ ]

Λj,τπk(Sk+1)
, γj,τ (Sk+1) =

E[Dk,j,τ ]
Λj,τπk(Sk+1)

for k ∈ [K], and γj,τ (S) = 0 otherwise. We still need to verify that γj,τ (S1) ≥ 0. Indeed, it holds by

the definition of Dk,j,τ .

A.2 Proposition 2

We present the necessary and sufficient condition for an option list to be efficient from Talluri and

Van Ryzin (2004) as a technical lemma before proving Proposition 2. Note that for any given assort-

ment strategy Sj,τ (t), the joint optimization V ∗(x) becomes a pure fulfillment optimization problem.

Its optimal fulfillment decisions has the following structure (see Zhou et al. 2023, Proposition 2):

Lemma 3 (Optimal threshold fulfillment). For any assortment strategy, if a warehouse i is ever used

to fulfill any orders from location j during cycle τ , then the optimal fulfillment from that warehouse

must satisfy C ′
i

(
w⊤u∗

i,τ

)
wj ≤ bj .

Proof of Proposition 2. The proof consists of two steps: First, we show that if γ∗
j,τ (S) > 0, then S

solves the following problem:

max
S′

Rj(S
′) +

∑
k

θk,jπk(S
′)

for some θj = (θ1,j , · · · , θK,j). Next, we show that θk,j are identical and non-positive for all k. Then,

by Lemma 1, S must be efficient.

Note that DET is feasible and bounded, implying it has a finite optimum with some γ∗
j,τ and

u∗
k,j,i,τ . Moreover, strong duality holds since DET is a convex optimization with linear constraints.

Let θ = (θk,j,τ : k ∈ [K], j ∈ [N ], τ ∈ [T ]), η = (ηk,j,τ : k ∈ [K − 1], j ∈ [N ], τ ∈ [T ]), ξ = (ξk,j,τ ≥
0 : k ∈ [K], j ∈ [N ], τ ∈ [T ]), σ = (σj,τ : j ∈ [N ], τ ∈ [T ]), ϕ = (ϕk,j,i,τ ≥ 0 : k ∈ [K], j ∈ [N ], i ∈
[M ], τ ∈ [T ]), and µ = (µj,τ,S ≥ 0 : j ∈ [N ], τ ∈ [T ], S ∈ N ) be the dual variables for constraints (2b),

(2c), (2e), (2f), (2g), and (2h), respectively. We indicate the optimal dual variables with superscript ∗.

The Lagrangian function can be formulated as

L(γ, u, x, y, θ, η, ξ, σ, ϕ, µ)

=
∑
τ,j

σj,τ +
∑
τ,j,S

(
Λj,τRj(S) + Λj,τ

∑
k

θk,j,τπk(S)− σj,τ+µj,τ,S

)
γj,τ (S)

−
∑
τ,i

Ci(w
⊤ui,τ )−

∑
j

bju1,j,i,τ +
∑

k<K,j

ηk,j,τuk+1,j,i,τ +
∑
k,j

ξk,j,τuk,j,i,τ−
∑
k,j

ϕk,j,i,τuk,j,i,τ


−
∑
τ,j

(
bjy1,j,τ +

∑
k

θk,j,τyk,j,τ −
∑
k<K

ηk,j,τyk+1,j,τ −
∑
k

ξk,j,τyk,j,τ

)
+
∑
k,j,τ

θk,j,τxk,j,τ −
∑

k<K,j,τ

ηk,j,τxk,j,τ+1 −
∑
k,j

bjxk,j,T+1
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Treating x and y as primal decision variables, the dual problem can be formulated as follows.

D = min
θ,η,ξ,σ,ϕ,µ

max
γ,u,x,y

L(γ, u, x, y, θ, η, ξ, σ, ϕ, µ)

= min
θ,η,ξ,σ,ϕ,µ


∑
τ,j

σj,τ +max
γ

∑
τ,j,S

(
Λj,τRj(S) + Λj,τ

∑
k

θk,j,τπk(S)− σj,τ+µj,τ,S

)
γj,τ (S)︸ ︷︷ ︸

I

+ max
u
−
∑
τ,i

Ci(w
⊤ui,τ )−

∑
j

bju1,j,i,τ +
∑

k<K,j

ηk,j,τuk+1,j,i,τ +
∑
k,j

ξk,j,τuk,j,i,τ−
∑
k,j

ϕk,j,i,τuk,j,i,τ


︸ ︷︷ ︸

II

+ max
y
−
∑
τ,j

bjy1,j,τ +
∑
k

θk,j,τyk,j,τ −
∑
k<K

ηk,j,τyk+1,j,τ −
∑
k

ξk,j,τyk,j,τ


︸ ︷︷ ︸

III

+ max
x

∑
k,j,τ

θk,j,τxk,j,τ −
∑

k<K,j,τ

ηk,j,τxk,j,τ+1 −
∑
k,j

bjxk,j,T+1︸ ︷︷ ︸
IV


We take the dual variables at their optimal values for the subsequent analysis.

Part One: For I , for all τ , j, and S′, according to first-order optimality condition, we must have

Λj,τRj(S
′) + Λj,τ

∑
k

θ∗k,j,τπk(S
′)− σ∗

j,τ+µ∗
j,τ,S = 0

implying

Λj,τRj(S
′) + Λj,τ

∑
k

θ∗k,j,τπk(S
′)− σ∗

j,τ = −µ∗
j,τ,S ≤ 0 (5)

By the complementary slackness condition µ∗
j,τ,Sγ

∗
j,τ (S) = 0, if γ∗

j,τ (S) > 0, we must have µ∗
j,τ,S = 0,

implying

Λj,τRj(S) + Λj,τ

∑
k

θ∗k,j,τπk(S)− σ∗
j,τ = 0

Subtracting the above equation to (5) yields

Rj(S) +
∑
k

θ∗k,j,τπk(S) ≥ Rj(S
′) +

∑
k

θ∗k,j,τπk(S
′)

which indicates that if γ∗
j,τ (S) > 0 for some j and τ , then S is an maximizer for maxS′ Rj(S

′) +∑
k θ

∗
k,j,τπk(S

′). This completes the first step.

Part two: we show θ∗k,j,τ are identical for all k and that θ∗k,j,τ ≤ 0. To do so, we first identify the

relationships among dual variables. We start with III .

III = max
y

∑
τ,j

(−bj − θ∗1,j,τ + ξ∗1,j,τ )y1,j,τ +
∑

τ,j,k>1

(−θ∗k,j,τ + η∗k−1,j,τ + ξ∗k,j,τ )yk,j,τ

The first-order optimality condition implies

−bj − θ∗1,j,τ + ξ∗1,j,τ = 0, ∀ j, τ (6)
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−θ∗k,j,τ + η∗k−1,j,τ + ξ∗k,j,τ = 0, ∀ j, τ, k > 1 (7)

Next, we examine IV . Since x1 is given and xK,j,τ+1 = 0 for all τ , we have the following

IV =
∑
k,j

θk,j,1xk,j,1 + max
x2,··· ,xT+1

∑
τ>1

∑
k<K,j

(θ∗k,j,τ − η∗k,j,τ−1)xk,j,τ +
∑

k<K,j

(−bj − η∗k,j,T )xk,j,T+1


which yields the following relations:

η∗k,j,T = −bj ∀ k < K, j (8)

θ∗k,j,τ = η∗k,j,τ−1 ∀ k < K, j, τ > 1 (9)

(7) and (9) implies

θ∗k,j,τ = θ∗k−1,j,τ+1 + ξk,j,τ (10)

(6), (7), and (8) imply

θ∗k,j,T = −bj + ξ∗k,j,T ≥ −bj

for all k and j. The inequality holds since ξ∗k,j,τ ≥ 0. By backward induction with (10) and the relation

in (6), we can further show that, for all k, j, and τ

θ∗k,j,τ ≥ −bj (11)

Lastly, we apply the first-order optimality condition to II . For all τ and i,

C ′
i(w

⊤u∗
i,τ )wj − bj + ξ∗1,j,τ−ϕ∗

1,j,i,τ = 0

C ′
i(w

⊤u∗
i,τ )wj + η∗k−1,j,τ + ξ∗k,j,τ−ϕ∗

k,j,i,τ = 0, ∀ k > 1

Using (6) and (7), above are equivalent to, for all k, j, i, τ ,

C ′
i(w

⊤u∗
i,τ )wj + θ∗k,j,τ − ϕ∗

k,j,i,τ = 0 (12)

Using (11) and ϕ∗
k,j,i,τ ≥ 0, we conclude that θ∗k,j,τ satisfies the follow constraint.

θ∗k,j,τ ≥ −min{bj ,min
i

C ′
i(w

⊤u∗
i,τ )wj} (13)

In addition, the complementary slackness condition u∗
k,j,i,τϕ

∗
k,j,i,τ = 0 implies

u∗
k,j,i,τ

(
C ′

i(w
⊤u∗

i,τ )wj + θ∗k,j,τ
)
= 0 (14)

We may interpret −θ∗k,j,τ as the marginal value for fulfilling an order index by k, j, and τ . When

C ′
i(w

⊤u∗
i,τ )wj − (−θ∗k,j,τ ) > 0, implying the weighted marginal fulfillment cost of warehouse i is higher

than the marginal benefit of fulfillment, we must not fulfill such orders from warehouse i, i.e., u∗
k,j,i,τ =

0. On the other hand, when C ′
i(w

⊤u∗
i,τ )wj − (−θ∗k,j,τ ) = 0, we may fulfill those orders from warehouse

i, i.e., u∗
k,j,i,τ ≥ 0.

Next, we will show that θ∗k,j,τ are identical and negative for all k. We arbitrarily fix the index j

and τ . We need to consider two cases.

Case 1: when some orders from j are fulfilled. We define an index set Kj,i,τ = {k ∈ [K] :

u∗
k,j,i,τ > 0}. Case 1 implies ∪iKj,i,τ ̸= ∅. We consider the following three sub-cases.

Case 1.1: Orders with different fulfillment window are fulfilled by the same warehouse. That is,

if there exists an index i such that for all k, k′ ∈ Kj,i,τ , k ̸= k′,

θ∗k,j,τ = −C ′
i(w

⊤u∗
i,τ )wj = θ∗k′,j,τ
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The relationship holds according to (14). The above relationship indicates that if orders with different

windows are fulfilled from the same warehouse, they have the same marginal value, which equals the

negative weighted marginal fulfillment cost of that fulfilled warehouse.

Case 1.2: Orders with different fulfillment window are fulfilled by different warehouses. That is,

if there exists i, i′, k, and k′ such that i ̸= i′, k ∈ Kj,i,τ , k
′ ∈ Kj,i′,τ , k ̸= k′,

θ∗k,j,τ ≥ −C ′
i′(w

⊤u∗
i′,τ )wj = θ∗k′,j,τ

θ∗k′,j,τ ≥ −C ′
i(w

⊤u∗
i,τ )wj = θ∗k,j,τ

The inequality follows (13), and the equality follows (14). This implies

θ∗k,j,τ = −C ′
i′(w

⊤u∗
i′,τ )wj = −C ′

i(w
⊤u∗

i,τ )wj = θ∗k′,j,τ

Cases 1 and 2 imply that if orders with fulfillment window k are ever fulfilled, they have the

same marginal value. In other words, θ∗k,j,τ takes the same value for all k ∈ ∪iKj,i,τ . Moreover, any

warehouse that fulfills to location j during cycle τ has the same weighted marginal fulfillment cost.

To simplify the notation for the following discussion, we denote those warehouses by an index set

Ij,τ = {i ∈ [M ] :
∑

k′ u∗
k′,j,i,τ > 0}. We denote this weighted marginal fulfillment cost as C ′. That is,

C ′ = C ′
i(w

⊤u∗
i,τ )wj for all i ∈ Ij,τ and θ∗k,j,τ = −C ′ for all k ∈ ∪iKj,i,τ .

Case 1.3: Orders with fulfillment window k are not fulfilled (i.e., exists some k such that k /∈
∪iKj,i,τ ). We assume there exists at least one k /∈ ∪iKj,i,τ such that θ∗k,j,τ > −C ′ since otherwise all

θ∗k′,j,τ are identical for all k′. Our goal is to construct another set of dual variables θ̂, η̂, ξ̂, σ̂, and ϕ̂,

and show that (γ∗, u∗, x∗, y∗, θ̂, η̂, ξ̂, σ̂, ϕ̂, µ∗) satisfy Karush–Kuhn–Tucker (KKT) conditions.

Denote K̄j,τ = {k /∈ ∪iKj,i,τ : θ∗k,j,τ > −C ′}. Define δk := θ∗k,j,τ+C ′ for all k ∈ K̄j,τ . Let θ̂ equals to

θ∗ everywhere except θ̂k,j,τ = −C ′ for all k ∈ K̄j,τ ; η̂ equals η∗ everywhere except η̂k−1,j,τ = η∗k−1,j,τ−δk

for all k ∈ K̄j,τ and k ̸= 1, η̂k,j,τ−1 = η∗k,j,τ−1 − δ for all k ∈ K̄j,τ and τ > 1; ξ̂ equals to ξ∗ everywhere

except ξ̂1,j,τ = bj−C ′ if {1} ⊂ K̄j,τ ; σ̂ equals σ∗ everywhere except σ̂j,τ = σ∗
j,τ −Λj,τ

∑
k∈K̄j,τ

πk(S)δk;

ϕ̂ equals to ϕ∗ everywhere except ϕ̂k,j,i,τ = ϕ∗
k,j,i,τ − δk for all i and k ∈ K̄j,τ .

First, we verify the dual feasibility conditions. It is sufficient only to show that ϕ̂k,j,i,τ ≥ 0 for all

i and k ∈ K̄j,τ and ξ̂1,j,τ ≥ 0 if {1} ⊂ K̄j,τ . The latter must hold according to Lemma 3. For the

formal, according to (12), for all k ∈ K̄j,τ ,

ϕ̂k,j,i,τ = ϕ∗
k,j,i,τ − δk

= C ′
i(w

⊤u∗
i,τ )wj + θ∗k,j,τ − θ∗k,j,τ − C ′

=

{
0 if i ∈ Ij,τ
C ′

i(w
⊤u∗

i,τ )wj − C ′ otherwise

when i ∈ Ij,τ , the last equality holds according to the definition of C ′. For i /∈ Ij,τ , we can show

C ′
i(w

⊤u∗
i,τ )wj ≥ C ′ by contradiction. Suppose the relationship does not hold. For any i′ ∈ Ij,τ , there

must exist some k′ such that u∗
k′,j,i′,τ > 0. Then, we can increase the fulfillment u∗

k′,j,i,τ and decrease

u∗
k′,j,i′,τ by a small amount. This means we re-assign some fulfillment with a fulfillment window of k′

from warehouse i′ to i, leading to a reduction in the fulfillment cost since, according to the assumption,

C ′
i(w

⊤u∗
i,τ )wj < C ′ = C ′

i′(w
⊤u∗

i′,τ )wj . This contradicts the fact that u∗ is optimal. Therefore, we

conclude ϕ̂k,j,i,τ ≥ 0 for all i and k ∈ K̄j,τ .

Next, we verify the stationarity conditions∇L = 0 with respect to the primal variables. Specifically,

γj,τ (S),

∂L
∂γj,τ (S)

= Λj,τRj(S) + Λj,τ

∑
k′

θ̂k′,j,τπk′(S)− σ̂j,τ + µ̂j,τ,S
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= Λj,τRj(S) + Λj,τ

∑
k′ /∈K̄j,τ

θ∗k′,j,τπk′(S) + Λj,τ

∑
k∈K̄j,τ

πk(S)(θ
∗
k,j,τ − δk)

− σ∗
j,τ + Λj,τ

∑
k∈K̄j,τ

πk(S)δk + µ∗
j,τ,S

= Λj,τRj(S) + Λj,τ

∑
k′

θ∗k′,j,τπk′(S)− σ∗
j,τ + µ∗

j,τ,S

= 0

For uk,j,i,τ such that k ∈ K̄j,τ and k > 1,

∂L
∂uk,j,i,τ

= −C ′
i(w

⊤u∗
i,τ )wj − η̂k−1,j,τ − ξ∗k,j,τ + ϕ̂k,j,i,τ

= −C ′
i(w

⊤u∗
i,τ )wj − η∗k−1,j,τ + δ − ξ∗k,j,τ + ϕ∗

k,j,i,τ − δ

= −C ′
i(w

⊤u∗
i,τ )wj − η∗k−1,j,τ − ξ∗k,j,τ + ϕ∗

k,j,i,τ

= 0

when k ∈ K̄j,τ and k = 1,

∂L
∂u1,j,i,τ

= −C ′
i(w

⊤u∗
i,τ )wj + bj − ξ̂1,j,τ + ϕ̂1,j,i,τ

= −C ′
i(w

⊤u∗
i,τ )wj + bj − bj + C ′ + ϕ∗

1,j,i,τ − θ∗1,j,τ − C ′

= −C ′
i(w

⊤u∗
i,τ )wj + ϕ∗

1,j,i,τ − θ∗1,j,τ

= 0

where the last equality follows (12). For yk,j,τ and xk,j,τ , k ∈ K̄j,τ ,

∂L
∂yk,j,τ

= θ̂k,j,τ − η̂k−1,j,τ − ξ∗k,j,τ

= −C ′ − (η∗k−1,j,τ − θ∗k,j,τ − C ′)− ξ∗k,j,τ

= θ∗k,j,τ − η∗k−1,j,τ − ξ∗k,j,τ

= 0

∂L
∂xk,j,τ

= θ̂k,j,τ − η̂k,j,τ−1

= −C ′ − (η∗k,j,τ−1 − θ∗k,j,τ − C ′)

= θ∗k,j,τ − η∗k,j,τ−1

= 0

Note that ∂L
∂xk,j,τ

= 0 is required to hold only for τ > 1 since xk,j,1 = xk,j is not a decision variable.

Lastly, regarding the complementary slackness conditions, since θ̂, η̂, and σ̂ correspond to equality

constraints, we only have to verify ϕ̂k,j,i,τu
∗
k,j,i,τ = 0 for all i and k ∈ K̄j,τ and ξ̂1,j,τ (

∑
i u

∗
1,j,i,τ −

y∗1,j,τ ) = 0 if {1} ⊂ K̄j,τ . The former holds since u∗
k,j,i,τ = 0 according to the assumption. The latter

holds since the only scenario when {1} ⊂ K̄j,τ is when y∗1,j,τ = 0. To see that, suppose y∗1,j,τ > 0,

which indicates, according to the assumption, it is optimal to fulfill some orders with k′ > 1 but not

with k = 1. However, we can always find some i such that u∗
k′,j,i,τ > 0. Then, we increase u∗

1,j,i,τ by

a small amount and reduce u∗
k′,j,i,τ by the same amount. The resulting fulfillment decision achieves a

lower fulfillment cost according to Lemma 3, which contradicts that u∗ is optimal.

Therefore, (γ∗, u∗, x∗, y∗) and (θ̂, η̂, ξ∗, σ̂, ϕ̂, µ∗) jointly satisfy KKT conditions. To show the con-

structed dual variables are optimal, we still need Slater’s condition to hold, which is clearly the case.
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For instance, we can find a relative interior and feasible primal point by letting γj,τ (S) = 1/|N | for
all S ∈ N and equally assigning (1 − ε) proportion of unfulfilled orders to each warehouse, for any

ε ∈ (0, 1). Thus, we conclude θ̂ is also an optimal dual and θ̂k,j,τ = −C ′ for all k.

Case 2: no order from j is fulfilled. Once again, our goal is to construct dual variables

(θ̂, η̂, ξ̂, σ̂, ϕ̂, µ∗), and show that, together with primal optimal variables (γ∗, u∗, x∗, y∗), they satisfy

KKT conditions.

Denote C ′ := min{bj ,mini C
′
i(w

⊤u∗
i,τ )wj}. We set θ̂k,j,τ = −C ′ for all k; η̂ equals to η∗ everywhere

except η̂k−1,j,τ = η∗k−1,j,τ − θ∗k,j,τ − C ′ for all k > 1 and η̂k,j,τ−1 = η∗k,j,τ−1 − θ∗k,j,τ − C ′ for τ > 1;

ξ̂ equals to ξ∗ everywhere except ξ̂1,j,τ = bj − C ′; σ̂ equals to σ∗ everywhere except σ̂j,τ = σ∗
j,τ −

Λj,τ

∑
k′(θ∗k,j,τ + C ′)πk′(S); ϕ̂ equals to ϕ∗ everywhere except ϕ̂k,j,i,τ = ϕ∗

k,j,i,τ − θ∗k,j,τ − C ′ for all i.

For feasibility conditions, we need to show ξ̂1,j,τ ≥ 0 and ϕ̂k,j,i,τ ≥ 0 for all i. The first holds since

ξ̂1,j,τ = max{0, bj −mini C
′
i(w

⊤u∗
i,τ )wj} ≥ 0. The second holds since, according to (12),

ϕ̂k,j,i,τ = ϕ∗
k,j,i,τ − θ∗k,j,τ − C ′

= C ′
i(w

⊤u∗
i,τ )wj + θ∗k,j,τ − θ∗k,j,τ − C ′

= C ′
i(w

⊤u∗
i,τ )wj −min{bj ,min

i′
C ′

i′(w
⊤u∗

i′,τ )wj}

=

{
C ′

i(w
⊤u∗

i,τ )wj − bj if bj ≤ mini′ C
′
i′(w

⊤u∗
i′,τ )wj

C ′
i(w

⊤u∗
i,τ )wj −mini′ C

′
i′(w

⊤u∗
i′,τ )wj otherwise

≥ 0

For the stationarity conditions ∇L = 0, similar to the previous discussion in Case 1.3, we can show

our constructed dual variables satisfy ∂L
∂γj,τ (S) = 0, ∂L

∂uk,j,i,τ
= 0 when k > 1, ∂L

∂yk,j,τ
= 0 when k > 1,

and ∂L
∂xk,j,τ

= 0 for τ > 1. For k = 1,

∂L
∂u1,j,i,τ

= −C ′
i(w

⊤ui,τ )wj + bj − ξ̂1,j,τ + ϕ̂1,j,i,τ

= −C ′
i(w

⊤ui,τ )wj + bj − (bj − C ′) + (ϕ∗
1,j,i,τ − θ∗1,j,τ − C ′)

= −C ′
i(w

⊤ui,τ )wj − θ∗1,j,τ + ϕ∗
1,j,i,τ

= 0

where the last equality follows (12), and

∂L
∂y1,j,τ

= −bj − θ̂1,j,τ + ξ̂1,j,τ

= −bj + C ′ + b− C ′

= 0

For complementary slackness conditions, it is sufficient only to verify ξ̂1,j,τ
(∑

i u
∗
1,j,i,τ − y∗1,j,τ

)
= 0.

If y∗1,j,τ = 0, the condition holds since
∑

i u
∗
1,j,i,τ −y∗1,j,τ = 0. Otherwise, if y∗1,j,τ > 0, we need to show

ξ̂1,j,τ = 0, which is equivalent to show bj ≤ C ′
i(w

⊤u∗
i,τ )wj for all i. This is indeed the case: If there

exists a warehouse i that does not satisfy that requirement, we are better off by fulfilling some orders

with k = 1 from that warehouse to location j, i.e., u∗
1,j,i,τ > 0, which contradicts that it is optimal to

not fulfill all orders from j.

Therefore, we conclude that (γ∗, u∗, x∗, y∗) and (θ̂, η̂, ξ̂, σ̂) satisfy KKT conditions. As discussed

previously, Slater’s condition also holds. Thus, θ̂k,j,τ = −min{bj ,mini C
′
i(w

⊤u∗
i,τ )wj} < 0 for all k is

also an optimal dual.

Since the index j and τ are arbitrarily fixed, the above completes the second part.
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A.3 Theorem 1

Before providing the proof for Theorem 1, we first give the formal definition of the HYP policy in

Algorithm 3 and two technical lemmas and their proof. The proof of the theorem directly comes from

the lemmas.

Algorithm 3: Hypothetical Policy (HYP)

Input: Customer arrival rate vector Λj,τ , ∀ j ∈ [N ], τ ∈ [T ], Fulfillment cost vector Ci, ∀ i ∈ [M ], penalty
vector bj , ∀ j ∈ [N ]

Output: Fulfillment option display decision SHYP = {SHYP
j,τ } and fulfillment decision uHYP = {uHYP

k,j,i,t}
1 Construct the set of all efficient assortments Ej for all j ∈ [N ].
2 Solve DET to obtain γ∗

j,τ (S) for all S ∈ Ej and u∗
k,j,i,τ .

3 for τ ∈ [T ] do
4 At any time t ∈ [0, 1], if there is a customer from location j, offer an assortment S ∈ E with probability

γ∗
j,τ (S).

5 At the end of the cycle, fulfill orders according to a scaling rule uHYP
k,j,i,t =

yk,j,τ

y∗
k,j,τ

· u∗
k,j,i,τ .

6 end

Lemma 4. V HYP(x) ≤ V EATF(x)

Proof. Consider a sequence of customer arrivals, denoted as D̃ = (D̃j,τ (t) : j ∈ [N ], τ ∈ [T ], t ∈ [0, 1]).

This process can also be represented by the specific times of arrival. For each fulfillment cycle τ ,

let the total number of customers be Lτ :=
∑

j D̃j,τ . These arrivals are indexed by l ∈ [1, Lτ ] with

corresponding arrival times tl,τ . Each order is identified by its arrival time.

Applying both EATF and HYP to D̃, the total profit from each policy can be obtained by the

cumulative profit from each customer, termed as marginal profit, which can be calculated as the

marginal revenue subtracting the marginal fulfillment cost. That is,

V ρ(x | D̃) =

T∑
τ=1

Lτ∑
l=1

rρl,τ − cρl,τ

where ρ ∈ {EATF,HYP}, rρl,τ and cρl,τ are the marginal revenue and cost for the orders arriving at

time tl,τ during cycle τ under policy ρ. The expected profit V EATF(x) and V HYP(x) can be obtained

by taking the expectation of the profit with respect to the sample path.

V ρ(x) = ED̃

[
V ρ(x | D̃)

]
Therefore, to prove this lemma, it is sufficient to show that

rEATF
l,τ − cEATF

l,τ ≥ rHYP
l,τ − cHYP

l,τ

for all l and τ .

To control the randomness due to customer choice, we assume that if the same assortment is offered

under both EATF and HYP to the customer at time tl,τ , she will choose the same fulfillment option

under both policies.

If both policies offer identical assortments for all customer tl,τ across all τ , the lemma holds trivially.

Therefore, we assume, for the first time, EATF and HYP offer different assortments during cycle τ0
to the customer at tl0,τ0 from location j0. Denote the offered assortments by SHYP and SEATF,

respectively, with SEATF ⫋ SHYP.

Let us focus on this customer at tl0,τ0 . If she chooses to leave without the purchase under both

policies, rρl0,τ0 = cρl0,τ0 = 0. Otherwise, if she chooses the same fulfillment option k ∈ SEATF under
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both policies, then the marginal revenue will be identical, i.e., rρl0,τ0 = rk,j . However, the marginal

fulfillment cost associated with this order under EATF will not be larger than that under HYP. To

show that, we first notice that this order will not be fulfilled in a later cycle under HYP than under

EATF according to Algorithm 1. If this order is fulfilled in the same cycle under both policies, then the

marginal fulfillment cost can be considered equal under both policies. However, if this order is fulfilled

in a later cycle under EATF than under HYP, then, according to Algorithm 1, cHYP
l0,τ0

> bj0 ≥ cEATF
l0,τ0

.

Conversely, if the customer chooses k′ ∈ SHYP \ SEATF under HYP but k ∈ SEATF ∪ {∅} under

EATF. Since k′ is eliminated in EATF, it implies k′ is economically nonviable while k is viable.

According to Definition 2, the marginal profit with k′ is strictly negative, whereas, with k, it is non-

negative. This rationale applies to any customers from location j0 after tl0,τ0 during cycle τ0, as k′

remains nonviable. Therefore, we can conclude that EATF will not have worse performance than

HYP by the end of cycle τ .

For the subsequent cycle τ1 := τ0+1, while the pre-assortment state xρ
τ1 may differ under EATF and

HYP, this does not impact the assortment strategy SHYP for cycle τ1. Nor does it affect SEATF until

the time instance tl1,τ1 , when some fulfillment option k′ ∈ SHYP becomes economically nonviable.

Before this time, both policies offer the same assortment. After tl1,τ1 , k
′ is removed from SEATF.

Using the same logic as before, we can demonstrate that the profit collected under EATF during the

fulfillment cycle τ1 will not be less than that under HYP.

Lemma 5. Let Λ = maxj,τ Λj,τ , w = maxj wj . The optimality gap of HYP is bounded by

V ∗(x)− V HYP(x) ≤ wCMTK

√
1

2
ΛKN

Proof. Let (DHYP
k,j,τ : k ∈ [K], j ∈ [N ], τ ∈ [T ]) denote the realized demand under HYP. Note that

DHYP
k,j,τ is a counting process with the parameter Λj,τ

∑
S γ∗

j,τ (S)πk(S) over a unit time span, hence,

E
[
DHYP

k,j,τ

]
= Λj,τ

∑
S

γ∗
j,τ (S)πk(S)

The expected revenue collected during some fulfillment cycle τ can be calculated by

E

∑
j

∑
k

rk,jD
HYP
k,j,τ

 =
∑
k,j,S

rk,jΛj,τγ
∗
j,τ (S)πk(S)

which equals the revenue inDET with an optimal solution. Hence, the difference between the expected

profit under HYP and OPT can be bounded as follows:

V ∗(x)− V HYP(x) ≤ V D(x)− V HYP(x)

= E


T∑

τ=1

(g(yτ , u
HYP
τ )− g(y∗τ , u

∗
τ )) +

∑
k,j

bj(xk,j,T+1 − x∗
k,j,T+1)


where g is the immediate cost function defined as

g(y, u) =
∑
i

Ci

∑
k,j

wjuk,j,i

+
∑
j

bj

(
y1,j −

∑
i

u1,j,i

)

xτ and yτ are the pre- and post-assortment state under HYP, respectively. x∗
τ and y∗τ are the pre-

and post-assortment state along the “optimal fluid path”.
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We first show that the system’s evolution under HYP follows the “optimal fluid path” in expec-

tation. Specifically, we want to show that

E[xτ ] = x∗
τ , E[yτ ] = y∗τ , E[uHYP

τ ] = u∗
τ

for all τ . We can show this by induction. When τ = 1

E[yk,j,1] = E
[
xk,j,1 +DHYP

k,j,1

]
= xk,j,1 + E[DHYP

k,j,1 ]

= xk,j,1 + Λj,1

∑
S

γ∗
j,1(S)πk(S)

= y∗k,j,1

and E[uHYP
k,j,i,1] = u∗

k,j,i,1 follows the definition in Algorithm 3. Since xk,j,2 is linear in both yk,j,1 and

uHYP
k,j,1 , then we must have E[xk,j,2] = x∗

k,j,2.

Suppose for any τ > 1 we have E[xτ ] = x∗
τ , E[yτ−1] = y∗τ−1, and E[uHYP

τ−1 ] = u∗
τ−1 by the inductive

assumption. We can easily show the following holds:

E[yτ ] = y∗τ , E[uHYP
τ ] = u∗

τ , E[xτ+1] = x∗
τ+1

which completes the induction. Therefore,

V ∗(x)− V HYP(x) ≤ E


T∑

τ=1

(g(yτ , u
HYP
τ )− g(y∗τ , u

∗
τ )) +

∑
k,j

bj(xk,j,T+1 − x∗
k,j,T+1)


= E

{
T∑

τ=1

M∑
i=1

(
Ci(w

⊤uHYP
i,τ )− Ci(w

⊤u∗
i,τ )
)}

≤
T∑

τ=1

M∑
i=1

CE
{∣∣w⊤uHYP

i,τ − w⊤u∗
i,τ

∣∣}

≤
T∑

τ=1

M∑
i=1

C

√√√√√V ar

∑
k,j

wjuHYP
k,j,i,τ


The second inequality holds due to Mean Value Theorem and Assumption 2. The last inequality is

held by Jensen’s inequality and the definition of variance. To further derive the performance guarantee

regarding the problem parameters, we must carefully examine the relation of the fulfillment from

the warehouse i to different demand indexes k and j. Note that customers’ arrival process and the

assortment display decision are independent in j. Hence, the post-assortment state yk,j,τ is independent

in j. Since uHYP
k,j,i,t =

u∗
k,j,i,τ

y∗
k,j,τ

yk,j,τ , where
u∗
k,j,i,τ

y∗
k,j,τ

is deterministic, the randomness of uHYP
k,j,i,τ completely

comes from yk,j,τ . Therefore, u
HYP
k,j,i,τ is independent in j. Therefore

V ar

∑
k,j

wju
HYP
k,j,i,τ

 =
∑
j

w2
jV ar

(∑
k

uHYP
k,j,i,τ

)

≤
∑
j

w2K
∑
k

V ar
(
uHYP
k,j,i,τ

) (15)

Moreover, the deterministic part
u∗
k,j,i,τ

y∗
k,j,τ

≤ 1 since
∑

i u
∗
k,j,i,τ ≤ y∗k,j,τ and u∗

k,j,i,τ ≥ 0. Therefore,

V ar
(
uHYP
k,j,i,τ

)
≤ V ar (yk,j,τ ). Then, we bound the variance of yk,j,τ . By the system dynamics, we

have

yk,j,τ ≤ DHYP
k,j,τ +DHYP

k+1,j,τ−1 + · · ·+DHYP
K,j,τ−K+k
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where each term DHYP
k,j,τ =

∑
S γ∗

j,τ (S)πk(S)D̃j,τ on the right-hand side can be considered as a splitting

Poisson process. This implies V ar(DHYP
k,j,τ ) ≤ V ar(D̃j,τ ) = Λj,τ . Moreover, all terms are independent

of each other. Therefore,

V ar (yk,j,τ ) ≤ Λj,τ + Λj,τ−1 + · · ·+ Λτ−K+k ≤ (K − k + 1)Λj ≤ KΛj

where Λj = maxτ Λj,τ . Substituting the above result to (15) yields

V ar

∑
k,j

usLR
k,j,i,τ

 ≤
∑
j

w2K
∑
k

KΛj ≤
1

2
w2K3NΛ

where Λ := maxj,τ Λj,τ . Therefore,

V ∗(x)− V HYP(x) ≤ wCMTK

√
1

2
ΛKN

A.4 Proposition 4

Proof. We omit the customer type index q and location index j in this proof. At each recursion, if

there is a single maximizer for the marginal revenue ratio, then Algorithm 2 is identical to the original

one proposed by Talluri and Van Ryzin (2004), and it returns the complete sequence of efficient

assortments. Therefore, it is sufficient to show that Algorithm 2 can find all assortments that are all

maximizers for the marginal revenue ratio at some recursion.

Suppose that Θ contains two assortments, S1 and S2, S1 ̸= S2, at m-th recursion. We first

consider the case Q(S1) ̸= Q(S2). Without loss of generality, we assume Q(S1) < Q(S2). Clearly,

R(S1) < R(S2); otherwise, both cannot be maximizers. Denote the maximum marginal revenue ratio

at m-th recursion by θ = maxS′∈Ω(Sm)
R(S)−R(Sm)
Q(S)−Q(Sm) , θ can be infinite.

According to the algorithm, we select Sm+1 = S1. In the (m+1)-st recursion, the marginal revenue

ratio for assortment S2 is

R(S2)−R(Sm+1)

Q(S2)−Q(Sm+1)
=

R(S2)−R(Sm) +R(Sm)−R(Sm+1)

Q(S2)−Q(Sm+1)

=
θ(Q(S2)−Q(Sm)) + θ(Q(Sm)−Q(Sm+1))

Q(S2)−Q(Sm+1)

=
θ(Q(S2)−Q(Sm+1))

Q(S2)−Q(Sm+1)

= θ

The second equality holds since θ = R(S1)−R(Sm)
Q(S1)−Q(Sm) =

R(S2)−R(Sm)
Q(S2)−Q(Sm) according to the assumption and the

fact that Sm+1 = S1.

According to (4), Ω(Sm+1) ⊂ Ω(Sm). Therefore, for any other assortment S ∈ Ω(Sm+1), S must

also in Ω(Sm). The marginal revenue ratio for S is

R(S)−R(Sm+1)

Q(S)−Q(Sm+1)
=

R(S)−R(Sm) +R(Sm)−R(Sm+1)

Q(S)−Q(Sm+1)

<
θ(Q(S)−Q(Sm)) + θ(Q(Sm)−Q(Sm+1))

Q(S)−Q(Sm+1)

=
θ(Q(S)−Q(Sm+1))

Q(S2)−Q(Sm+1)

= θ
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The inequality holds since S ∈ Ω(Sm) but not a maximizer, which implies R(S)−R(Sm)
Q(S)−Q(Sm) < θ. We selected

S1 at m-th recursion, and S2 will be the sole maximizer in the (m+ 1)-st recursion. Therefore, both

will be added to E .

When Q(S1) = Q(S2), we must also have R(S1) = R(S2). In this case, we arbitrarily select an

assortment (e.g., S1) at the m-th recursion. Define 0/0 = ∞. Then, for the next recursion, the

marginal revenue ratio will be infinite for S2 but strictly smaller than θ for the rest S ∈ Ω(Sm+1).

Hence, S2 will also be added to E .

Suppose there are multiple maximizers {S1, S2, · · · , Sn} at m-th recursion and S1 is selected ac-

cording to Algorithm 2. In that case, by the same argument as before, we can show that {S2, · · · , Sn}
will be maximizers for (m+1)-st recursion. We can continue the procedure until all of them are added

to E .

B Additional numerical studies

In what follows, we present additional numerical studies to explore the performance of EATF and

benchmark policies by varying arrival rates, number of warehouses, and the number of delivery options.

B.1 Varying arrival rates

Our theoretical performance bound implies both policies are asymptotically optimal when the arrival

rate of each location is large. To test that, we change the arrival rate of all locations from 10 to

60 and adjust the in-contract fulfillment quantity so that the fulfillment capacity remains unchanged.

Similar to the study of the number of locations, we consider two types of markets: customers prefer the

balanced fulfillment option in the actual markets but the cost-efficient option in the virtual markets.

We report the simulation results in Table 8. It can be seen that the relative gaps for EATF approach

to zero and λj,τ increases, which support our theoretical performance guarantee. However, this is

not seen in the benchmark policies, implying that asymptotical optimality is a unique benefit of joint

optimization. In addition, it is clear that EATF outperforms all benchmark policies in all cases,

similar to what we observed when we changed N .

Table 8: Performance of EATF and benchmark policies under various arrival rates.

Actual Market Virtual Market

λj,τ EATF EAMF FATF FAMF EATF EAMF FATF FAMF

10 3.7% 5.6% 21.5% 26.1% 1.9% 31.8% 68.0% 68.3%

20 2.7% 3.8% 21.7% 24.8% 1.2% 18.1% 67.6% 68.3%

30 2.2% 3.2% 21.5% 24.1% 1.2% 15.2% 67.1% 68.4%

40 2.0% 2.7% 21.5% 23.8% 1.1% 13.3% 66.8% 68.2%

50 1.8% 2.5% 21.6% 23.6% 1.0% 9.8% 66.5% 68.3%

60 1.5% 2.2% 21.6% 23.3% 0.7% 9.0% 66.4% 68.3%

B.2 Varying number of warehouses

We change the number of warehouses from 1 to 3 but keep the system-wide fulfillment capacity

constant. To do so, we set the cheaper fulfillment quantity for each warehouse by 220/M . The results

are reported in Table 9. Unlike what is suggested in Theorem 1, the simulation results show that the

optimality gap does not increase as M increases. This result indicates that EATF applies to retailers

with multiple warehouses.
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Table 9: Performance of EATF and benchmark policies with different number of warehouses.

M EATF EAMF FATF FAMF

1 2.6% 3.9% 21.7% 24.9%

2 2.7% 4.0% 21.4% 24.7%

3 2.7% 4.0% 21.7% 24.9%
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