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3000, chemin de la Côte-Sainte-Catherine
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Abstract: The past few years have seen the ability of cooperative Malware Detection Systems (MDS) to detect

complex and unknown malware. In a cooperative setting, an MDS can consult other MDSs about suspicious malware

and make a final decision using an aggregation mechanism. However, large delays may arise from both applying an

aggregation mechanism and waiting to receive feedback from consulted MDSs. These shortcomings render the decisions

produced by existing cooperative MDS approaches ineffective in real-time. To address the above-mentioned problem,

we propose a deep learning-based cooperative MDS that efficiently exploits historical feedback data to foster proactive

decision-making. More specifically, the proposed approach is based on Denoising Autoencoder (DA), which allows us

to learn how to reconstruct complete MDSs’ feedback from partial feedback. Our results show the effectiveness of the

proposed framework on a real-life dataset.

1 Introduction

The current communication and computing infrastructure is becoming more and more complex and

vulnerable to cyber attacks. In the recent years, studies and results have shown that the use of

cooperative Malware Detection Systems (MDSs) can enhance the detection accuracy compared to

traditional single MDSs [1, 4, 5]. This is such since it is becoming increasingly difficult for one single

MDS to detect all existing malware [1, 2, 5], due to its limited knowledge of such malware patterns

and implications. The cooperation among MDSs can be achieved through allowing them to exchange

their malware analysis feedback and exploit each other’s expertise to cover unknown malware patterns,

thus achieving mutual benefits.

There are considerable delays associated with adopting existing cooperative MDS approaches [1, 5].

These delays are mostly due to the computation complexity of using aggregation algorithms such as

Bayesian Theory, and also the large geographic distances that separate the MDSs. In fact, each MDS,

after receiving feedback from consulted MDSs regarding a suspicious malware, is required to use a

suitable feedback algorithm, in order to make a final decision about the suspicious malware. The

aggregation method is usually costly in terms of computation time and depends on many factors such

as the number of consulted MDSs, and MDSs’ trust levels and expertise [1, 2, 5]. In addition, due to the

uneven MDSs’ connections and communication speeds and other unknown factors (e.g., busy MDSs,

compromised MDSs), there is no guarantee that feedback will be synchronously received. Therefore,

decisions on whether or not to raise an alarm regarding some suspicious malware might be excessively

delayed due to the missing feedback of a single MDS. Hence, the decisions generated by the cooperative

MDS are ineffective in a real-time setting.

To address the above-mentioned limitations, we propose a proactive cooperative MDS that inte-

grates a deep learning approach. The proposed approach exploits the historical MDSs’ feedback to

predict the status of a certain suspicious malware. This is done proactively without having to ap-

ply any aggregation mechanism on consulted MDSs’ feedback, nor having to wait until receiving all

the feedbacks from the consulted MDSs, i.e., only partial and/or incomplete feedback can be used

to predict the status of suspicions attack. This, in turn, makes our approach reliable and feasible in

real-time environments, where decisions on malware must be rapidly taken in order to effectively apply

the required action measures at the right time. More particularly, the proposed approach is based on

Stacked Denoising Autoencoders (SDAE), where a denoising autoencoder is used as a building block

to train a deep neunetwork [11, 12]. We capitalize on the fact that a denoising autoencoder can learn

how to reconstruct original inputs giving partial data inputs, through allowing deep neural networks

to learn how to extract features that are robust to incomplete MDSs’ feedback. Our contributions are

summarized as follows:

• Proposing a cooperative malware detection system that enables decision-making on suspicious

malware, even with partial MDSs’s feedback.

• Designing a proactive cooperative MDS, which enables us to make decisions about suspicious

malware proactively, i.e., without the need to apply aggregation mechanisms on MDSs’ feedback.
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2 SDAE-MDS: The proposed approach

In this section, we first present the concept of traditional autoencoders. Then, we explain the proposed

approach.

2.1 The traditional autoencoders

An autoencoder is an unsupervised learning method that is used to learn reliable data codings [9]. It

is used to pre-train each layer in a deep neural network in order to obtain better initial weights that

lead to a better-performing classification [3]. Researchers have reported that weights initialization

using autoencoders can improve the performance of deep neural networks, compared to a random

initialization [3].

An autoencoder is used as a building block for deep networks [3]. In particular, it takes an input

vector (MDSs’ feedback) x ∈ [0, 1]d , where d is the vector dimension, and maps it to a hidden

representation h ∈ [0, 1]d
′

using the following equation:

h = fθ(x) = Sig(W ∗ x+ b) (1)

θ = {W, b}, W is a weight matrix and b is a bias vector. Thereafter, the resulting hidden layer

representation h will be reconstructed to the output layer x′ using a decoding function as follows:

x′ = gθ′(h) = Sig(W ′ ∗ h+ b′) (2)

θ′ = {W ′, b′}, W ′ and b′ are a weight matrix and a bias vector of the reverse mapping, respectively.

The purpose of the model is to optimize the parameters of the model, so that the reconstruction error

between the input and output can be reduced [6].

2.2 The proposed approach

In order to make an autoencoder robust to incomplete MDSs’ feedback, the autoencoder should be

trained to reconstruct its MDS’s feedback even if the feedback does not represent the whole MDSs’

feedback (i.e., when some feedback are not available). The autoencoder that deals with corrupted

version of the input is called a denoising autoencoder [11]. This is achieved by adding noise to the

initial input x before passing it to the hidden layer. The objective is to reconstruct x, where x

represents the MDSs’ feedback. Thus, a partially corrupted version z will be obtained from x as

follows: z = alpha(x) where alpha is a corruption mechanism [11]. In our model, we use Masking

Noise Approach (MNA) for the corruption process, as it is useful to represent incomplete MDS’s

feedback [12]. In MNA noise, a fraction v (selected at random) of each MDSs’ feedback x is forced to

be 0, while the others remain untouched. In fact, other noise can also be used such as Gaussian noise.

However, MNA noise is more useful to simulate incomplete MDSs’ feedback [12] since the noise will

only change partial feedback.

The autoencoder is then used to take corrupted data z and attempt to learn how to reconstruct x.

This is done by allowing the input z to be mapped to a hidden representation, i.e.,

h = fθ(z) = Sig(W ′ ∗ z + b′) (3)

Note that we select z as input instead of x since a traditional autoencoder was used. The value

of h is then used to reconstruct x′ as follows:

x′ = gθ′(h) = Sig(W ∗ h+ b) (4)
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The denoising autoencoder architecture is described in Figure 1. As given in the traditional au-

toencoder, the parameters are trained to minimize the average reconstruction error:

θ∗, θ′∗ = arg minimizeθ,θ′
1

n

n∑
j=1

L(z(j), x′(j))

=
1

n

n∑
i=1

L(z(j), gθ′(fθ(z
(j))))

(5)

Figure 1: MDS-based denoising autoencoder architecture

The training algorithm of the proposed MDS-based denoising autoencoder is described as follows.

For the raw inputs x, we randomly select parts of them to be set to 0 as the corrupted inputs z. The

corrupted input z will then be encoded to the hidden code and reconstructed to the output. Note

that x′ is a deterministic function of z rather than x. The reconstruction that is computed between z

and x is denoted as L(x, x′). The parameters of the model are randomly initialized and then optimized

using stochastic gradient descent algorithms. The above mentioned-steps are performed for each layer

added in the proposed MDS-based deep neural network. To generate a classifier for MDS, we add a

classifier (e.g., logistic regressions) to the last layer. Then, the parameters of all the layers will be

fine-tuned to minimize the error of predicting the target label (i.e., malware or not) using a back-

propagation algorithm [3, 7, 8, 11, 12].

3 Evaluation results

To evaluate the proposed model, we create a dataset containing MDSs’ feedback on suspicious malware.

This dataset was created based on the Android Malware Dataset (MAD) [10], where each 1 or 0 in

the new dataset corresponds to the answer of an MDS to a given row of the MAD dataset [10]. The

created dataset is used to train the proposed model. Then, the ability of the proposed approach in

making decisions about suspicious malware was tested in the presence of partial/incomplete feedback.

To represent partial/incomplete MDSs’ feedback, some of the MDSs’ feedback (selected randomly)

were left blank. In this case, blanks indicate that some of MDSs’ feedback are yet to be received, due

to some unexpected delays (e.g., busy MDS).

The accuracy of the proposed approach is first tested and compared in a complete information

scenario, i.e, all MDSs’ feedback is received on time. This is useful to evaluate the effectiveness of the

proposed approach in making decisions given partial feedback. Figure 2 shows that the accuracy of the

proposed model, with a variety of hidden units, was slightly degraded (less than 1.1%). These results

suggest that the proposed deep leaning-based approach is able to effectively makes the right decisions

on suspicious malware events, even in the presence of some incomplete feedback.

The proposed model (i.e., SDAE-MDS) was also compared with another approach, namely the

Stacked Auto Encoder-MDS (SAE-MDS). SAE-MDS uses traditional autoencoders as a building block
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Figure 2: Detection accuracy performance compare to having all the MDSs’ feedback (complete
information) - number of hidden layers = 3.

for the deep neural networks. The study was conducted with different numbers of layers and hidden

nodes. Our model (Figure 3) yields an increased accuracy compared to SAE-MDS (Figure 4). The

reason is that we use denoising autoencoders as a building block for our deep neural networks, which

allow us to extract robust features that lead to a better classification, despite the incomplete feedback

given as inputs to the deep neural network [11]. The denoising autoencoder learned how to reconstruct

the feedback from corrupted inputs.

Figure 3: Detection accuracy of SDAE-MDS Figure 4: Detection accuracy of SAE-MDS

Figure 5 compares SDAE-MDS (the proposed model) with two other denoising models based on
training with noisy input, namely SAE(1)-MDS and SAE(2)-MDS. SAE(1)-MDS is a 3-hidden-layers

SAE-MDS where noisy inputs were only used for the pretraining. However, SAE(2)-MDS is also

3-hidden-layers SAE-MDS where noisy inputs were used for both pretraining and fine-tuning. The

results demonstrate that our model is also resilient to the increase in the percentage of noises.

Figure 5: SDAE-MDS vs. training with noisy input



Les Cahiers du GERAD G–2020–23–EIW12 5

Note that when the corrupted inputs (percentage) equals 0%, all models (SAE(1)-MDS, SAE(2)-

MDS and SDAE-MDS) yield the same results in terms of classification accuracy. This is due to the

fact that when 0% is applied, the three models will be the same as SAE.

4 Conclusion

We proposed a proactive cooperative MDS. The proposed approach allows us to exploit historical

feedback to produce learning models that can effectively and efficiently predict the label (malware

or not) of the suspicious malware even when some feedback are missing. The proposed approach is

based on stacked denoising autoencoders, where we use a denoising autoencoder as a building block for

the deep learning classifier. The proposed MDS-based denoising autoencoder is used to learn how to

reconstruct original MDSs’ feedback given partial ones. The proposed model can also make decisions

regarding suspicious malware without having to apply any aggregation mechanism on the consulted

MDSs’ feedback. Experimental results show the effectiveness of the proposed approach.
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