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Abstract: We are interested in blackbox optimization for which the user is aware of monotonic
behaviour of some constraints defining the problem. That is, when increasing a variable, the user is able
to predict if a function increases or decreases, but is unable to quantify the amount by which it varies.
We refer to this type of problems as “monotonic grey box” optimization problems. Our objective
is to develop an algorithmic mechanism that exploits this monotonic information to find a feasible
solution as quickly as possible. With this goal in mind, we have built a theoretical foundation through
a thorough study of monotonicity on cones of multivariate functions. We introduce a trend matrix
and two types of trend directions to guide the Mesh Adaptive Direct Search (Mads) algorithm when
optimizing a monotonic grey box optimization problem. Different strategies are tested on analytical
test problems, and on a real hydroelectric dam optimization problem.

Keywords: Monotonicity, derivative-free optimization, grey box optimization, constrained optimiza-
tion
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1 Introduction

In a context of blackbox engineering optimization, it is often possible to attribute a physical sense

to some constraints, to the objective function and to the variables. This physical interpretation may

provide the engineer with an intuition about the monotonic behaviour of some of functions with respect

to specific variables. For instance, in metamaterial design [11], the function returning the cost of a

layer is known to increase monotonically with a variable characterizing its thickness. However, the

exact rate of increase might be unknown.

The objective of the present paper is to propose a methodology that automatically exploits such

monotonic information in the context of a direct search algorithm for constrained derivative-free op-

timization. Blackbox optimization [5] refers to situations where none of the information about the

nature of the objective function and constraints can be exploited. The functions defining the problem

are treated as blackboxes in the sense that only the input and output of these functions are usable. The

present work considers situations in which some information is known. The next definition introduces

the term monotonic grey box optimization.

Definition 1 The term monotonic grey box refers to an optimization problem for which information

about the effect of increasing some variables on at least one of the constraints is available.

There are other types of grey box optimization problems, in which some part of the structure may

be exploited. For example, [7] studies min-max functions in the context of seismic retrofitting design,

and in [13], the authors consider problems with a `1 norm objective function.

The paper is structured as follows. Section 2 defines and analyzes the notion of monotonicity of

a multivariate function in a cone, and introduces a stucture that easily allows the user to formulate

his knowledge about the monotonicity of the constraints. Section 3 proposes two types of trend

directions to guide the Mesh Adaptive Direct Search (Mads [3]) optimization method. Computational

experiments with the NOMAD [14] software package are conducted in Section 4 on a collection of

test problems, including the Kemano optimization problem provided by Rio Tinto engineers for weekly

decision-making on the management of hydroelectric dams.

2 Fundamentals of monotonic grey box optimization

The present section introduces the notion of monotonicity for multivariate functions, and shows basic
results in a derivative-free optimization context. The definition of monotonicity for a single-variable

function is well known, but there are no consensus for the multi-variable case. We extend the one

of [23] to functions with image in R := R ∪ {±∞} rather than R, because in the context of blackbox

optimization, the value ∞ is assigned to an evaluation that failed to produce a valid ouptut.

Definition 2 Let X be a subset of Rn. The function g : X → R is said to be cone-monotone
increasing if, for all x ∈ X, there exists a non-empty convex cone K(x) ⊆ Rn such that g(x) ≤ g(y)

for every y ∈ X with y − x ∈ K(x). The function g is said to be K-monotone increasing if it is

cone-monotone with a fixed cone K (i.e. K(x) does not depend on x).

Reversing the inequality g(x) ≥ g(y) yields the definitions for cone-monotone decreasing and

K-monotone decreasing. Every function is trivially K-monotone on K = {~0}.

Borwein, Burke and Lewis [8] explore properties of K-monotone Hadamard, Gateau and Fréchet

differentiable functions and observe that a function is K-monotone increasing if and only if it is (−K)-

monotone decreasing. Rubinov, Tuy and Mays [19] propose a similar definition in order to find the

global maximum of an increasing function subject to an increasing constraint on Rn
+ rather than Rn.

The following proposition illustrates a connection with lower semi-continuous functions (lsc).



2 G–2019–15 Les Cahiers du GERAD

Proposition 1 Let g : Rn → R be lsc and K-monotone decreasing on a non trivial cone K 6= {~0}. For

any non-empty compact set Ω ⊂ Rn, g attains its global minimum on the boundary of Ω.

Proof. Let B denote the boundary of a compact set Ω. Since g is lsc and since the set B is also compact,

there exists an xB ∈ B that minimizes g over B: g(xB) ≤ g(x) for all x ∈ B. Suppose that xB is not a

global minimizer of g over Ω. Therefore, there exists an xΩ ∈ int(Ω) such that g(xΩ) < g(xB). For any

nonzero vector d ∈ K and for any scalar t ≥ 0, the inequality g(xΩ + td) ≤ g(xΩ) holds. In particular,

choosing t̄ > 0 so that xΩ + t̄d ∈ B leads to the contradiction g(xB) ≤ g(xΩ + t̄d) ≤ g(xΩ) < g(xB).

The next proposition shows that cone-monotonicity extends to the convex hull of cones.

Proposition 2 Let K1 and K2 be two cones in Rn and let K = conv{K1,K2} be their convex hull. If

g : Ω ⊆ Rn → R is K1-monotone and K2-monotone, then the function g is also K-monotone.

Proof. Consider d ∈ K and choose d1 ∈ K1, d2 ∈ K2, and a scalar α ∈ [0, 1] so that d = αd1+(1−α)d2.

Setting yi = x + αdi ensures that yi − x ∈ Ki for i ∈ {1, 2}. Definition 2 ensures that g(x) ≤
g(x+ αd1) = g(y1) ≤ g(y1 + (1− α)d2) = g(x+ d).

Poissant [18] shows that the functions gj are Kj-monotone increasing for j ∈ J = {1, 2, . . . ,m},
then the sum s(x) =

∑m
j=1 λjgj(x) with λ ∈ Rm

+ and the maximum m(x) = max{gj(x) : j ∈ J}
are K-monotone increasing functions over K = ∩j∈JKj . She also shows that the square of a K-

monotone increasing positive function g : X ⊆ Rn 7→ R+ remains K-monotone increasing. It follows

that
∑m

j=1 max{gj(x), 0}2 is a K-monotone increasing function over K = ∩j∈JKj .

The next corollary is related to descent directions for differentiable functions.

Corollary 1 Let g : Rn → R ∈ C1, and K be the largest cone on which g is K-monotone increasing.

Then d ∈ K if and only if d>∇g(x) ≥ 0, ∀x ∈ Rn.

Proof. If d ∈ K, then g(x+td) ≥ g(x) for any x ∈ Rn and t ≥ 0, and 0 ≤ g′(x; d) = d>∇g(x) since g ∈
C1. Conversely, if d 6∈ K, there exists an x ∈ Rn and a scalar t > 0 for which g(x+ td) < g(x). By the

mean value theorem, there exists a ξ ∈]x, x+ td[ such that d>∇g(ξ)d = g′(ξ; d) = g(x+ td)− g(x) < 0.

Finally, the next result shows the relation between cone-monotonicity and the generalized Clarke

derivative for nonsmooth functions, which is central to the analysis of direct search methods [2, 3].

Corollary 2 Let g : Rn → R be a K-monotone increasing Lipschitz function. Then d ∈ K implies

g◦(x; d) ≥ 0, ∀x ∈ Rn.

Proof. Suppose that d ∈ K is a nonzero vector. If d ∈ K, then g(y + td) ≥ g(y) for any y ∈ Rn and

for any t ≥ 0, and therefore if x ∈ Rn

0 ≤ lim sup
t↘0,y→x

g(y + td)− g(y)

t
= g◦(x; d).

Monotonicity on cones is appropriate in a derivative-free optimization context for three reasons.

First, it can handle partial informations regarding the grey box as the functions do not have to be

monotonous with respect to every variables. Second, the cone of descent directions may be directly

treated by the Mads algorithm as shown in the next section. Finally, no condition on differentiability

nor continuity of the function is required.
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3 Exploiting monotonicity within a direct search framework

The main objective of the present work is to exploit the user knowledge on monotonicity of some

functions with respect to some variables. Consider the general optimization problem

min
x∈X⊆Rn

f(x) (1)

s.t. cj(x) ≤ 0 j ∈ {1, 2, . . . ,m}

where X ⊆ Rn and the functions f : Rn 7→ R and c : Rn 7→ Rm
are the output of a simulation, as

described in [5]. The feasible region is denoted by Ω = {x ∈ X : cj(x) ≤ 0, j ∈ {1, 2, . . . ,m}}.

3.1 The trend matrix and two types of trend directions

A simple formal representation of the monotonic relations involves a n×m matrix where the m columns

correspond to the constraint functions cj and the n rows are associated to the optimization variables xi.

Definition 3 The elements of the n×m trend matrix T are given by the following

Ti,j =


−1 if cj is K-monotone decreasing on K = {tei : t ∈ R+}

1 if cj is K-monotone increasing on K = {tei : t ∈ R+}
0 if cj is constant with respect to xi

N/A if the information is unknown or if cj is not monotone

where i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m} and ei is the i-th coordinate direction in Rn. The notation

Tj refers to the jth column, and T i refers to the ith row of the trend matrix.

If x ∈ X violates a constraint cj , and if the j-th column Tj does not have any entries equal to N/A,

then −Tj is a descent direction for cj . The challenge is to combine these columns to accommodate two

or more violated constraints.

Definition 4 Let T be a trend matrix and j ∈ {1, 2, . . . ,m}. The jth trend cone is

KTj
= cone {Ei,j : i ∈ {1, 2, · · · , n}} where Ei,j =


{−ei} if Ti,j = −1
{ei} if Ti,j = 1

{−ei, ei} if Ti,j = 0
∅ if Ti,j = N/A

and where cone(C) = {
∑p

i=1 λiy
i : λi ≥ 0, yi ∈ C, p ∈ N}.

This definition implies that the origin ~0 trivially belongs to every trend cone. The next result shows

that a function is cone-monotone on a trend cone.

Corollary 3 Let T be the trend matrix associated to the optimization problem (2). The function cj is

KTj
-monotone increasing for all j ∈ {1, 2, . . . ,m}.

Proof. Since KTj
is the convex hull of the rays on which cj is increasing, Proposition 2 ensures that

cj is KTj -monotone increasing.

Figure 1 shows how to analytically construct the trend matrix and cones on a toy problem with 2

variables and 5 constraints. With x2 fixed, increasing x1 leads to a decrease in c1 and therefore

T1,1 = −1. The constraint c2 is independent of x1, and is monotone increasing with respect to x2 thus

T2 = [0 1]>. The constraint c5 is not monotonous with respect to x2 and thus T2,5 = N/A. The trend

matrix is shown in the figure. Proposition 2 ensures that the convex cone KTj on which the functions

are KTj
-monotone increasing with the convex hull of the rays. Two cones are illustrated in Figure 1.
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Ω
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2
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4
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3
+ 2

3
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(
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12

)2 − 5
2
+ x1

T =

[
−1 0 −1 1 1
1 1 −1 −1 N/A

]
x1

x2

T1,1

T2,1

KT1
with

T1 = [−1 1]>

x1

x2

T1,5

KT5
with

T5 = [1 N/A]>

Figure 1: The trend cones KT1 and KT5 on an example with 5 constraints and 2 variables

In general, if the incumbent solution violates two or more constraints, then the intersection of

the associated cones KTj results in a set of directions on which these constraints are all monotone

increasing. For any x ∈ X, one may partition the indices of the constraints into two sets

J(x) = {j ∈ {1, 2, . . . ,m} : cj(x) ≥ 0} and J̄(x) = {j ∈ {1, 2, . . . ,m} : cj(x) < 0}.

The set J̄(x) contains the indices of the strictly satisfied constraints. For locally continuous functions,

a small perturbation of their value does not violate them. Definition 5 provides a way to construct a

strict trend direction in the intersection of these cones associated to the indices in J(x).

Definition 5 The strict trend direction dT (x) ∈ Rn at x ∈ X for the trend matrix T is dT (x) =∑n
i=1 si · ei, where

si =

 1 if Ti,j ∈ {0, 1} ∀j ∈ J(x), but T i 6= ~0

−1 if Ti,j ∈ {0,−1} ∀j ∈ J(x), but T i 6= ~0
0 otherwise.

This definition implies that the i-th element of the strict trend direction at x is null if the i-

th variable of Problem (2) has no known monotone effect on any of the constraints indexed by the

set J(x).

Corollary 4 The strict trend direction dT (x) ∈ Rn at x ∈ X associated to the trend matrix T belongs

to every trend cones indexed by J(x):

dT (x) ∈
⋂

j∈J(x)

KTj
.

Proof. Suppose that ~0 6= dT (x) =
∑n

i=1 siei. For each index i, we consider three cases. Case I: If

si = 1, then Ti,j ∈ {0, 1}, ∀j ∈ J(x). Definition 4 ensures siei = ei ∈ Ei,j ⊆ KTj
, ∀j ∈ J(x). Case II:

If si = −1, then Ti,j ∈ {0,−1}, ∀j ∈ J(x). Definition 4 ensures siei = −ei ∈ Ei,j ⊆ KTj , ∀j ∈ J(x).

Case III: If si = 0, then 0 · ei = ~0 trivially belongs to any trend cone.

In each case, the strict trend direction dT (x) =
∑n

i=1 siei belongs to the convex cone
⋂

j∈J(x)KTj .

The set J(x) contains the indices of constraints that are not strictly satisfied; the set includes

indices of constraints that are satisfied at equality. By construction, the strict trend direction dT (x)

belongs to every cone on which the functions cj are KTj -monotone increasing for each j ∈ J(x).

We propose a strategy that exploit this observation by ordering the Mads candidate directions by

prioritizing those with the smallest angle with −dT (x). The following lemmas support this idea by

showing that −dT (x) is a descent direction for the violated constraints, when the respected constraints

are upper semi-continuous.
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In blackbox optimization, the progressive barrier approach [4] handles inequality constraints through

the nonnegative constraint violation function

h(x) :=


m∑
j=1

(max{cj(x), 0})2
if x ∈ X,

∞ otherwise.

For any x ∈ X, the constraint violation function may be written as h = SJ(x) + SJ̄(x) where

SJ(x)(t) =
∑

j∈J(x)

(max{cj(t), 0})2
and Ê SJ̄(x)(t) =

∑
j∈J̄(x)

(max{cj(t), 0})2

for t ∈ X. This leads to the following result.

Proposition 3 Consider the strict trend direction dT (x) for some x ∈ X and trend matrix T . If

−dT (x) is a feasible direction with respect to X, and if the functions cj(x) for all j ∈ J̄(x) are upper

semi-continuous near x, then −dT (x) is a descent direction for the constraint violation function h(x).

Proof. Consider x ∈ X and −dT (x) ∈ ∩j∈J(x)(−KTj ), a feasible direction with respect to X. It follows

that there exists a scalar ᾱ > 0 such that x + αd ∈ X for all 0 < α < ᾱ. The comment immediately

following Proposition 2 ensures that SJ(x) is K-monotone decreasing on the cone ∩j∈J(−KTj
). Corol-

lary 4 states that dT (x) ∈ ∩j∈J(x)KTj and implies that −dT (x) ∈ ∩j∈J(−KTj ). It follows that dT (x)

is a descent direction for SJ(x): SJ(x)(x− αdT (x)) ≤ SJ(x)(x) for all α ∈]0, ᾱ].

Since the functions cj(x) for j ∈ J̄(x) are upper semi-continuous at x, there is a neighbourhood

Vj(x) such that 0 > cj(y), ∀y ∈ Vj(x) and ∀j ∈ J̄(x). Since all neighbourhoods are non-empty open

sets, one may choose y ∈ V = ∩j∈J̄(x)Vj(x). Selecting y = x + ᾱ(−dT (x)) for some α̂ > 0 yields

SJ̄(x)(x− αdT (x)) = 0 for all α ∈]0, α̂]. In conclusion,

h(x− αdT (x)) = SJ(x)(x− αdT (x)) + SJ̄(x)(x− αdT (x)) ≤ h(x)

when 0 < α ≤ min{α̂, ᾱ} and thus, the negative of the strict trend direction is a descent direction.

On the one hand, the strict trend direction is a descent direction for the constraint violation

function. But on the other hand, when the trend matrix contains many entries equal to N/A, then

the strict trend direction contains many null values, thereby reducing the usefulness of the strict trend

direction. We introduce another direction simply called the trend direction.

Definition 6 The trend direction d̃T (x) ∈ Rn at x ∈ X for the trend matrix T is d̃T (x) =
∑n

i=1 si ·ei
where

si =

 1 if Ti,j ∈ {0, 1,N/A} ∀j ∈ J(x), but ∃ j ∈ J(x) with Ti,j = 1
−1 if Ti,j ∈ {0,−1,N/A} ∀j ∈ J(x), but ∃ j ∈ J(x) with Ti,j = −1
0 otherwise.

The number of null elements in the trend direction is less than in the strict trend direction. Both

strict trend and trend directions are identical when the trend matrix contains no N/A. Definition 6

implies that the i-th element of the trend direction is negative if the i-th variable of Problem (2)

has a known monotone decreasing effect on all the violated constraints indexed in J(X) for which

Ti,j 6= N/A.
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3.2 Ordering trial points using a trend direction

The Mads algorithm is designed for blackbox optimization problems of the form (2). The algorithm

sequentially generates trial points in x ∈ X and takes algorithmic decisions based on the computed

values f(x) ∈ R and c(x) ∈ Rm
. The Mads algorithm together with a hierarchical convergence analysis

was introduced in 2006 [3] and has benefited from many improvements over the years. The most recent

and most accessible presentation of the Mads algorithm handles integer and granular variables [6].

At each iteration, Mads explores the space of variables through the search and the poll steps. These

steps produce finite lists of candidate points L ⊂ Rn which are sequentially evaluated by the functions

encoded within the blackbox. The opportunistic criteria [20] terminates an iteration as soon as a

candidate successfully replaces the best-known solution so far without paying the cost of launching

the blackbox simulation at every candidate points in L. The present work focuses on the situation

where no feasible solution is initially available, and the best-known solution is the one with the least

constraint violation function value. The efficiency of Mads relies on the order in which the candidate

points of L are evaluated. Specific ways of ordering the list L are called ordering strategies.

Let xk be the best-known solution at iteration k. A basic strategy in Mads orders the elements x

of L by increasing values of the angles made by x− xk with the last successful direction. We compare

this strategy to a reordering with increasing values of the angles made by x−xk with the the negative

of the strict trend direction −dT (xk) or trend direction −d̃T (xk). The rationale is to prioritize trial

points that are more likely to reduce the constraint violation function value, thereby accelerating the

process of finding a feasible point.

Another ordering strategy constructs models [1] of the objective function and of the constraints.

These models are used for local approximations, and are build using past evaluations within a given

radius of the current best solution. It is possible, but not frequent, that this region contains enough

point to build a quadratic interpolation or regression model. Otherwise, exactly n+ 1 points forming

a simplex can be used to construct a linear model. If fewer than n+ 1 points are located in the region,

then there are not enough to build a unique linear interpolation function. This is the case at the very

beginning of the optimization process.

Observe that a linear model is expected to be more efficient in ordering the trial points than

the strategy that exploits the monotonic information. This is because a linear model captures more

information than simple monotonicity. Therefore, if there are at least n + 1 affinely independent

points in the region around the best known point, then it is preferable to use the models. Otherwise,
the previous strategy based on the trend direction is used. Consequently, the strategy using a trend

direction will be systematically used during the first iterations of the deployment of the algorithm, and

will often be used following a successful iteration, because the new incumbent solution will likely be in

a zone where few function evaluations were made. Two interesting features of this way of selecting the

ordering strategy are that -i- it automatically uses the trend information when representative models

cannot be built; -ii- the transition from trend to model ordering is parameter-free.

4 Computational experiments

Experiments are conducted with the NOMAD [14] software package v.3.9.1 with the quadratic model

search option disabled and Mads 2n directions for the poll step. The objective is to minimize the

constraint violation function h(x) until a feasible solution is found. Table 1 lists the names of the

ordering strategies.

Results are compactly presented through data profiles [16], which show, for a given problem, the

proportion of initial points for which a feasible solution is found with respect to the number of evalu-

ations.
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Table 1: Trial points ordering strategies

Name Description

Success dir Ordered by the angle made with the last direction of success
Strict trend Ordered by the angle made with the strict trend direction
Trend Ordered by the angle made with the trend direction

Success+model Ordered by transition from success direction to model values
Strict+model Ordered by transition from strict trend direction to model values
Trend+model Ordered by transition from trend direction to model values

We propose three techniques to determine the coefficient of the trend matrix T : analytically, by

sampling or simply from the intuition of the user. Each of them will be used on a test problem.

The analytical technique is based on Corollaries 1 and 2. A direction d belongs to the cone of

monotonicity K if, for every x, the gradient of g(x) ∈ C1 makes a positive scalar product with d.

However, the gradient does not necessarily needs to be accessible or even to exist in order to apply the

analytical technique. For example, the stair function g(x) = bxc is monotone increasing without being

differentiable. This information suffices to insert the value +1 into the trend matrix. The analytical

technique is used for the problems in Section 4.1.

The second technique uses a set S of randomly generated points in X using a latin hypercube

sampling strategy. If the function g is monotone increasing with respect to a direction d, then g(x) ≤
g(x+ d) for every x. This premise provides a necessary but insufficient condition for the existence of

monotonicity. From each of these points, n additional ones are generated in the directions di = δiei
with step size δi > 0, for i = 1, 2, . . . , n. The constraints are evaluated at all of these points. For a

given direction di, if g(x) ≤ g(x + di) for every point x in S, then we conjecture that the function

is monotone increasing with respect to di. Otherwise the function is not monotone increasing. The

problems from Section 4.2 use this sampling strategy. Although this last technique requires additional

function evaluations, it might be useful, for example, in a context where an optimization problem needs

to be solved every hour, each time with new parameters. It is possible that the monotonic information

is independent of the parameter values, and therefore a study of one instance of the problem will reveal

monotonic information for all instances.

Finally, the third technique is certainly the most dangerous one and consists in trusting the intuition

of the blackbox simulation designer. His knowledge of the problem might be based on observations

such as increasing the flow in a turbine increase the production of power, or opening the valves to purge

water increases the probability of floods. The conclusions coded into the trend matrix are likely to be

true, but there is no absolute certainty. That is the case for the Kemano problem from Section 4.2.

4.1 Analytical problems with analytical trend matrices

A series of analytical constrained optimization problems from the literature have been selected with

n = 4 to 13 variables and m = 4 to 11 constraints. The trend matrices are constructed with analytical

technique and are given in Appendix. Figure 2 shows data profiles for the strict trend direction on a

total of 100 runs per problem: 10 infeasible starting points and 10 replications each with a different

pseudo-random seed.

On PIGACHE no strategy seem to perform noticeably better. On the remaining problems, ordering

using only the direction of last success is always outperformed by other strategies. On CHENWANG F2,

CHENWANG F3 and TAOWANG F2 the quadratic model strategy slightly outperforms the trend direction

strategies. On HS83 and HS114, the trend direction strategies slightly outperforms the quadratic model

strategy.

On all problems except ZHAOWANG F5, the transition from the strict trend direction to the quadratic

model is dominant. These results illustrate the benefit of using trend information in combination with
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the default quadratic model ordering in Mads in most problems. Performances using the trend direction

from Definition 6 are similar and are not shown here.
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Figure 2: Data profiles obtained on analytical problems. On each graph, the vertical axis represents the percentage of
feasible solutions obtained and the horizontal axis represents the number of evaluations

4.2 Engineering blackbox problems with sampled trend matrices

A more complex test problem is the multidisciplinary optimization MDO problem, to maximize a su-

personic plane’s range [21]. MDO is composed of four distinct coupled discipline analyses: structure,

aerodynamics, propulsion and range of the plane. The coupling of the analyses is resolved by using

a fixed point iterative method within a prescribed precision. When coupling cannot be resolved the

blackbox returns infinite values. There are n = 10 variables scaled within 0 and 100 and m = 10

constraints with physical meanings.

Due to the nature of the analyses, we suspected some monotonic behaviours. The trend matrix was

constructed with the sampling technique with 200 latin hypercube points with a step length δi = 10 to

create n = 10 more points from each starting point. The method detected several potential monotonic

effects (see the trend matrix given in Appendix). Obviously, the number of sample points and the step

length are arbitrary and do not guarantee that the captured monotonic behaviour is exact. The two

graphs on the left of Figure 3 show that the use of the strict trend or trend direction are preferable to

the other strategies, including the default NOMAD strategy (Success+model).

The Kemano problem is an industrial blackbox used weekly by Rio Tinto’s engineers for managing

their hydroelectric system [10]. Based on meteorological previsions, the engineers determine if it is more

profitable to empty or fill the basins. From historical data, the program simulates an approximation

of energy gains while maintaining a small flooding risk. They noticed that it was faster to manually

find a feasible solution and launch NOMAD from it than launching NOMAD directly from an infeasible

point. The process of manually finding a feasible initial solution relies on empirical knowledge on how

the input variables affect output.

The Kemano blackbox has n = 5 bounded variables, m = 5 constraints and requires 90 secs for each

evaluation on a personal computer with OpenMPI parallelization enabled. The runs have a budget

of 100 evaluations and are performed from 20 infeasible starting points. Two trend matrices are
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Figure 3: Data profiles for the MDO and KEMANO problems. On each graph, the vertical axis represents the percentage of
feasible solutions obtained and the horizontal axis represents the number of evaluations

considered. The first, called Tint, is provided by a Rio Tinto engineer based on his intuitive knowledge

of the system, and the second one called Tsamp is obtained using the sampling strategy with a coarse

step length δi = (ui − li)/5 where ui and li are the bounds on the variables:

Tint =


−1 − 1 −1 1 N/A
−1 −1 −1 1 N/A

1 1 1 −1 1
1 1 1 −1 1

N/A N/A N/A −1 1

 , Tsamp =


−1 N/A N/A 0 N/A
−1 −1 −1 0 1

1 N/A N/A −1 N/A
1 1 N/A −1 N/A
1 N/A -1 −1 1

 .
The two graphs on the right of Figure 3 show the data profiles for both matrices. When using Tint,

the strategy using the quadratic model and the one using the direction of last success have comparable

performances. Hence, for this problem, the quadratic models are not faster to generate a feasible

solution. The sorting strategy based on the strict trend direction of Definition 5 shows a very poor

performance. However, when using the trend direction (Definition 6) the performance is slightly better

than the other strategies.

The elements shown in bold in the trend matrices Tint and Tsamp differ. There are no major

disagreement, as all differences either involve a N/A or a 0 entry. There are more N/A entries in

Tsamp, suggesting that the knowledge of the engineer identified trends that are not valid in all the

design space. This may be explained by an overall monotonic effect known by the engineer but locally

altered by small fluctuations. Regarding the other differences between matrices, it is possible that

some monotonic effects (±1) are simply not known by the engineer or are erroneously identified by the

sampling method (N/A in Tint becomes 0, or ±1 in Tsamp).

The data profiles from the rightmost graphs of Figure 3 suggest that it is preferable to use the

matrix Tsamp rather than Tint, with the trend rather than the strict trend direction. Inspection of the

log reveal that for this problem, the strict trend direction is often too restrictive as dT (x0) = ~0 6= d̃T (x0)

for 18 out of the 20 starting points points. In addition, the strategy combining quadratic models with

the trend direction does not perform better than the trend direction strategy. For this problem, it can

be concluded that the quadratic models built on limited information can mislead the optimizer. The

best ordering strategy uses the trend direction with the sampled trend matrix.

5 Discussion

The Kemano test problem studied in the previous section was the actual motivation for the present

work. Instances of this problem are solved at Rio Tinto on a weekly basis, and the initial solution rarely

satisfies the constraints. The Mads algorithm with the progressive barrier implemented in the NOMAD
software package was used to solve the problem. However, the engineers observed that NOMAD often
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requires a large number of simulations to reach the feasible region. Very often, the engineers would find

a feasible solution much more rapidly, as they would look at which constraints are violated, and would

know which variables to vary to improve feasibility. The present work proposes a way to mechanize

this process, by supplying the engineers with a tool to translate their intuition about the monotonic

behavior of some functions.

Future work include the use of the trend information contained in the objective function and to

balance the effort between reaching feasibility and improving the objective function value within the

progressive barrier.

Appendix

The trend matrices for the analytical problems from Section 4.1 and the MDO problem from Section 4.2

are:

CHENWANG F2 [9] (n = 8, m = 6)

T =



0 0 0 N/A 0 0
0 0 0 0 N/A 0
0 0 0 0 0 N/A
1 −1 0 1 N/A 0
0 1 −1 0 1 N/A
1 0 0 −1 0 0
0 −1 0 0 −1 0
0 0 1 0 0 −1


CHENWANG F3 [9] (n = 10, m = 8)

T =



1 1 −1 N/A N/A N/A N/A −1
1 −1 1 N/A 1 N/A N/A 1
0 0 0 N/A N/A 0 0 0
0 0 0 −1 −1 0 0 0
0 0 0 0 0 1 N/A 0
0 0 0 0 0 −1 −1 0
−1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 N/A
0 0 −1 0 0 0 0 −1


HS83 [12] (n = 5, m = 6)

T =


−1 1 −1 1 −1 1
−1 1 −1 1 0 0

1 −1 −1 −1 −1 1
−1 1 0 0 −1 1

N/A N/A −1 1 −1 1


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HS114 [15] (n = 9, m = 6)

T =



0 0 0 0 0 0
0 0 0 0 0 0
−1 1 0 0 0 0

1 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 1
0 0 0 0 0 0
0 0 1 −1 0 0
0 0 1 −1 1 −1


MAD6 [15] (n = 5, m = 7)

T =


−1 1 0 0 0 0 0

0 −1 1 0 0 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 −1 1
0 0 0 0 −1 1 0


PIGACHE [17] (n = 4, m = 11)

T =


−1 1 0 0 N/A 0 0 N/A 1 −1 −1

1 −1 1 −1 N/A 1 −1 −1 −1 −1 1
−1 1 0 0 1 −1 1 1 0 1 −1

0 0 0 0 1 −1 1 1 0 −1 0


TAOWANG F2 [22] (n = 7, m = 4)

T =



N/A 1 1 N/A
N/A 1 N/A N/A
N/A N/A 0 N/A
N/A 1 0 0
N/A 1 0 0

0 0 N/A 1
0 0 −1 −1


ZHAOWANG F5 [24] (n = 13, m = 9)

T =



1 1 0 −1 0 0 0 0 0
1 0 1 0 −1 0 0 0 0
0 1 1 0 0 −1 0 0 −1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1
1 1 0 1 0 0 1 0 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0


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MDO [21] (n = 10, m = 10)

T =



1 1 1 1 1 0 N/A N/A 0 0
N/A N/A N/A N/A N/A 0 N/A N/A 0 0

1 1 1 1 1 0 −1 1 0 0
−1 −1 −1 −1 −1 0 1 −1 1 1

N/A N/A N/A N/A N/A 1 N/A N/A 0 0
−1 −1 −1 −1 −1 0 1 −1 1 −1

1 1 1 1 1 0 −1 1 −1 1
N/A N/A N/A N/A N/A 0 N/A N/A 0 0
N/A N/A N/A N/A N/A 0 N/A N/A 0 0
N/A N/A 1 1 1 0 −1 1 0 0


.
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Polytechnique Montréal, 2018. https://publications.polymtl.ca/3099/.

[21] J. Sobieszczanski-Sobieski, J.S. Agte, and R.R. Sandusky, Jr. Bi-Level Integrated System Synthesis
(BLISS). Technical Report NASA/TM-1998-208715, NASA, Langley Research Center, 1998.

[22] J. Tao and N. Wang. DNA Double Helix Based Hybrid GA for the Gasoline Blending Recipe Optimization
Problem. Chemical Engineering and Technology, 31(3):440–451, 2008.

[23] H. A. Van Dyke, K. R. Vixie, and T. J. Asaki. Cone monotonicity: Structure theorem, properties, and
comparisons to other notions of monotonicity. Abstract and Applied Analysis, 2013:1–8, 2013.

[24] J. Zhao and N. Wang. A bio-inspired algorithm based on membrane computing and its application to
gasoline blending scheduling. Computers and Chemical Engineering, 35(2):272–283, 2011.

https://publications.polymtl.ca/3006/
https://publications.polymtl.ca/3099/

	Introduction
	Fundamentals of monotonic grey box optimization
	Exploiting monotonicity within a direct search framework
	The trend matrix and two types of trend directions
	Ordering trial points using a trend direction

	Computational experiments
	Analytical problems with analytical trend matrices
	Engineering blackbox problems with sampled trend matrices 

	Discussion

