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Guy Desaulniers a,b
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(Québec) Canada, G7S 4R5

jesus.rodriguez@gerad.ca

anjos@stanfordalumni.org

pascal.cote@riotinto.com

guy.desaulniers@gerad.ca

May 2018
Les Cahiers du GERAD
G–2018–32
Copyright c© 2018 GERAD, Rodŕıguez, Anjos, Côté, Desaulniers
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conservent leur droit d’auteur et leurs droits moraux sur leurs publica-
tions et les utilisateurs s’engagent à reconnâıtre et respecter les exigences
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The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and the users
must commit themselves to recognize and abide the legal requirements
associated with these rights. Thus, users:
• May download and print one copy of any publication from the

public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



ii G–2018–32 Les Cahiers du GERAD

Abstract: Maintenance of power generators is essential for reliable and efficient electricity production. Be-
cause generators under maintenance are typically inactive, optimal planning of maintenance activities should
consider the impact of maintenance outages on the system operation. However, finding a minimum cost
maintenance schedule in hydropower systems is a challenging optimization problem due to the nonlinearity
of the electricity production, the uncertainty of the water inflows and the intrinsic complexity of scheduling
problems. We propose the first two-stage stochastic programming formulation for the hydropower genera-
tor maintenance scheduling problem, and we implement a parallelized Benders decomposition method with
several acceleration techniques for its solution, considering a large number of scenarios. We apply statisti-
cal methods for selecting the best combination of acceleration techniques for the decomposition algorithm,
and we compare the computational time of the parallelized decomposition against a mixed-integer linear
programming solution approach using a testbed adapted from a real hydropower system in Canada.

Keywords: Stochastic optimization, decomposition methods, linear approximation, parallel computing,
acceleration strategies, hydroelectricity, GMSP
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1 Introduction

In order to guarantee the efficiency and reliability of electricity production, power producers carry out main-

tenance activities on a regular basis. As generators are usually inactive during maintenance, the economic

impact of maintenance activities on the system operation must be considered. However, in hydropower sys-

tems this impact is difficult to estimate due to the nonlinearity of the hydroelectric generation, the uncertainty

of the water inflows and the interdependence between multiple physical variables of the system.

A hydropower system is composed by powerhouses with turbine-generator units driven by the potential

and kinetic energy of water. In each powerhouse, the hydroelectric generation is a function of the water level

of the feeding reservoir or river, the discharged water through the turbines, the efficiency of the turbine-

generator units and the energy loss due to the friction of the discharged water. If the turbine-generator

units of a powerhouse have similar characteristics, the maximum power output p of the powerhouse with

k active units can be represented by a function p = f(s, u, k), where u is the water discharge and s is the

stored water. We refer to this function as the Hydropower Production Function (HPF), whose nonlinearity

is apparent in Figure 1.
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(a) Four generators
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(b) Five generators

Figure 1: Maximum power generation p in a powerhouse, for different values of u, s and k. [28] proposed a method for computing
these surfaces.

For short-term hydropower operation, the HPF has been represented with nonlinear functions [1], linear

approximations [10; 6] and smoothing splines [28], among others.

The hydropower operation must also take into consideration spatial and temporal interdependencies, since

water discharges can feed downstream reservoirs, and current decisions determine future costs of the system,

due to the effect of the water discharges on the stored water level. Furthermore, hydroelectric generation

relies on water inflows from tributary rivers, snow-melt or rainfall which tend to be difficult to predict and

can exhibit large variability. Scenario trees and scenario fans (Figure 2) are some of the approaches used for

representing the stochasticity of the water inflows [29].

The generator maintenance scheduling problem (GMSP) consists in determining a calendar of maintenance

outages with the best performance with respect to a performance metric of the system (such as reliability,

economic benefit or cost). In the GMSP, feasible schedules must satisfy constraints related to maintenance

policies and resources as well as operational requirements, such as the minimum number of units available for

operation. We address this problem in the context of hydropower systems, considering the aforementioned

aspects, as well as the distinctive operating conditions of hydroelectric generation, such as the uncertain water

inflows and the nonlinearity of electricity production. We refer to this problem as the Stochastic Generator

Maintenance Scheduling Problem (SGMSP) in hydropower systems. As the optimal scheduling of generator

outages can increase the electricity production [26], the impact of this problem is significant for hydropower

producers.
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Figure 2: Scenario fan of water inflows. Each time series represents a scenario of forecasted water inflows.

Although the GMSP has been widely studied [18], the stochastic nature of the hydropower operation in

combination with a realistic representation of the nonlinear hydroelectric generation has not yet been prop-

erly addressed. [13] represented the power generation with fuzzy variables but omitted important aspects

of hydropower systems, such as the water storage levels and the uncertain water inflows. [16] proposed an

ant colony metaheuristic for maintenance scheduling with an oversimplified model of the hydropower opera-

tion. [20] and [7] implemented a basic Benders decomposition method for the problem, without considering

the nonlinearity of the electricity production and the stochastic water inflows. Recently, [26] proposed a

mixed-integer linear programming (MILP) formulation for the deterministic GMSP in hydropower systems,

with a convex approximation of the HPF. [26] showed that neglecting the nonlinearity of the HPF leads

to significant overestimates of the electricity production and to suboptimal solutions in practice. As the

resulting mathematical program is hard to solve in large instances of the problem, special solution methods

that exploit its mathematical structure are necessary. Naturally, incorporating the water inflows uncertainty

into the GMSP makes the problem even more challenging.

In this paper, we propose a two-stage stochastic optimization program for SGMSP in hydropower systems.

This model is an extension of the deterministic MILP formulated by [26] with a linear approximation of

the HPF. Using the Benders decomposition method, we partition the problem into a maintenance-only

scheduling problem and scenario-wise operation subproblems. As the straightforward implementation of

Benders decomposition is not a guarantee of efficient solution, we propose several enhancements to this
method and we parallelize its execution. Using statistical methods, we select the best combination of the

proposed acceleration techniques for the decomposition method, and we compare its performance against a

MILP-based approach. For the tests, we consider a 4-powerhouse system with up to 200 inflow scenarios.

2 Mathematical programming models

In this section, we describe the optimization approach to the SGMSP, and we present its two-stage stochastic

programming formulation.

2.1 Two-stage stochastic programming approach

In maintenance scheduling, the set of feasible maintenance decisions Y is defined by the maximum number

of simultaneous outages, the time windows of maintenance activities and other relevant constraints. As

the maintenance decisions y ∈ Y determine the set of available generators for electricity production in the

planning horizon T , we can compactly represent the GMSP as

max
y∈Y

Q(y)− cᵀy, (1)
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where c is the cost vector of the maintenance activities, and Q(y) is the operating profit during T , corre-

sponding to a maintenance schedule vector y. In hydropower systems, the water inflows uncertainty can be

represented with a set of forecasted inflows (Figure 2), which can be used to reformulate (1) as a two-stage

stochastic program with maintenance scheduling decisions in the first stage and hydropower operation deci-

sions for each water inflow scenario in the second stage (Figure 3). As the actual scenario realization cannot

be anticipated at the moment of determining the maintenance schedule y, we compute Q(y) as the expected

value of the profit over the set of scenarios Ω, with probability of occurrence ϕω for scenario ω ∈ Ω, i.e.,

Q(y) =
∑
ω∈Ω

ϕωQω(y),

where Qω(y) denotes the maximum cumulative operating profit corresponding to the maintenance schedule y,

during T , in scenario ω ∈ Ω, i.e.,

Qω(y) = max
xω∈X (y,ξω)

Θ(xω). (2)

The hydropower operation subproblem (2) determines the values of the operational variables xω, such as
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Figure 3: Generator maintenance scheduling as a two-stage stochastic problem. The maintenance schedule is defined in the first
stage. Operating decisions take place in the second stage, once inflows information is revealed.

water discharges and electricity production, that maximize the profit Θ(xω) during T . The feasible set

X (y, ξω) of the decision variables is defined by the operational constraints of the problem, such as the water

balance and the generation capacity, which depend on the maintenance schedule y and the water inflow

parameters ξω of the corresponding scenario. Naturally, Problems (1) and (2) can be merged into a single

deterministic equivalent mathematical program

max
y∈Y

xω∈X (y,ξω)

∑
ω∈Ω

ϕωΘ(xω) − cᵀy. (3)

For a background on stochastic programming, we refer the reader to [4].

The next subsection presents the deterministic equivalent (3) of the two-stage stochastic program for the

SGMSP in hydropower systems. This formulation is an extension of the model proposed by [26]. Later we

reformulate this problem for its solution via Benders decomposition.
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2.2 Mathematical program

Consider a hydroelectric system with a set of powerhouses I, and with a number of available generators Ḡit
at each time period t ∈ T and powerhouse i ∈ I. We assume that in each powerhouse the generators

have similar characteristics. Let M be a list of generator maintenance activities to be completed within the

planning horizon T , with each activity requiring one generator outage. We define each maintenance activity

m by i) the powerhouse where the activity must be executed, ii) the duration of the activity Dm, and iii)

the time window T (m) ⊆ T when the activity can initiate. Let K(i, t) be the set of numbers of generators

that can be active at each time period and powerhouse. For determining the maintenance schedule, we define

the binary variables ymt = 1 if maintenance task m ∈ M starts at time period t ∈ T (m), 0 otherwise (4).

We also define the binary variables zitk = 1 if k ∈ K(i, t) generators are active in powerhouse i ∈ I at time

period t ∈ T , 0 otherwise (5).

ymt ∈ {0, 1}, ∀ (m, i) ∈M× T (m), (4)

zitk ∈ {0, 1}, ∀ (i, t, k) ∈ I × T × K(i, t). (5)

For the SGMSP, we also define the following constraints that involve only first-stage maintenance decision

variables: ∑
t∈T (m)

ymt = 1, ∀ m ∈M, (6)

∑
m∈M(i)

t′ ∈T (m)∩ [ t−Dm+1, t ]

ymt′ = rit, ∀ (i, t) ∈ I × T , (7)

rit +
∑

k∈K(i,t)

kzitk = Ḡit, ∀ (i, t) ∈ I × T , (8)

∑
k∈K(i,t)

zitk = 1, ∀ (i, t) ∈ I × T , (9)

0 ≤ rit ≤ Oit, ∀ (i, t) ∈ I × T . (10)

Constraints (6) enforce the completion of the set of maintenance activitiesM in the planning horizon T .

Constraints (7) compute the number of maintenance outages rit at each time period and powerhouse. In (7)

the value of rit is determined by summing the variables ymt′ corresponding to the set of activities M(i) in
powerhouse i that could have started at time t′ ∈ T (m) and still be in execution at time t ∈ T for having

started in the interval [ t−Dm + 1, t ].

Equations (8) map the number of maintenance outages rit into the binary variables zitk that represent

the number of active generators k at time period t and powerhouse i. By (9) and (5), only one zitk variable

is equal to one for each powerhouse and time period. Constraints (10) define the non-negativity of rit and

limit it to the maximum number of outages Oit at each time period and each powerhouse.

In addition, for the hydropower operation problem the following constraints are defined for each water

inflow scenario ω ∈ Ω and time period t ∈ T .

0 ≤ vitω, ∀ (i, t, ω) ∈ I × T × Ω, (11)

0 ≤ uitω ≤ Ūit, ∀ (i, t, ω) ∈ I × T × Ω, (12)

¯
Sit ≤ sitω ≤ S̄it, ∀ (i, t, ω) ∈ I × T × Ω, (13)

0 ≤ q+
tω ≤ W̄+

t , ∀ (t, ω) ∈ T × Ω, (14)

0 ≤ q−tω ≤ W̄−t , ∀ (t, ω) ∈ T × Ω, (15)

sitω − si(t−1)ω =

(
ξitω+

∑
g∈U(i)

(ugtω + vgtω)− uitω − vitω
)
F,
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∀ (i, t, ω) ∈ I × T × Ω, (16)

pitkω ≤ β0
h + βuhuitω + βshsitω, ∀ (i, t, k, h, ω) ∈ I × T × K(i, t)×H(i, k)× Ω, (17)

0 ≤ pitkω ≤ zitkP̄ik, ∀ (i, t, k, ω) ∈ I × T × K(i, t)× Ω, (18)∑
k∈K(i,t)

pitkω = pitω, ∀ (i, t, ω) ∈ I × T × Ω, (19)

∑
i∈I

pitω + q−tω = At + q+
tω, ∀ (t, ω) ∈ T × Ω. (20)

Constraints (11)–(15) specify the bounds of the hydropower operation decision variables: water spill vitω,

water discharge uitω, stored water in reservoirs sitω, electricity purchase q−tω and electricity sale q+
tω, respec-

tively. Constraints (16) ensure the mass balance at each time period t ∈ T and reservoir i ∈ I, considering

the inflows from upstream reservoirs g ∈ U(i), as well as the uncertain water inflows ξitω of the respective

scenario ω ∈ Ω. In (16), F is a scalar that converts the flow units (typically m3/s) to the suitable units for

its left hand side term, sitω − si(t−1)ω, i.e., the difference in stored water between consecutive periods (such

as hm3/day). Also in (16), the consistency with the initial stored water is ensured by defining si(t−1) = Si0
for t = 1.

In (17), for given values of water discharge uitω and stored water level sitω, the set of hyperplanes H(i, k)

with parameters β0
h, βuh and βsh, approximates the power production pitkω corresponding to k ∈ K(i, t)

active generators in powerhouse i ∈ I. Constraints (18) restrict the generation capacity according to the

number k of active generators, which is indicated by the binary variable zitk. Thus, when the number of

active generators is not equal to k̄ (zitk̄ = 0), the power production for this number of generators is set to

zero (pitk̄ω = 0). Constraints (19) compute the power generation pitω in each powerhouse, time period and

scenario by summing the power production pitkω over the set of numbers of active generators K(i, t).

At each time period and scenario, the power balance is enforced by (20). In this balance, the total

power injections into the system equal the power withdrawals. The injections correspond to the sum of the

hydroelectric generation pitω and the electricity purchase q−tω. The power withdrawals are the electricity load

At and the electricity sales q+
tω.

Finally, the objective function of the complete problem is the sum of the expected profit of the electricity

trade minus the costs of maintenance activities,

maximize
q+,q−,u,v,s,
r,p,y,z

∑
t∈T
ω∈Ω

ϕω
(
B+
t q

+
tω −B−t q−tω

)
−

∑
m∈M
t∈T (m)

Cmtymt,
(21)

where Cmt is the cost of maintenance activity m starting at time t, and B−t , B+
t are the electricity prices of

purchase and sale, respectively, at period t. Therefore, the two-stage stochastic program for the SGMSP is

maximize (21) subject to (4)− (20). (SGMSP)

To reduce the number of variables in (5) and the number of constraints in (17), (18) we define the set K(i, t)

using the time windows of the maintenance activities (see Appendix A.1).

3 Solution strategy

Because hydrological predictions are typically subject to uncertainty, the forecasted inflows can exhibit large

differences (Figure 2), so solving the SGMSP with a small number of scenarios can significantly reduce the

quality of the information, which results in suboptimal decisions in practice. Therefore, a sufficiently large

number of representative scenarios should be included into the model, in order to find solutions with the best

average performance on the wide spectrum of inflows. However, as this number of scenarios can lead to a

very large problem, we use Benders decomposition for its solution.
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3.1 The Benders decomposition method

Benders decomposition [3] is a solution procedure based on the idea of partitioning a mathematical program

into a relaxed master problem and a convex subproblem. The decomposition algorithm solves the master

problem, fixes its solution into the subproblem, solves the subproblem and uses its dual information to

generate cuts that approximate the cost function or the feasible space of the subproblem into the master

problem. For a formal presentation of this method, consider the mathematical program

maximize
x,y

cᵀx+ f(y)

s.t. Ax+ F (y) ≤ b,
x ≥ 0,

y ∈ S,

(P)

where S is a posssibly nonconvex feasible set. In this problem, y and x are vectors of decision variables,

c ∈ Rn and b ∈ Rm are constant vectors, A ∈ Rn×m is a constant matrix, and F (y), f(y) are, respectively,

m-component and scalar functions on y. By fixing the so-called complicating variables ȳ ∈ S, the resulting

subproblem

Q(y) = maximize
x

cᵀx

s.t. Ax ≤ b− F (y)

x ≥ 0,

(SP)

is convex, and thus much easier to solve. [3] showed that with the extreme dual solutions of SP, the original

problem P can be rewritten as

maximize
zSP ,y

zSP + f(y)

s.t. zSP ≤ [b− F (y)]ᵀπp, ∀ p ∈ P,
y ∈ S,

(MP)

which is the Benders Master Problem (MP). In this problem, P is the set of extreme solutions, πp is the dual

solution of SP corresponding to the extreme point p ∈ P and zSP is the minimum value of the dual problem.

In MP the constraints

zSP ≤ [b− F (y)]ᵀπp, ∀ p ∈ P, (22)

are referred to as optimality cuts as they remove non-optimal solutions from the master problem. In cases

where the master problem solution can result in an infeasible subproblem, feasibility cuts can also be included

to remove master problem solutions that are infeasible for the complete problem. These cuts can be computed

from the extreme rays of the dual subproblem.

Given that the set of extreme dual solutions P is potentially large, the Benders decomposition method

relaxes the master problem by including only a subset PR ⊂ P of extreme solutions, which is empty in the

initialization of the algorithm. We refer to this problem as the Relaxed Master Problem (RMP). At each

iteration, the algorithm solves the RMP, fixes its solution into the subproblem, and solves the subproblem to

obtain a new dual extreme point πp that corresponds to a violated optimality cut. This cut is then included

into the RMP for the next iteration. The procedure continues until reaching a specified gap between the

upper bound UBP and the lower bound LBP on the optimal value ZP∗ of the complete problem P. The

upper bound UBP is the optimal value of the RMP at the current iteration, and the lower bound LBP

is the objective value of the incumbent solution. At each iteration j, the Benders algorithm computes the

corresponding objective value ZP (ȳj) of the master problem solution ȳj , using the optimal value Q(ȳj) of

the subproblem, i.e.,

ZP (ȳj) = Q(ȳj) + f(ȳj). (23)

Then, the lower bound on ZP∗ at the Jth iteration is

LBP = max
0≤j≤ J

{
ZP (ȳj)

}
. (24)
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3.2 Benders reformulation of the SGMSP

In order to implement the decomposition algorithm, we derive the subproblem SP and the relaxed master

problem RMP for the SGMSP. In this reformulation, SP is the hydropower production problem, and RMP

is the maintenance scheduling problem with the binary variables defined in (4), (5), which we compactly

denote y, z. According to this partitioning of the problem, (18) are the linking constraints, i.e., the subproblem

constraints where the decision variables of the master problem are fixed.

3.2.1 Subproblem

Given a master problem solution (ȳ, z̄), we set z = z̄ in (18) to obtain the per scenario ω ∈ Ω subprob-

lems, which consist in maximizing the profit of the electricity production, subject to the operational con-

straints (11)–(20), i.e.,

Qω(z̄) = maximize
q+,q−,u,v,s

∑
t∈T

(B+
t q

+
tω −B−t q−tω) (25)

subject to

sitω − si(t−1)ω + F

(
uitω + vitω −

∑
g∈U(i)

(ugtω + vgtω)

)
= Fξitω ⊥ πitω, ∀ (i, t) ∈ I × T , (26)

pitkω − βuhuitω − βshsitω ≤ β0
h ⊥ γitkhω,

∀ (i, t, k, h) ∈ I × T × K(i, t)×H(i, k), (27)

0 ≤ pitkω ≤ z̄itkP̄ik ⊥ λitkω,
∀ (i, t, k) ∈ I × T × K(i, t), (28)∑

i∈I
pitω + q−tω − q+

tω = At ⊥ ψtω, ∀ t ∈ T , (29)∑
k∈K(i,t)

pitkω − pitω = 0 ⊥ θitω, ∀ (i, t) ∈ I × T , (30)

0 ≤ vit, ∀ (i, t) ∈ I × T , (31)

0 ≤ uitω ≤ Ūit (αuitω), ∀ (i, t) ∈ I × T , (32)

¯
Sit ≤ sitω ≤ S̄it (αsitω), ∀ (i, t) ∈ I × T , (33)

0 ≤ q+
tω ≤ W̄+

t (α+
tω), ∀ t ∈ T , (34)

0 ≤ q−tω ≤ W̄−t (α−tω), ∀ t ∈ T , (35)

where πitω, γitkhω, λitkω, ψtω and θitω denote the dual variables of constraints (26)–(30), respectively, and

the symbol ⊥ indicates the complementarity of the constraint with the corresponding dual variable.

In order to reduce the subproblem size we specify (32)–(35) as variable bounds, so that they can be

treated implicitly by the linear programming (LP) solver through the bounded variable simplex method.

Because (32)–(35) are not specified as general constraints, their dual variables are not explicitly defined. For

each bound constraint, we denote by α (in parentheses) its dual variable which is equal to the reduced cost

of the corresponding variable.

3.2.2 Master problem

The Benders Master Problem (BMP) for SGMSP maximizes the expected profit of the electricity produc-

tion zSP minus the maintenance cost, subject to the optimality cuts and the constraints of the original

problem that involve only the maintenance decisions. Thus, the BMP is
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maximize
y,z,zSP

zSP −
∑

m∈M,
t∈T (m)

Cmtymt (36)

subject to

Eqs. (4)− (10),

zSP ≤
∑
ω∈Ω

ϕωbωp, ∀ p ∈ PR, (37)

zSP ≤ UBSP , (38)

where (37) are the optimality cuts corresponding to a subset PR ⊂ P of extreme solutions, and bωp is the cut

term corresponding to solution p ∈ PR, in scenario ω ∈ Ω. At each iteration, a new solution is explored and

hence the number of optimality cuts increases, unless the decomposition algorithm includes a cut removal

procedure. As the Benders algorithm starts without optimality cuts, (38) prevents the unboundedness of the

master problem at the first iteration. This constraint defines an initial upper bound UBSP of the subproblem

optimal value zSP . Section 4.1.2 presents a method for computing tight values of UBSP . In this master

problem no feasibility cuts are necessary, due to the assumptions in Appendix A.2. The computation of (37)

is described next.

3.2.3 Optimality cuts

As shown in Section 3.1, the optimality cuts are calculated from the subproblem’s dual solutions. Due to

the definition of (32)–(35) as variable bounds, their dual variables are not explicitly available. Instead, for

these bounds we use the reduced costs of the corresponding BSP primal variables to calculate their dual

contribution. Thus, we compute the cut term bωp in (37) as

bωp = b1ωp + b2ωp, ∀ (ω, p) ∈ Ω× P, (39)

where b1ωp is the dual contribution of (26)–(29), and b2ωp is the dual contribution of (32)–(35). For a given

extreme solution p ∈ P, we calculate b1ωp as the sum of the products between the right hand side terms of

(26)–(29), and the corresponding dual variables πpitω, γpitkhω, λpitkω, ψptω, i.e.,

b1ωp =
∑
t∈T

(
Atψ

p
tω +

∑
i∈I

(
Fξitωπ

p
itω

+
∑

k∈K(i,t)

(
zitkP̄ikλ

p
itkω +

∑
h∈H(i,k)

β0
hγ

p
itkhω

)))
, ∀ (ω, p) ∈ Ω× P.

(40)

Notice that in (40), we discarded the terms corresponding to constraints (30) because their right hand side is 0.

For b2ωp, we multiply each bound by the value of the corresponding dual variable αpuitω, αpsitω, αp+tω , αp−tω in

the solution p ∈ P. That is,

b2ωp =
∑
t∈T

(
W̄−t α

p−
tω + W̄+

t α
p+
tω +

∑
i∈I

(
Ūitα

pu
itω

+ S̄itα
ps
itω[αpsitω > 0] +

¯
Sitα

ps
itω[αpsitω < 0]

))
, ∀ (ω, p) ∈ Ω× P.

(41)

Since the water discharge sitω has a lower bound
¯
Sit, for the computation of b2ωp we sum either S̄itα

ps
itω or

¯
Sitα

ps
itω, depending on the sign of the corresponding dual value αpsitω, as indicated by the Iverson brackets

in (41). A positive dual value means that the upper bound is active, whereas a negative one indicates that

the lower bound is binding.
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4 Acceleration techniques for Benders decomposition

Although the divide and conquer principle of decomposition methods is a promising idea to reduce the

computational effort, a straightforward implementation of the Benders algorithm can perform poorly due to

the number of iterations required to converge, the time per iteration, and the growing size of the master

problem as a result of the cuts that are included at each iteration. In response to these challenges, several

ideas have been proposed to accelerate the Benders decomposition method, such as:

• Use a formulation with a tight continuous relaxation. The stronger the formulation, the faster the

convergence [22].

• When the dual subproblem has multiple solutions, select the extreme point that produces the strongest

cut [22; 24].

• Solve a relaxed or partially relaxed master problem in the initial iterations. The cuts obtained from

these solutions are also valid for the integer master problem [11].

• In the master problem, include constraints and variables that help to approximate the original

problem [27; 12; 19].

• Solve the master problem in a branch and cut approach, with Benders cuts generated each time that a

feasible integer node is found in the branching tree of the master problem [17; 19; 15].

• To reduce the oscillation of the subproblem solution, use a trust region approach or a stabilization

method [27; 15].

• Besides the Benders cuts, generate additional cuts (combinatorial cuts, knapsack cuts, etc.) from the

explored master problem solutions [27; 15; 19].

For a recent review on Benders decomposition, we refer the reader to [25].

Furthermore, as the subproblems can be solved independently once the master problem solution is fixed,

parallelization of the scenario-wise subproblems is a natural alternative for speeding up the Benders algo-

rithm. Nevertheless, an efficient parallel computing implementation must consider particular aspects, such as

the parallelization protocol and the fine-grained design of the parallel algorithm, in order to reduce the com-

munication overhead, to improve load balance and to exploit the intrinsic parallelism of the solution method.

Previous works have addressed some of these aspects in the context of stochastic programming[e.g. 23; 21].

4.1 Implemented techniques

For speeding up the Benders decomposition method, we tested the following strategies, as discussed after-

wards: 1) valid inequalities [26], 2) warm start, 3) multi-phase relaxation [11], 4) special ordered sets [2], 5)

combinatorial cuts [9], 6) presolve, 7) integer rounding cuts [27], 8) parallelization.

4.1.1 Valid inequalities (VI)

As tight formulations can be favorable for Benders decomposition [22], we test the effect of the valid inequal-

ities (42)–(43) [26] and (44) on the performance of the decomposition method for the SGMSP.∑
m∈M(i)

t′ ∈T (m)∩ [ t−Dm+1, t ]

ymt′ + zitk ≤ 1 (42)

for k = Ḡit,∀ (i,m, t) ∈ I ×M(i)× T ,∑
k∈K(i,t) \{Ḡit}

zitk ≤ rit, ∀ (i, t) ∈ I × T , (43)

rit +
∑

k∈K(i,t) \{
¯
Kit}

(k −
¯
Kit)zitk ≤ R̄it, ∀ (i, t) ∈ I,×T , (44)

where
¯
Kit and R̄it are respectively the minimum number of active generators and the maximum number of

activities simultaneously in execution at (i, t). For a derivation of (42)–(44), see Appendix A.3.
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4.1.2 Warm start (WS)

In a branch and bound process, the objective value of the current best feasible solution cuts off sections of

the branching tree with no potential of harboring an optimal solution. The tighter the cutoff value, the fewer

the number of nodes to be explored in the tree. In MILP solvers, cutoff values can be user-defined or can

be computed from user-supplied initial solutions. Even if the initial solution is infeasible, MILP solvers can

apply re-optimization or heuristics to obtain a new feasible solution and a corresponding cutoff value [14]. At

any iteration of the Benders algorithm, the lower bound LBP in (24) is naturally a cutoff value for the master

problem. Therefore, at each iteration we specify to the solver a cutoff value LBP −ε, where ε = TOL · |LBP |,
and TOL is the default relative optimality tolerance of the MILP solver. In addition, we provide the master

problem solution of the previous iteration as an initial solution to the MILP solver for the new iteration.

As tightening bounds of variables can also make the search more efficient, at the first step of the algorithm

we obtain an initial upper bound UBSP of zSP in (38) by solving a linear relaxation of the complete problem.

Moreover, at each iteration we define the current solution value of zSP in the master problem as the upper

bound UBSP for the next iteration.

4.1.3 Multi-phase relaxation (MP)

Considering that the solutions to a RMP can generate valid cuts [11], we evaluate the effect of several

relaxation schemes. For the master problem (4)–(10), (36)–(38), we define four relaxation levels of the binary

variables y, z (Table 1). Among the possible sequences for applying these relaxations, we consider those that

start with a complete linear relaxation (relaxation level 3) and in the subsequent phases solve an integer or

partially integer RMP (relaxation levels 0, 1 or 2). To ensure a feasible solution, the last phase solves the

integer master problem. We compare these relaxation sequences against a standard single-phase algorithm

(without a relaxation phase, defined as sequence 0 in Table 2).

Table 1: Configuration of relaxation levels.

Relaxation level Binary variables Linear relaxation type

0 y, z No relaxation
1 y Partial
2 z Partial
3 - Complete

Table 2: Sequences of relaxation levels for multi-phase relaxation.

Index sequence Relaxation sequence

0 0
1 3, 0
2 3, 2, 0
3 3, 1, 0
4 3, 1, 2, 0
5 3, 2, 1, 0

The relaxation of the master problem at the initial stages helps to quickly generate optimality cuts.

Nevertheless, to prevent an excessive number of cuts that can slow down the decomposition algorithm, each

relaxation stage can be finished when certain conditions are met, such as the maximum number of cuts at

the stage or the minimum optimality gap of the stage.

4.1.4 Special ordered sets (SOS)

In a branch and bound algorithm, branching on sets of variables, instead of individual variables, can reduce the

computational time. Special Ordered Sets (SOS) allow specifying sets of variables for branching decisions [2].

A set of variables ordered by a reference value, and with at most n consecutive non-zero variables in the set,
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can be specified as a SOS of type n (SOS-n), where n ≤ 2. When branching on a SOS-1, a position in the

ordered set is chosen, and all variables above and below the chosen position are forced to a zero value [2].

In the master problem (4)–(10), (36)–(38), the variables zitk form a set ordered by k, for each time period t

and powerhouse i. Thus, we replace the binary condition on zitk (5) with the following SOS-1 definition

SOS-1it = {zitk → k : k ∈ K(i, t)} ∀ (i, t) ∈ {I × T : | K(i, t) | > 2},

where the arrow symbol → indicates that k is the ordering value of the set. Since SOS work better when

the cardinality of the set is not very small [14], we define a SOS-1it only when the size of the set is greater

than 2.

Moreover, when B−t ≥ B+
t and At ≤ P̄ik ≤Wt, the order of the variables zitk in the master problem can

be enforced by the constraint,

zSP ≤
∑
t∈T

B+
t

( ∑
i∈I,

k∈K(i,t)

P̄ikzitk −At
)
, (45)

which defines an upper bound of the subproblem objective value (25). In (45), the order of the variables

zitk for each set (i, t) is determined by the generation capacity P̄ik, which increases with the number of

generators k. Since B−t ≥ B+
t , buying electricity for selling it (i.e., electricity arbitrage) is suboptimal, so

in an optimal solution, only the surplus electricity production can be sold. For a given number k of active

generators, the maximum surplus electricity is the capacity P̄ik minus the load At (29). When the assumption

At ≤ P̄ik ≤Wt does not hold, (45) must be replaced by the inequality in Appendix A.4.

4.1.5 Combinatorial cuts (CC)

Combinatorial Benders cuts (CBC) [9] have been proposed to remove infeasible solutions in mathematical

programs with binary variables. In contrast with the traditional Benders feasibility cuts, which are computed

from the subproblem dual extreme rays, CBC exclude the current binary solution x̄ by forcing a change of

value in at least one variable of x̄. Given the variables xj with index set J , CBC are defined as∑
j ∈S

(1− xj) +
∑
j /∈S

xj ≥ 1, (46)

where S is the set of variables in x̄ with value 1, i.e., S = {j ∈ J : x̄j = 1}, and its complement is

S ′ = {j ∈ J : x̄j = 0}. We obtain a stronger inequality than (46), by forcing at least one variable in each

set, S and S ′, to have a different value, i.e, ∑
j ∈S

xj ≤ |S| − 1, (47)

∑
j /∈S

xj ≥ 1 (48)

Then, from (47) and (48), we obtain ∑
j ∈S

xj −
∑
j /∈S

xj ≤ |S| − 2. (49)

Proposition 1 The combinatorial cut (49) dominates the standard CBC (46).

Proof. Inequality (46) can be rewritten as∑
j ∈S

xj −
∑
j /∈S

xj ≤ |S| − 1. (50)

As (50) and (49) have equal left hand side, and the right hand side of (50) is greater than the right hand
side of (49), then (49) dominates (46).
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Applying (49) to cut a suboptimal solution ȳ in (4)–(10), (36)–(38), gives∑
(m,t)∈Sy

ymt −
∑

(m,t) /∈Sy

ymt ≤ |M| − 2, (51)

where Sy = {(m, t) ∈ M × T (m) : ȳmt = 1}. Notice that |Sy| = |M|, since for each activity m there is a

variable ȳmt = 1 (6).

Furthermore, when the costs of the tasks are independent of the starting time, i.e., when

Cmt = Cm, ∀ (m, t) ∈ M × T (m), different solutions ȳ can have the same objective value. In this case,

a valid cut is ∑
(i,t,k)∈Sz

zitk −
∑

(i,t,k)/∈Sz

zitk ≤ |I||T | − 2. (52)

In (52), Sz = {(i, t, k) ∈ I × T × K(i, t) : z̄itk = 1}, with cardinality Sz = |I||T |, since by (9), for each time

period t and powerhouse i, exactly one variable z̄itk is equal to 1. To prevent removing optimal solutions,

we only apply the cuts (52) and (51) when the objective value of the solution (ȳ, z̄) is lower than the cutoff

value, that is, when ZP (ȳ, z̄) < LBP − ε, where ε is as defined in Section 4.1.2.

4.1.6 Presolve (PS)

As presolve is a key element for efficiently solving MILP problems [5], several MILP solvers presolve the

problem before the branch and cut procedure [5]. A presolve routine reduces the problem through several

operations such as tightening bounds, coefficient reduction, removal of redundant columns and rows, and

fixing variables based on logical implications or dual information [14; 5]. By reducing the domain of the

variables and removing fractional solutions, presolve can improve the upper and the lower bound of MILP

problems [5]. However, as in Benders decomposition only part of the original problem information is included

into the RMP, the potential of presolving the RMP is reduced. Furthermore, as new rows are included at each

iteration of the Benders algorithm, presolve operations such as reduced cost fixing can produce inconsistent

solutions if applied to the RMP and fixed for subsequent iterations. In contrast, presolving the complete

problem gives problem reductions that are valid for the RMP through all iterations. Therefore, we can

accelerate the Benders algorithm with an initialization step that 1) applies to the complete problem (4)–(21)

a presolve routine with all presolve operations activated, and 2) in the RMP fixes for all iterations of the

Benders algorithm the binary variables that after presolving the complete problem are set to one of their

bounds. Notice that the values of the variables fixed during presolve must be explicitly retrieved from the

MILP solver because their values can be different from the linear relaxation solution.

4.1.7 Integer rounding cuts (IRC)

Let cᵀ be the coefficient vector of y in the master problem. Since the lower bound LBP of the complete

problem is also valid for the master problem, combining the bound LBP ≤ cᵀy + QSP , with the optimality

cut QSP ≤ aᵀy + b, gives the inequality LBP ≤ (c+ a)ᵀy + b, which can be tightened with integer rounding

and division by the Greatest Common Divisor (GCD) of dc+ ae [27; 8]. Thus,

dLBP − be
GCD

≤
(
dc+ ae
GCD

)ᵀ

y, (53)

is a valid cut for the master problem. As the bound LBP increases as the algorithm progresses, an IRC (53)

can become weak in subsequent iterations. In the tested instances of the SGMSP, we observed that keeping

only the most recent IRC had a better impact on the computational time than keeping all the generated

IRC (53) and updating their constant term when the bound LBP improves.

4.1.8 Parallelization

For the parallelization of the Benders algorithm, we implemented a master-slave approach, where the slave

processors solve the subproblem and compute the cut terms, and the master process includes the cuts, solves
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the master problem and controls the execution of the algorithm (Figure 4). The master process runs on a

computer server with a MILP solver, and the slave processes run independently on a computer cluster with

an open source linear programming solver.

We used the Message Passing Interface (MPI) standard as a parallel programming protocol. Although

MPI requires explicit instructions for communications among processes, some MPI implementations are

portable, free and can use both shared and distributed memory. Furthermore, MPI incorporates routines

for high performance collective communication that are suitable for our master-slave implementation of the

decomposition algorithm.

Read parameters!

Create MP!

Subproblem!
parameters!

Create !
subproblems!

Solve MP! MP solution!
Solve !

subproblems!Subproblem !
optimal values!

Check !
stopping criteria!

Compute !
subproblem!
 cut terms!

Compute and !
add cuts!

Subproblem!
 cut terms!

Loop control! Check loop !
control!

Begin! Begin!

End! End!

Master! Slaves!

Figure 4: Simplified representation of the parallel Benders decomposition algorithm, implemented with MPI.

4.2 Implementation details

The code was written in C++ with the modeling libraries Xpress BCL. The master problem was solved with

the MILP solver Xpress-MP, and the subproblems were solved with the open source linear programming

solver Clp. For the parallelization we used MPICH and the Intel MPI Library. In BCL, we specified the

Benders optimality cuts as delayed rows. This cut definition is appropriate when most of the cuts are unlikely

to be active, since only the violated cuts are reintroduced by the solver when a new solution is found. Other

cuts that we proposed (valid inequalities, combinatorial cuts and integer rounding cuts) were defined in BCL

as model cuts, since they can be included by the solver to remove fractional solutions, but are not necessary

to obtain feasible solutions. Furthermore, to avoid a large number of combinatorial cuts and integer rounding

cuts, we kept only the cuts generated in the previous iteration.

5 Computational experiments

In this section we select the combination of acceleration techniques with the best performance on a set of test

instances and we evaluate the impact of the parallelization on the computational times of the decomposition

algorithm. In these experiments, a treatment corresponds to a combination of acceleration techniques or to

the specific configuration of one of them.
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5.1 Selection of acceleration techniques

For this section, we used a testbed of 24 instances adapted from a real hydropower system in Canada, with

the attributes in Table 3. Each instance corresponds to a SGMSP with 30 inflow scenarios, 4 powerhouses, 15

time periods and 6 to 8 maintenance tasks. For each powerhouse and number of generators, the hydropower

function was approximated with 30 hyperplanes in (17).

Table 3: Basic attributes of the hydropower system. Powerhouses are ordered from upstream to downstream.

System type Number of Installed capacity Maintenance
generators (MW) tasks

Reservoir 5 205 4
Run of the river 5 210 5
Reservoir 12 402 4
Run of the river 17 1587 5

Total 39 2404 18

The decomposition algorithm was executed in parallel on a 200-core computer cluster, with one thread

dedicated to each subproblem and with up to 10 threads for solving the master problem on an Intel R© Xeon R©

computer at 2.7 GHz.

Since the computational times can differ significantly between instances, we defined as a performance

metric the normalized time t̄jb per instance

t̄jb =
tjb − µj
σj

, (54)

where tjb is the computational time of the instance j ∈ J on treatment b ∈ B, and µj , σj are respectively,

the mean and standard deviation of the computational times of instance j ∈ J in all treatments.

5.1.1 Best combination of acceleration methods

Since the first 7 techniques of Section 4.1 can be combined in 27 = 128 different ways, we are interested

in identifying which combination has the lowest average computational time. For this purpose, we ran two

experiments in sequence. In the first experiment, we applied each of the 7 techniques individually: Valid

Inequalities (VI), Warm Start (WS), Multi-phase Relaxation (MR), Special Ordered Sets (SOS), Combina-

torial Cuts (CC), Pre-solve (PS) and Integer Rounding Cuts (IRC). In this experiment, MR is the relaxation

sequence 4, and VI is the combination of valid inequalities (43) and (44), which reached the smallest compu-

tational time in preliminary tests (see Appendix B).

As shown in Figure 5 and Table 4, WS achieved the lowest computational times, followed by PS and SOS.

Through one-sided t-tests against the basic method, we confirmed that the effect of these three acceleration

techniques was highly significant on the computational time (p-value < 0.001 in Table 4).

Table 4: Summary statistics of the acceleration methods applied independently. The column Diff. shows the difference between
the mean time of each technique and the mean time of the basic method (first row).

Treatment Mean Std.Dev. Diff. p-value

- 0.62 0.27 0.00 -
CC 0.69 0.31 0.07 0.81
IRC 0.59 0.23 −0.03 0.37
MR 0.62 0.43 0.00 0.53
PS −0.32 0.09 −0.94 6.7e-16
SOS 0.22 0.37 −0.40 5.5e-05
VI 0.56 0.25 −0.06 0.24
WS −1.68 0.14 −2.30 2.2e-16



Les Cahiers du GERAD G–2018–32 15

− CC IRC MR PS SOS VI WS

−
2

−
1

0
1

2

Acceleration techniques

N
or

m
al

iz
ed

 ti
m

e

Figure 5: Boxplots of normalized computational times of 7 acceleration techniques and the basic method.

From these results, we fixed, as part of the basic configuration, the techniques with the lowest computa-

tional time (PS, SOS and WS). For selecting the final configuration, we ran a full factorial experiment with

the remaining 4 techniques: CC, IRC, MR and VI, which corresponds to 24 = 16 treatments. As shown in

Table 5, an ANOVA applied to the results of this experiment indicates that CC and IRC had a significant

effect (p-value < 0.05) on decreasing the computational time (β < 0), while MR had the opposite effect and

VI was not statistically significant. Therefore, in a second ANOVA, we considered only the factors CC and

IRC and their interaction term CC·IRC (Table 6). This ANOVA showed that the effects of CC and IRC were

statistically significant (p-value < 0.01) on reducing the computational time (β < 0). Notice that the main

effects of CC and IRC (with estimates -0.996 and -0.339, respectively) dominate interaction term CC·IRC

(with estimate 0.242), which was not statistically significant (p-value 0.169).

Table 5: Summary of linear regression model with techniques VI, MP, CC and IRC as main factors, with normalized computational
time as response variable.

β estimate p-value

(Intercept) 0.288 0.003
VI 0.089 0.295
MP 0.428 7.6e-07
CC −0.875 < 2e-16
IRC −0.218 0.011

Table 6: Summary of linear regression model with factors CC and IRC and interaction term. Normalized computational time as
response variable.

β estimate p-value

(Intercept) 0.607 1.9e-11
CC −0.996 1.2e-14
IRC −0.339 0.006
CC·IRC 0.242 0.169

From these results, and the previously selected acceleration techniques (Table 4), we determined that the

recommended combination of the acceleration techniques for the considered problem is: PS, SOS, WS, CC

and IRC. In additional tests, this configuration achieved speedups of up to 4 times, with respect to the basic

Benders decomposition approach.
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5.2 Effect of parallelization

For the operation of hydropower systems, as many as 3000 scenarios can be generated to represent the

uncertainty of the water inflows [29]. In the SGMSP, a large number of scenarios should also be considered in

order to achieve high quality solutions. Nevertheless, due to the increase in the problem size, a compromise

on the number of scenarios must be accepted in practice, depending on the available computational resources

and the time limit for obtaining solutions. As a practical example, we consider a case with data adapted from

a real 4-powerhouse system, with 8 maintenance tasks to be completed in a planning horizon of 15 days. As

in the previous section, for each powerhouse and number of generators, the power production function was

approximated with 30 hyperplanes.

We used the same computer cluster and computing server as in Section 5.1 for solving the subproblems,

and the master problem. To avoid overlapping of subproblems on the 200 available threads, we considered

a maximum of 200 scenarios, with 1 subproblem for each thread. With a time limit of 1000 seconds, the

decomposition method was benchmarked against the straightforward MILP solution approach, i.e., solving

model (4)–(21) with the MILP solver Xpress-MP. To observe the effect of the number of scenarios on the

computational times, we kept constant all the problem parameters, except the size and composition of the

set of inflow scenarios. From an initial set of 3028 scenarios, we randomly sampled 12 sets of 200 scenarios

each, and we ran tests with 1, 50, 100, 150 and 200 scenarios of each set.

The results indicate that above some point between 50 to 100 scenarios, the parallel Benders decomposi-

tion with acceleration techniques outperformed the computational time of the solution with a MILP solver

(Figure 6). Furthermore, in instances with 150 and 200 scenarios, the MILP solver reached the 1000-second

time limit, with average optimality gaps of 4.6 % and 6.3 %, respectively, while the Benders decomposition

approach reached optimal solutions in less than 800 seconds (Figure 6). The results also confirm that, in

contrast with the MILP-based solution, the parallel Benders decomposition method is highly scalable. For

example, between 50 to 100 scenarios the computational time of the MILP approach increased by 231.7 %,

while the computational time via parallel Benders decomposition increased only by 11.5 % (Table 7).

The need for considering a sufficiently large number of scenarios is apparent in Table 8, where the objective

values of the optimization model tend to converge as the number of scenarios increases. For example, in

Table 8, the variability of the objective values in instances with 150 scenarios (St. dev. 121.6) is less than

a half of the variability corresponding to 50 scenarios (St. dev. 267.8). Naturally, this reduction of the

variability leads to a better estimate of the actual objective function value.
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Figure 6: Computational time of solving the SGMSP with a MILP solver and with Benders decomposition.
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Table 7: Statistics on the computational times with parallel Benders decomposition and MILP-based solution, with different
numbers of inflow scenarios.

Number of scenarios
Benders Time MILP Time

Mean St. dev. Mean St. dev.

1 338.9 14.0 0.9 0.3
50 421.2 15.4 213.0 14.0

100 469.8 11.3 706.5 86.0
150 616.5 24.0 - -
200 780.7 11.8 - -

Table 8: Mean, standard deviation and 95 % confidence interval of the objective function values, with 12 replicates for each
number of scenarios.

Number of scenarios
Objective function value

Mean St. dev. 95% CI

1 13702.6 1799.8 [12559.1, 14846.2]
50 13418.9 267.8 [13248.7, 13589.0]
100 13511.1 211.5 [13376.8, 13645.5]
150 13496.9 121.6 [13419.6, 13574.1]
200 13516.6 100.9 [13452.5, 13580.7]

6 Conclusions and future work

We developed a two-stage stochastic program for the hydropower generator maintenance scheduling problem,

with binary scheduling decisions in the first stage, and hydropower operation decisions in the second stage.

This formulation incorporates relevant aspects of hydropower systems, such as the nonlinearity of hydroelec-

tric production and the uncertainty of the water inflows. Furthermore, we derived necessary conditions on

the problem parameters for a feasible solution.

In order to solve instances with a large number of inflow scenarios, we implemented a Benders decom-

position method, and we proposed 7 techniques for accelerating its execution: valid inequalities (VI), warm

start (WS), multi-phase relaxation (MR), special ordered sets (SOS), combinatorial cuts (CC), presolve (PS)

and integer rounding cuts (IRC). Using statistical methods such as experimental design and analysis of

variance, we found that the decomposition algorithm with the combination of PS, SOS, WS, CC and IRC

reached the lowest computational time, among the explored combinations. This combination of acceleration

techniques achieved speedups of up to 4 times with respect to the basic Benders decomposition approach.

Using the MPI protocol, we parallelized the decomposition algorithm for its execution on a computing server

and a 200-core computer cluster. In tests with up to 200 scenarios, we confirmed the high scalability of the

parallelization on the number of scenarios.

Future work should address further refinements to the decomposition approach for this problem, such as

cut stabilization methods [15], and branch-and-Benders-cut [17]. Alternative decomposition approaches, in

combination with constraint programming, are also potential directions of future research.

Appendix A: Model supplement1

A.1 Set reduction

In [26], the set of numbers of generators is defined as

K(i, t) =
{
k ∈ Z :

¯
Kit ≤ k ≤ K̄it

}
, ∀ (i, t) ∈ I × T (55)

1Supplementary material of Rodriguez et al., Stochastic hydropower generator maintenance scheduling via Benders decom-
position. Submitted to European Journal of Operational Research
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where

¯
Kit = max{Ḡit −Oit, Ḡit − R̄it}, (56)

K̄it = Ḡit −
¯
Rit. (57)

In (56)–(57), Ḡit denotes the maximum number of available generators at (i, t) ∈ I ×T , Oit is the maximum

number of maintenance outages, and R̄it,
¯
Rit denote, respectively, the maximum and minimum number of

activities simultaneously in execution at (i, t), according to their time windows, i.e.,

¯
Rit = |{ (m, t) ∈M(i)× T (m) : Lm ≤ t ≤ Em +Dm }|, (58)

R̄it = |{ (m, t) ∈M(i)× T (m) : Em ≤ t ≤ Lm +Dm }|, (59)

where for each activity m ∈M, we denote by Dm, Em and Lm its duration, earliest starting time and latest

starting time, respectively.

A.2 Conditions for feasible subproblems

From the viewpoint of computational efficiency, complete recourse and partially complete recourse are de-

sirable properties of stochastic programming problems [4]. In problems with these properties, the Benders

decomposition method will only generate feasible solutions at each iteration. A stochastic program is said to

have complete recourse if the second stage problem (i.e., the subproblem) is always feasible. If the stochas-

tic program has partially complete recourse, the second stage problem is feasible for any feasible first stage

solution and scenario realization. Following these definitions, we notice that the subproblem (25)–(35) has

partially complete recourse (i.e., is feasible for any inflow scenario and master problem feasible solution), if

the following conditions are met:

1. The system (26), (31)–(33) is feasible for any inflow realization ξitω, where (i, t, ω) ∈ I × T × Ω.

2. In all time periods, the electricity load At is not greater than the upper bound of the electricity purchase,

i.e., 0 ≤ At ≤ W̄−t , ∀ t ∈ T .

Without loss of generality, we assume that the instances of the SGMSP satisfy conditions 1 and 2. Notice

that these conditions can be guaranteed with proper values of the variable bounds (32)–(35). If either of these

conditions are not met, it would be necessary to include feasibility cuts at some iterations of the Benders

algorithm. Alternatively, the partial complete recourse property can be reestablished with the introduction

of artificial variables in (26), (29), and with a penalization of these variables in the objective function (25).

A.3 Valid inequalities

1. The first family of valid inequalities comes from the observation in [26] that in a powerhouse i, if at

least one maintenance task m ∈M(i) is in execution at time t, then the binary variable corresponding

to Ḡit active generators must be equal to zero, i.e., zitk = 0, for k = Ḡit. Thus,∑
m∈M(i)

t′ ∈T (m)∩ [ t−Dm+1, t ]

ymt′ + zitk ≤ 1,

for k = Ḡit,∀ (i,m, t) ∈ I ×M(i)× T ,

(60)

are valid inequalities. Naturally, such inequalities are unnecessary when K̄it < Ḡit (55) or when the

set t′ ∈ T (m) ∩ [ t−Dm + 1, t ] is empty.

2. The second family of valid inequalities comes from the fact that for any (i, t), when the number of

maintenance outages is zero, i.e., rit = 0, then all Ḡit generators are active (zitk = 1, for k = Ḡit) [26].

By (9), it follows that zitk = 0 for k < Ḡit, which is equivalent to∑
k∈K(i,t) \{Ḡit}

zitk ≤ rit, ∀ (i, t) ∈ I × T . (61)

Such inequalities are also unnecessary when K̄it < Ḡit.
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3. From (56) we notice that

Ḡit ≤
¯
Kit + R̄it, (i, t) ∈ I × T . (62)

Then, applying (62) on the left hand side of (8) gives

rit +
∑

k∈K(i,t)

kzitk ≤
¯
Kit + R̄it, ∀ (i, t) ∈ I × T ,

which by (9) and (55) leads to

rit +
∑

k∈K(i,t) \{
¯
Kit}

(k −
¯
Kit)zitk ≤ R̄it, ∀ (i, t) ∈ I,×T . (63)

A.4 Upper bound of subproblem objective value

If the assumption At ≤ P̄ik ≤Wt does not hold, (45) can be replaced with

zSP ≤
∑
t∈T

B+
t

( ∑
i∈I,

k∈{K(i,t) :

P̄ik>At ;W+
t > P̄ik−At}

(P̄ik −At)zitk

+
∑
i∈I,

k∈{K(i,t) :

P̄ik>At ;W+
t < P̄ik−At}

W+
t zitk

)
(64)

−
∑
t∈T

B−t

( ∑
i∈I,

k∈{K(i,t) :
P̄ik<At }

(At − P̄ik)zitk

)
,

where the first term is the maximum sold electricity when the electricity surplus is less than the bound of

the electricity sale. The second term is the maximum sold electricity when the bound on the electricity sale

is less than the electricity surplus, and the third term is the cost of the electricity purchase when the load

exceeds the generation capacity.

Appendix B: Selecting multiple-phase relaxation sequence and valid
inequalities2

B.1 Valid inequalities

On the set of 24 instances, we ran a factorial experiment with the 23 = 8 combinations of the three families of

valid inequalities of Section 4.1.1. To select the best combination of these inequalities, we sequentially applied

analysis of variance (ANOVA) with normalized computational time as the response variable. From the results

of the first ANOVA, with each family of valid inequalities defined as a categorical factor (Table 9), we dropped

the valid inequality family 1 (factor VI1) for increasing the computational times (β = 0.188) at a significance

level of 0.1 (p-value = 0.055). With the same experimental data, an ANOVA with the factors VI2 and VI3

and the interaction term VI2·VI3 (see Table 10) shows that the combination of the valid inequalities 2 and 3

(i.e., the interaction term VI2·V3) has the lowest average computational time (β = −0.363), at a significance

level of 0.1 (p-value = 0.064).

2Supplementary material of Rodriguez et al., Stochastic hydropower generator maintenance scheduling via Benders decom-
position. Submitted to European Journal of Operational Research
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Table 9: Summary of ANOVA with valid inequalities 1, 2 and 3 as main factors, and normalized computational time as response
variable.

β estimate p-value

(Intercept) 0.078 0.427
VI1 0.188 0.055
VI2 −0.095 0.333
VI3 −0.249 0.011

Table 10: Summary of ANOVA with valid inequalities 1 and 2 and interaction term, and normalized computational time as
response variable.

β estimate p-value

(Intercept) 0.081 0.408
VI2 0.087 0.531
VI3 −0.067 0.627
VI2·VI3 −0.363 0.064

B.2 Multiple-phase relaxation

We defined the relaxation sequences of Table 2 as treatments. In these sequences, each phase is completed

when either a specified maximum number of cuts or a maximum optimality gap is reached (Table 11).

According to the results, the sequence without relaxation (i.e., relaxation sequence 0), exhibited the largest

Table 11: Parameters of stages in multi-phase relaxation.

Relax. level Binary var. Max. cuts Max. gap

0 y, z 1000 1.0e-5
1 y 4 0.005
2 z 4 0.005
3 - 20 0.010

variability and the highest computational time (Figure 7). An analysis of variance on the 24 instances

indicated that the multi-phase relaxation had a significant effect on the computational times (p-value =

0.00924). Although the computational times of the relaxation sequences 3, 4 and 5 were similar, the relaxation

sequence 4 showed the most significant effect (p-value = 0.007) in a one-tailed t-test against the method

without relaxation (see Table 12). Therefore, the best configuration applies the relaxation sequence (y, z)→
(z)→ (y), before solving the master problem without relaxation.
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Figure 7: Boxplot of the computational times of the multi-phase relaxation sequences on 24 instances.
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Table 12: Summary statistics of normalized computational times of multi-phase relaxations. The column Diff. shows the difference
between the mean time of each sequence and the mean of sequence 0.

Relax. Seq. Mean St. Dev. Diff. p-value

0 0.54 1.51 0.00 -
1 0.21 0.91 −0.33 0.181
2 −0.04 0.71 −0.58 0.048
3 −0.19 0.57 −0.73 0.017
4 −0.34 0.63 −0.88 0.007
5 −0.18 0.60 −0.72 0.019

Appendix C: Nomenclature

Primary sets

I Powerhouses
M Maintenance tasks
T Planning time periods, t ∈ T = {1 . . . T}
Ω Scenarios

Parameters

ξitω Lateral inflows to powerhouse i in period t and scenario ω, [m3/s].
At Electricity load at time period t.

B+
t Electricity sale price in time period t, [$/MWh].

B−
t Electricity purchase price in time period t, [$/MWh].

Cmt Total cost of maintenance task m started at time period t, [$].
Dm Duration of maintenance task m [day].
Em Earliest start time period of maintenance task m.
F Factor for conversion from flow per second in m3 to flow per day in hm3 [0.0864·s·hm3 ·/(day’·m3)].

Ḡit Maximum number of available turbines in powerhouse i at time period t, [turbines].

¯
Gi Minimum number of available turbines in powerhouse i [turbines].
Lm Latest start time period of maintenance task m.
Oit Maximum number of turbine outages in powerhouse i at time period t, [turbines].
P̄i Generation capacity in powerhouse i, [MWh/day].
P̄ik Generation capacity in powerhouse i when k turbines are active, [MWh/day].
Q(ȳ) Expected operating cost of solution ȳ [$].
Qω(ȳ) Expected operating cost of solution ȳ in scenario ω [$].
R̄it Number of maintenance activities that can be in execution at powerhouse i in time period t.

¯
Rit Number of maintenance activities that must be in execution at powerhouse i in time period t.
S0i Initial volume in reservoir of powerhouse i, [hm3].

¯
Si, S̄i Limits on stored water in reservoir of powerhouse i at period t [hm3].
Ūit Maximum discharge rate in powerhouse i, [m3/s].
V̄it Maximum water spill in powerhouse i, [m3/s].

W̄+
t Maximum electricity sale at time t [MWh/day].

W̄−
t Maximum electricity purchase at time t [MWh/day].

Derived sets

T (m) Time periods when maintenance task m can be initiated in order to be completed within T .
M(i) Maintenance tasks m that should be executed in powerhouse i.
M(i, t) Maintenance tasks m that can be in execution in powerhouse i at time period t.
U(i) Powerhouses upstream of powerhouse i (U(i) ⊂ I).
K(i, t) Numbers of generators that can be active at time period t and powerhouse i.
H(i, k) Hyperplanes for approximating the maximum power of powerhouse i when k turbines are active.

A set of indices (m, t) of variables ymt with value 1 in solution ȳ, i.e, A = {(m, t) ∈M× T | ȳmt = 1}.

Parameters with indexes in derived sets

βu
h Coefficient of uit in hyperplane h ∈ H(i, k) for bounding the power output of powerhouse i when k

generators are active [MWh· s/(m3·day)].
βs
h Coefficient of sit in hyperplane h ∈ H(i, k) for bounding the power output of powerhouse i when k

generators are active [MWh/(hm3·day)].
β0
h Independent term of hyperplane h ∈ H(i, k) for bounding the power output of powerhouse i when k

generators are active [MWh/day].
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Decision variables

pitω Generation of powerhouse i during time period t in scenario ω [MWh/day].
pitkω Generation of powerhouse i during time period t in scenario ω when k generators are active

[MWh/day].

q+tω Sale of electricity at period t in scenario ω [MWh].

q−tω Purchase of electricity at period t in scenario ω [MWh].
rit Number of maintenance activities in execution at powerhouse i and time period t.
sitω Content of reservoir in powerhouse i at the end of period t in scenario ω [hm3].
uitω Water discharge of turbines in powerhouse i at time period t in scenario ω [m3/s].
vitω Water spill of reservoir in powerhouse i at time period t in scenario ω [m3/s].
ymt Binary variable with value 1 if maintenance task m initiates at time period t, 0 otherwise.
zitk Binary variable with value 1 if k hydro-turbines are active in powerhouse i at time t, 0 otherwise.
zSP Approximated expected profit of the hydroelectric production [$].
zSP
ω Profit of the hydroelectric production in scenario ω [$].

Dual variables

π
p
itω

of mass balance constraint (26) in solution p.
γ
p
itkhω

of power function (27) in solution p.
λ
p
itkω

of power bound constraint (28) in solution p.
ψ
p
tω of power balance constraint (29) in solution p.

θ
p
itω

of sum of power constraint (30) in solution p.
α
pu
itω

of water discharge bound (32) in solution p
α
ps
itω

of stored water bounds (33) in solution p
α
p+
tω of electricity sale bounds (34) in solution p

α
p−
tω of electricity purchase bounds (35) in solution p

References
[1] A. Arce. Optimal dispatch of generating units of the Itaipu hydroelectric plant. IEEE Power Engineering

Review, 21(11):56–56, 2001.

[2] Evelyn Martin Lansdowne Beale and John A Tomlin. Special facilities in a general mathematical programming
system for non-convex problems using ordered sets of variables. In James Rowland Lawrence, editor, Proc. of
the 5th Int. Conf. on Operations Research, pages 447–454. Tavistock Publications, 1970.

[3] Jacques F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische
Mathematik, 4(1):238–252, 1962.

[4] John R. Birge and Francois Louveaux. Introduction to stochastic programming. Springer Science & Business
Media, 2011.

[5] E. Robert Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunderling. MIP: Theory and practice-
—closing the gap. In IFIP Conference on System Modeling and Optimization, pages 19–49. Springer, 1999.

[6] Alberto Borghetti, Claudia D’Ambrosio, Andrea Lodi, and Silvano Martello. An MILP approach for short-term
hydro scheduling and unit commitment with head-dependent reservoir. IEEE Transactions on Power Systems,
23(3):1115–1124, 2008.

[7] Salvador Perez Canto. Application of Benders’ decomposition to power plant preventive maintenance scheduling.
European Journal of Operational Research, 184(2):759–777, 2008.

[8] Der-San Chen, Robert G Batson, and Yu Dang. Applied integer programming: modeling and solution. John
Wiley & Sons, 2011.

[9] Gianni Codato and Matteo Fischetti. Combinatorial Benders’ cuts for mixed-integer linear programming. Op-
erations Research, 54(4):756–766, 2006.
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