Les Cahiers du GERAD

ISSN: 0711-2440

A Comparison of formulations
for a three-level lot sizing and
replenishment problem

with a distribution structure

M. Gruson, M. Bazrafshan
J.-F. Cordeau, R. Jans

G-2017-59

July 2017
Revised: August 2018

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis a des revues avec comité de révision. Lorsqu'un
document est accepté et publié, le pdf original est retiré si c'est
nécessaire et un lien vers I'article publié est ajouté.

Citation suggérée: M. Gruson, M. Bazrafshan, J.-F. Cordeau, R. Jans
(Juillet 2017. Révisé Aolit 2018). A comparison of formulations for
a three-level lot sizing and replenishment problem with a distribution
structure, Rapport technique, Les Cahiers du GERAD G-2017-59,
GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2017-59) afin de mettre a jour
vos données de référence, s'il a été publié dans une revue scientifique.

The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted to
peer-reviewed journals. When accepted and published, if necessary, the
original pdf is removed and a link to the published article is added.

Suggested citation: M. Gruson, M. Bazrafshan, J.-F. Cordeau, R. Jans
(July 2017. Revised August 2018). A comparison of formulations for
a three-level lot sizing and replenishment problem with a distribution
structure, Technical report, Les Cahiers du GERAD G-2017-59,
GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https://
www.gerad.ca/en/papers/G-2017-59) to update your reference data,
if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grace au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec a Montréal, ainsi que du Fonds de recherche du
Québec — Nature et technologies.

Dépét légal — Bibliotheque et Archives nationales du Québec, 2018
— Bibliotheque et Archives Canada, 2018

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec a Montréal, as well as the Fonds de recherche du
Québec — Nature et technologies.

Legal deposit — Bibliotheque et Archives nationales du Québec, 2018
— Library and Archives Canada, 2018

GERAD HEC Montréal
3000, chemin de la Céte-Sainte-Catherine
Montréal (Québec) Canada H3T 2A7

Tél.: 514 340-6053
Téléc.: 514 340-5665
info@gerad.ca
www.gerad.ca



https://www.gerad.ca/fr/papers/G-2017-59
https://www.gerad.ca/en/papers/G-2017-59
https://www.gerad.ca/en/papers/G-2017-59




A comparison of formulations for a three-level lot sizing and
replenishment problem with a distribution structure

Matthieu Gruson
Majid Bazrafshan

Jean-Francois Cordeau
Raf Jans

GERAD & HEC Montréal, Montréal (Québec)
Canada, H3T 2A7

matthieu.gruson@hec.ca
majid.bazrafshan@hec.ca
jean-frangois.cordeau@hec.ca
raf.jans@hec.ca

July 2017

Revised: August 2018

Les Cahiers du GERAD

G-2017-59

Copyright (© 2018 GERAD, Gruson, Bazrafshan, Cordeau, Jans

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs. Les auteurs
conservent leur droit d'auteur et leurs droits moraux sur leurs publica-
tions et les utilisateurs s'engagent a reconnaitre et respecter les exigences
|égales associées a ces droits. Ainsi, les utilisateurs:
e Peuvent télécharger et imprimer une copie de toute publication
du portail public aux fins d'étude ou de recherche privée;
e Ne peuvent pas distribuer le matériel ou I'utiliser pour une ac-
tivité a but lucratif ou pour un gain commercial;
e Peuvent distribuer gratuitement I'URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d'auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
I'acceés au travail et enquéterons sur votre demande.

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and the users
must commit themselves to recognize and abide the legal requirements
associated with these rights. Thus, users:
e May download and print one copy of any publication from the
public portal for the purpose of private study or research;
e May not further distribute the material or use it for any profit-
making activity or commercial gain;
e May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



ii G-2017-59 — Revised Les Cahiers du GERAD

Abstract: We address a three-level lot sizing and replenishment problem with a distribution structure
(3LSPD), which is an extension of the one-warehouse multi-retailer problem (OWMR). We consider one
production plant that produces one type of item over a discrete and finite planning horizon. The items
produced are used to replenish warehouses and then retailers using direct shipments. Each retailer is linked
to a unique warehouse and there are no transfers between warehouses nor between retailers. We also assume
that transportation is uncapacitated. However, we consider the possibility of imposing production capacity
constraints at the production plant level. The objective is to minimize the sum of the fixed production
and replenishment costs and of the unit variable inventory holding costs at all three levels. We compare 16
different MIP formulations to solve the problem. All of these formulations are adapted from existing MIP for-
mulations found in the one-warehouse multi-retailer literature, but most formulations are new in the context
of the 3LSPD. We run experiments on both balanced and unbalanced networks. In the balanced network each
warehouse serves the same number of retailers whereas in the unbalanced network 20% of the warehouses
serve 80% of the retailers. Our results indicate that the multi-commodity formulation is well suited for un-
capacititated instances and that the echelon stock reformulations are better for capacitated instances. They
also show that the richer formulations are not necessarily the best ones and that the unbalanced instances
are harder to solve.

Keywords: Production planning and control, lot sizing, replenishment, mixed integer programming formu-
lations, deterministic demand, one-warehouse multi-retailer problem, multi-level

Résumé: Nous étudions un probléme intégré de planification de production et de transport sur trois niveaux
avec une structure de distribution (3LSPD), probléme qui est une extension du one-warehouse multi-retailer
problem (OWMR). On considére une usine de production qui fabrique un type de produit sur un horizon
de planification fini et discret. Les biens produits sont transportés de 'usine vers des centres de stockage
puis ensuite vers des détaillants via des livraisons directes. Chaque détaillant est relié & un unique centre
de stockage et les transferts de produits entre les centres de stockage ou entre les détaillants ne sont pas
autorisés. Cependant, nous considérons la possibilité d’imposer des restrictions sur la capacité de production
au niveau de l'usine de production. L’objectif est de minimiser la somme des cotts fixes de production
et de commande et des colts variables unitaires de stockage. On compare ici 16 formulations mixtes en
nombres entiers différentes pour résoudre le probleme. Toutes les formulations proposées sont des adaptations
des formulations mixtes en nombres entiers rencontrées dans la littérature sur le probleme One-Warehouse
Multi-Retailer, et la plupart des formulations développées ici sont proposées pour la premiere fois dans le
contexte du 3LSPD. Nous réalisons des expériences numériques tant sur un réseau équilibré que sur un
réseau non équilibré. Dans le réseau équilibré chaque centre de stockage est responsable du méme nombre de
détaillants alors que dans le réseau non équilibré 20% des centres de stockage sont responsables de 80% des
détaillants. Nos résultats indiquent que la formulation multi-commodity est la plus adaptée pour la résolution
des instances sans contrainte de capacité alors que les formulation echelon-stock sont plus adaptées pour les
formulations avec contraintes de capacité. Les résultats montrent aussi que les formulations les plus riches ne
sont pas nécessairement les meilleures et que les instances ayant un réseau non équilibré sont les plus difficiles
a résoudre.

Mots clés: Planification de production et transport, formulations mixtes en nombres entiers, demande
déterministe, taille de lot, multi-niveau
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1 Introduction

Over the last decades, lot sizing problems have drawn the attention of many researchers, mainly because of
their numerous applications in production, distribution and inventory management problems. Extensions of
the basic lot sizing problem (LSP) are often encountered in the context of supply chain planning. Usually, the
customers of a company, which have a certain demand, are located in a different area from the production
plant where the items are actually produced and where lot sizing decisions are made. This leads to a
replenishment problem where the company needs to determine when to replenish its customers so as to
minimize the replenishment costs. Companies facing these two operational problems often make decisions in
sequence. This leads, however, to solutions that can be far from the optimal solution of an integrated lot
sizing and replenishment problem.

We address here an integrated three-level lot sizing and replenishment problem with a distribution struc-
ture (3LSPD). We consider a general manufacturing company that has one production plant (level zero),
several warehouses (level one) and multiple retailers (level two) facing a dynamic and known demand for
one item over a discrete and finite time horizon. The supply chain considered has a distribution structure:
the warehouses are all linked to the single plant and all retailers are linked to exactly one warehouse. When
we consider the demand of a particular retailer, the flow of goods in the supply chain network is hence as
follows: an item is produced at the production plant, then sent to the warehouse linked to the retailer for
storage and finally sent to the retailer to satisfy its demand. Figure 1 illustrates this flow of goods in a
distribution network which consists of one production plant, three warehouses and three retailers linked to
each warehouse. The objective of the problem is to determine the optimal timing and flows of goods between
the different facilities while minimizing the operational and replenishment costs in the whole network (sum
of the fixed setup and replenishment costs and unit inventory holding costs).

Retailers Retailers
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/ / E Retailers
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Figure 1: Graphical representation of the problem considered

More specifically, given the set T' of time periods, we face an integrated problem where decisions are
made at all facilities for each time period. The optimal solution of the problem will indicate, for each time
period, the optimal quantities to be produced and to be ordered from their predecessor for the production
plant and for the warehouses and retailers, respectively, so that the final demand at each retailer is satisfied.
In this problem, the objective is to minimize the sum over all periods ¢ of the fixed setup costs scl at the
production plant, the fixed replenishment costs sci’ and scj of the warehouses and of the retailers, and the
unit inventory holding costs hci of all facilities i. We do not include any unit production cost at the plant
since the total production cost is a constant when all the demand is satisfied and when the unit production
cost is constant over time. The same holds for the unit replenishment cost at the warehouses and retailers.
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Transfers of goods between the warehouses and between the retailers are not allowed. Finally, we only
consider uncapacitated direct shipments and do not incorporate any routing in the transportation decisions.
Note that in a disaggregated context, the problem faced by any facility can be seen as the basic LSP. This
basic LSP has attracted a lot of research since the seminal paper of Wagner and Whitin [39] who proposed
a dynamic programming approach to solve the single item uncapacitated lot sizing problem (SI-ULSP). The
reader is referred to Brahimi et al. [5] and to Pochet and Wolsey [34] for a review of the work done on the
SI-ULSP and its extensions, and to Jans and Degraeve [19] for a review of industrial applications.

We consider both a capacitated and an uncapacitated version of the 3LSPD. In the capacitated version,
the capacity constraints are imposed at the production plant level to limit the production quantities in each
time period. There are no capacities on the flows between the facilities nor on the inventory level. Note
that with the addition of the capacity constraints at the production plant level, the problem faced by the
production plant can be seen as a basic capacitated lot sizing problem (CLSP). The reader is referred to
Karimi et al. [21] for a review of models and algorithms used to solve the CLSP.

The motivation to work on MIP formulations for the 3LSPD is to extend the works of Solyali and Siiral [37]
and Cunha and Melo [8] who compare several MIP formulations for the one-warehouse multi-retailer problem
(OWMR). In the OWMR, a central warehouse replenishes several retailers that face a dynamic demand for
one or several items over a discrete and finite time horizon. The objective of the problem is to jointly
determine the optimal timing and quantities that are shipped between the warehouse and the retailers to
minimize the sum of setup costs and inventory holding costs for the whole system. This problem has been
shown to be NP-hard by Arkin et al. [2] and appears as a substructure in the production routing problem
(PRP). Compared to the OWMR, the PRP also optimizes routing decisions to visit the different customers
of the central warehouse. The reader is refered to Adulyasak et al. [1] for a detailed review of formulations
and solution algorithms for the PRP.

Solyali and Siiral [37] compare four MIP formulations and Cunha and Melo [8] compare eight different
MIP formulations for the OWMR. The 3LSPD can be considered as the generalization of the OWMR to
three levels. Our aim in this work is to adapt these OWMR MIP formulations to the 3LSPD and to verify
if the results obtained on the two-level OWMR still stand for the 3LSPD.

Our paper makes two main contributions. First, we fill a gap by adapting several MIP formulations that
have been proposed in the context of the two-level OWMR (Solyali and Stiral [37], Cunha and Melo [8]) to the
3LSPD. To the best of our knowledge, this is the first attempt to provide strong formulations for the 3LSPD
that could solve instances of large scale. We also give several properties about the relationships between the
linear relaxations of these formulations. Second, we report the results of extensive numerical experiments
using a general-purpose solver to assess the strengths and weaknesses of the different formulations. Indeed,
we perform experiments for different structures of the main parameters (fixed or dynamic demand, fixed or
dynamic setup costs) and for two distribution structures of the supply chain network. In one case we consider
a balanced distribution network in which each warehouse is responsible for the same number of retailers. In
the other case, we consider an unbalanced distribution network where 20% of the warehouses replenish 80%
of the retailers. The results obtained highlight the importance of properly choosing a formulation depending
on the characteristics of the problem.

The remainder of this paper is organized as follows. First, we survey the work related to our study
in Section 2. We then present sixteen different MIP formulations for the problem in Section 3. These
MIP formulations can be divided into three groups of formulations: the classical formulations, which use
the standard MIP formulation of the basic LSP, the echelon stock based formulations, inspired from the
echelon stock concept for the multi-level LSP, and the richer formulations, containing more information in
the decision variables, inspired from the work on the polyhedral structure of the solutions of both the SI-ULSP
and the two-level lot sizing problems. Section 4 presents computational results to determine the strengths
and weaknesses of the different formulations that we propose, and to analyze the impact of the different
parameters. This is followed by the conclusion in Section 4.3.
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2 Literature review

We first review the literature on the OWMR, in Section 2.1, followed by the literature on the three-level lot
sizing problem in Section 2.2.

2.1 OWMR literature review

The 3LSPD studied in this paper is a generalization of the OWMR to three levels. Both problems have a
distribution structure and there are similar production, inventory and replenishment decisions to be made
at each time period to satisfy the demand of the retailers. The main difference is that the OWMR only
considers two levels in its distribution network: the warehouse and the retailers.

Many formulations have been proposed for the OWMR. Federgruen and Tzur [14] propose the echelon
stock formulation (ES), based on the echelon stock concept for multi-level lot sizing problems. Using the
echelon stock concept, the traditional inventory decision variables are replaced by the echelon stock variables
representing the total inventory of a component at a given facility and all of its descendents. Levi et al. [26]
propose the transportation formulation inspired from the facility location literature. Melo and Wolsey [27]
propose the multi-commodity formulation (MC) based on the distinction of each retailer-time period pair.
Solyali and Siiral [37] compare four different MIP formulations for the OWMR: the shortest path formulation
(SP), the transportation formulation (TP) and the echelon stock formulation and its strenghtened version
(SES). The SES formulation is inspired from the ES formulation of Federgruen and Tzur [14] and uses
transportation decision variables to strenghten the ES formulation. Solyali and Siiral [37] extend these
formulations to the possibility of having a non-zero initial inventory. They also provide results concerning the
LP bounds of each formulation and numerical experiments are performed with and without inital inventory.
In the same vein, Cunha and Melo [8] consider eight different MIP formulations: the shortest path formulation
(SP), the transportation formulation (TP), the strenghtened echelon stock formulation (SES), the Wagner-
Whitin echelon stock based formulation (ESWW), the two-level lot sizing Wagner-Whitin based formulation
(2LSWW) and its partial version (p2LSWW), the multi-commodity formulation (MC) and the dynamic
programming formulation (DP). They compare the LP bounds of these formulations and show in particular
that the DP formulation gives the best LP bound. They then perform numerous computational experiments
with both dynamic and static unit transportation costs. Note that there also exists a classical MIP formulation
for the OWMR which is the extension of the classical MIP formulation for the ULSP proposed by Zangwill [42].

Some work has also been done to develop families of valid inequalities for the OWMR to strengthen the
MIP formulations given in Solyali and Siiral [37] and Cunha and Melo [8]. This is the case in Senoussi et
al. [36]. Starting from a PRP and considering a warehouse that is really far from the retailers, they aggregate
the retailers in different clusters to discard routing decisions and get a real OWMR with both fixed and
unit transportation costs, and with transportation capacity. They propose six sets of valid inequalities: one
to determine the maximum number of vehicles, one to break symmetries, one to have full trucks (based on
the optimal properties of the solution), two which extend the (I,S) inequalities of the SI-ULSP proposed in
Barany, Van Roy and Wolsey [3], and the last one to reduce the number of variables in their model. They
conduct numerous experiments both with and without all the valid inequalities to see the impact of these
valid inequalities. Melo [10] proposes another set of valid inequalities and also designs a separation algorithm
to find the violated inequalities. This separation procedure is used in a cutting plane algorithm to perform
experiments on a multi-item OWMR problem.

2.2 Three-level lot sizing problem

Because of the different nature of the decisions made at each facility and because of the three levels, one
can find several supply chain structures in the literature on three-level lot sizing problems (3L-LSP). The
following section only reviews the literature for which the supply chain structure is the same as in our
problem: one production plant, several warehouses and several retailers. When not explicitely mentionned,
the supply network structure considered in the papers reviewed in this section is a distribution structure as
in our problem.
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Only a few papers address a three-level lot sizing problem with a number of facilities per level which is
the same as in our problem. The ones that we found all address extensions of the 3LSPD considered in this
paper. Gebennini, Gamberini and Manzini [17] propose a heuristic to solve a problem where they consider
safety stocks and allow backorders. The backorder in a particular period is the quantity of unmet demand for
this time period. The basic model they propose is non-linear because of the safety stock cost but is linearized
with an approximation of the objective function. There are also due dates for the deliveries to the customers.
The authors design a procedure to solve the approximate problem.

Barbarosoglu and Ozgur [4] address the 3L-LSP where each retailer is linked to every warehouse. They
thus do not have a distribution structure in their network but a general one instead. They also work in
a just-in-time (JIT) environment. The JIT environment translates into a constraint that prevents retailers
from keeping inventory. The model contains both fixed and unit transportation costs. The authors propose
a transportation based MIP model and use Lagrangean relaxation to solve the problem. They relax the
constraints linking the production and distribution components to obtain a production subproblem which
can be decomposed into knapsack problems, and a distribution subproblem that can be easily solved for
each item-customer pair. A customized procedure is then used to build feasible solutions from the solutions
obtained in these two sub-problems.

Several extensions relate to applications for industrial cases. Kopanos, Puigjnaer and Georgiadis [23]
address an industrial case in Greece in the food industry. They have a fixed cost per vehicle used for
the deliveries between the facilities and there are several transportation modes available. They consider
restrictions on the vehicles that can make the deliveries between facilities. They extend their MIP model to
consider several production plants and use a general-purpose solver in both cases to solve their instances. Haq,
Vrat and Kanda [18] also use a general-purpose solver to solve an industrial case of urea manufacturing. They
propose a MIP model that contains transportation lead time and backlog but these features are discarded in
the numerical experiments performed.

Heuristics have also been proposed to solve extensions of the 3LSPD applied to industrial cases. Leje-
une [25] proposes to solve a problem with a fixed cost per truck used and unit transportation costs. The
author also considers transportation capacities and time availability of the carriers. A combination of branch-
and-bound (B&B) and variable neighborhood search (VNS) is used to solve the problem. In each node of the
B&B tree, there are several neighborhoods where binary variables are split between fixed variables, variables
to be fixed and free variables. The branching decisions are made depending on these sets. For each node
there is also a limit on the children nodes. A computational experiment using data of a US chemical company
indicates that this method outperforms CPLEX. In the same vein, Ozdamar and Yazgag [32] treat the case
study of a detergent company in Turkey. They design an algorithm to approximately solve the problem. The
authors consider transportation capacities and propose an aggregate and a disaggregate MIP model. The
algorithm is based on an iterative hierarchical approach as well as on a rolling horizon.

Note that in the works mentioned in this section, only three different types of MIP formulation have been
used: Haq, Vrat and Kanda [18], Lejeune [25], Gebennini, Gamberini and Manzini [17] and Ozdamar and
Yazgag [32] use a classical formulation, Barbarosoglu and Ozgur [4] use a combined classical and transporta-
tion formulation, and Kopanos, Puigjnaer and Georgiadis [23] use a transportation formulation. The classical
formulation and the combined transportation and classical formulation will be presented in Section 3.1 while
the transportation formulation will be given in Section 3.4.

3 Formulations

Let G = (F, A) be a graph with F' the set of nodes (facilities in our problem) and A the set of arcs. Let
P = {p} C F be the set containing the unique production plant, W C F be the set of warehouses and R C F’
be the set of retailers. Following the problem description in Section 1, we have F = PUW U R. Let 6(i) be
the set of all direct successors of facility ¢ and §“(r) be the warehouse linked to the retailer » € R. Let df
be the demand for retailer » in period t. The notion of the demand faced by any retailer is extended to the
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warehouses and to the production plant in the following fashion:

ZTER d: ifi = p
Sres i ifi € W.

d; =
Using the notion of the demand faced by any facility, we introduce D?, the total demand between period ¢
and the end of the time horizon computed as D} = 3", -, di. Similarly, we introduce, for any facility 4, the
demand between periods k and t as d};t = L<i<t di. In the following sections, all the MIP formulations are
presented in their capacitated version.

3.1 Classical formulations

We first present a simple MIP formulation that extends the basic MIP formulation for the ULSP as used by
Pochet and Wolsey [34]. We call this formulation the classical formulation (C). This formulation is based on
three sets of decisions variables: ¢ represents the production quantities in period t if i = p and the quantities
ordered from the predecessor if i € W U R, s! is the inventory held at the end of period ¢ in facility 4, and y!
is a boolean setup variable taking value 1 iff 2} > 0. The formulation is as follows:

Min Z (Z sciyt + Z hcisi) (1)

teT \ieF i€l

s.t. xl < Diyt VteT,icF (2)

sty tai= > al+s VteT,ie PUW (3)
JES(4)

Sy_q +ay =dj + s} VteT,reR (4)

z{ < min{Cy, DY }y/ vteT (5)

zl st >0 VteT,icF (6)

yl €{0,1} VteT,icF. (7)

The objective function minimizes the sum of the fixed setup and replenishment costs and of the unit inventory
holding costs. Constraints (2) are the setup forcing constraints for all facilities. Constraints (3) are the
inventory balance equations for the production plant and the warehouses whereas (4) are the inventory
balance equations for the retailers. Constraints (5) are the capacity constraints at the production plant.

The classical formulation C can be improved by using some ideas coming from the ULSP literature.
We observe that when we only consider the inventory balance equations (4) and the setup constraints (2)
specifically for the retailers, we have a single item lot sizing structure for each retailer since the inventory
balance equations (4) only incorporate the independent demand for each retailer. This means that we can
use the existing reformulations of the ULSP for each of the retailers. These reformulations are not directly
applicable to the warehouse or plant level, since at these levels the inventory balance constraints contain
dependent demand in the form of decision variables related to the ordering decisions at the direct successors.
We will propose three different alternative formulations to model the lot sizing structure at the retailer level.

First, we use the network reformulation proposed by Eppen and Martin [12] to change the decision
variables linked to the retailers and rewrite the constraints where these variables appear. The reformulation
proposed by Eppen and Martin [12] is based on the property of extreme flows in a network as applied by
Zangwill [43] to the SI-ULSP. This property, also known as the zero inventory ordering property, states that
if there is a positive entering stock at any period in the SI-ULSP, then the flow coming from production is
equal to zero. Conversely, if the production is positive at any period, then the entering stock for this period
is equal to zero. Although this property does not hold for the capacitated case, Eppen and Martin [12] show
that their proposed reformulation is valid for the capacitated case. For any retailer r € R, let z;, be the
proportion of dj, that is ordered in period k. Let also spcp, = > 3o, S _usr hidy be the cost linked to
the variable 27, for any retailer ¢. The classical-network formulation (C-N) for the 3LSPD is as follows:
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Constraints (10) are the setup forcing constraints for the retailers. Constraints (12) are the inventory bal-
ance constraints for the warehouses. Constraints (13) are the initial flow constraints for each retailer and
constraints (14) are the flow conservation constraints.

Second, one can use the transportation reformulation of the ULSP proposed by Krarup and Bilde [24] to
give another formulation for the problem. For any retailer 7, let ¢}, represent the quantity that is ordered in
period k£ < t and used to satisfy dj. Let also tcj, = >, ., hi, be the holding cost linked to the variable ¢j,.
The classical-transportation formulation (C-TP) for the 3LSPD is as follows:
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k=1

P
Tt
qs?"
kt
i .1
xtv St

vt

teT \i€F i€ PUW

< Diyi
< dpy;

,E: J D
= Ty + St

Jj€d(p)

= Z Z¢:k+3tw

red(w) k>t

< min{Cy, DY }y?
>0

>0

€{0,1}

reR k<t

VteT,ie PUW
VteT,k<teT,reR

VteT

VteT,weW

VteT,VYreR

vteT
VteT,k<teT,reR
VteT,ie PUW
VteT,ieF.
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Constraints (21) are the setup forcing constraints for the retailers. Constraints (23) are the inventory balance
constraints for the warehouses. Constraints (24) are the demand satisfaction constraints for each retailer.

Finally, one can also use the polyhedral results for the SI-ULSP to improve the classical formulation
C at the retailer level. In particular, Barany et al. [3] propose the (I,S) valid inequalities that describe
the polyhedron of solutions of the SI-ULSP. Besides, if the SI-ULSP has Wagner-Whitin costs (i.e., pc; +
hey > pegrr, ¥Vt € T, where peg is the unit production cost in period t), Pochet and Wolsey [34] propose
the (1, S, WW) valid inequalities. When adapted to our problem, these (I,S,WW) inequalities are defined
as follows:

J

l
521>Zd§<1—zy5> Vk<leT,reR. (29)
j=k u

=k

These inequalities are always valid, even if the costs do not satisfy the Wagner-Whitin condition. However, in
case the Wagner-Whitin cost condition holds, they are sufficient to describe the convex hull of the SI-ULSP.
These inequalities are added to (1)—(7) to form the classical-1S formulation (C-LS).

3.2 Echelon stock formulations

Employing the idea of an echelon stock presented in Federgruen and Tzur [14], the 3LSPD can be decomposed
into several independent SI-ULSPs. To do so, the inventory variables of the classical formulation C are
replaced with echelon stock variables representing the total inventory at all descendents of a particular
facility. We define the echelon stock I} for facility i in period ¢ as:

‘ 52+ZwEWS?)+ZTERSg ifi=p
= s+ Sesm st ifiew
st ifi e R.

The echelon stock formulation (ES) is then as follows:

Minz Z sciyl + Z hl 1P + Z (hey — he) I} + Z (hcg - hcf“’(r)) I (30)

teT \i:eF peEP weWw reR
st. Il +al=di+ I} VteT,icF (31)
zt < Diyl VteT,icF (32)
>y VteT,iec PUW (33)

J€8(4)

¥ <min{Cy, DV }y¥ vteT (34)
zi 1P >0 VteT,i€F (35)
yl €{0,1} VteT,icF. (36)

The objective function (30) is written in terms of echelon stock variables. Constraints (31) are the inventory
balance constraints using the new echelon stock variables. Constraints (33) are the echelon stock constraints
ensuring that the echelon stock at a specific facility is greater than the sum of the echelon stocks at all
its direct successors. These constraints come from the non-negativity constraints (6) imposed on the stock
variables in the classical formulation C. Note that with the introduction of the echelon stock variables, the
problem has an uncapacitated lot sizing structure (in constraints (2) and (31)) with independent demand at
each level. This means that we can now apply the known reformulation techniques for the ULSP (network,
transportation and (I, S, WW) inequalities) at each level.

First, in the same spirit as in the C-N formulation, we can use a network reformulation on the ES
formulation. We define Z}, to be the proportion of d, that is produced in period k for i = p, and to be the
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proportion of di, that is ordered in period k for i € W U R. The echelon stock network formulation (ES-N)
is then as follows:

MIHZ Zsctyt + Z hef 1P + Z (hey — he?) I} + Z (hcg — hcf“’(r)) I (37)

teT \i1eF pEP weWw reR
i
st. > Zi =1 VieF (38)
=1 7
>zi, =) 7 Vt>2icF (39)
=1 =t
LA ‘
> Zj <y VteT,icF (40)
k=t:di,C
t |7
Ii = ZZ di, Zi, | — di, VteT,icF (41)
=1 k=1
>y VteT,ic PUW (42)
jes(i)
7|
> z8 b < min{Cy, D} by} VteT (43)
k=t
Il >0 VteT,icF (44)
>0 VteT k>teT,icF (45)
yi € {0,1} VteT,icF. (46)

Constraints (38) are the initial flow constraints for each facility and constraints (39) are the flow conservation
constraints. Constraints (40) are the setup forcing constraints. Constraints (41) link the flow variables and
the echelon stock variables. Constraints (43) are the capacity constraints at the production plant.

Then, in the same spirit as in the C-TP formulation, we can use a transportation reformulation on the
ES formulation. We define X}, to be the quantity that is produced in period k and used to satisfy di for
i = p, and to be the quantity that is ordered in period k for i € W U R and used to satisfy di. The echelon
stock transportation formulation (ES-TP) is then as follows:

Min 7 (S sclyi + ST el I+ Y (hel —he) I+ (hc;" — hedv <7”>) Ir (47)

teT \i€F peP weWw rcR

st I+ X =di+1 VteT,icF (48)

k=t

t . .
> X =d VteT,icF (49)
Xip < djy, VkeT t<keTi€eF (50)
>y r VteT,ic PUW (51)
JE(4)
7|

> X5 < min{Cy, DF }y? VteT (52)
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Xi, >0 Vk<teT,ieF (53)
I >0 VteT,icF (54)
yi € {0,1} VteT,icF. (55)

Constraints (48) are the inventory balance constraints. These are included in order to correctly calculate the
inventory levels. Constraints (49) are the demand satisfaction constraints. Constraints (50) are the setup
forcing constraints. Constraints (52) are the capacity constraints at the production plant.

Finally, we can also add the (I, S, WW) valid inequalities in the context of the ES formulation. Using the
echelon stock variables, these inequalities are given as follows:

t
Loy + de,tyé > di, Vk<teT,i€F. (56)
q=k

These inequalities are added to (30)—(36) to form the echelon stock-1S formulation (ES-LS).

Following the model proposed in Federgruen and Tzur [14], another change can be made to the eche-
lon stock formulation ES. Indeed, one can alternatively write the echelon stock constraints (33) using the
production variables of the ES, ES-N or ES-TP formulation, respectively:

t

t
a0 Y VteT,ic PUW. (57)

k=1 jes(i) k=1
t t ) ]
Z ilZiz > N> 7 VteT,ic PUW. (58)
k=1 jES(i) k=11>k
t t
ZZX,ilz SN xi VteT,ie PUW. (59)
k=11>k jes(i) k=11>k

If we substitute (33) by (57), (58) and (59) in formulations ES or ES-LS, ES-N and ES-TP, respectively, we
obtain the echelon stock Federgruen formulations ES-F or ES-F-LS, ES-F-N and ES-F-TP, respectively.

3.3 Network formulation

The following formulation uses the network reformulation as proposed by Eppen and Martin [12] for the
SI-ULSP to rewrite the variables and constraints of the problem. Such a reformulation has also been applied
by Solyali and Siiral [37] and Cunha and Melo [8] for the OWMR. For any retailer r, let v, ., be the
proportion of d7, that is produced by the production plant in period k, transported to the warehouse of
retailer 7 in period I and to retailer r in period s. Let also ncy,,, be the cost linked to the variable 17, ,:

neh g = Zé ihcpdzt + Zg ! hcé (T)d’” Zt ! s heidj iy 4. The network formulation (N) is given as follows:

Min Z (Z Sctyt + Z Z Z Z n02lst¢£lst> (60)

teT \ieF r€ER k=1 1=k s=I

||
Zi/ﬁllt =1 VreR (61)
t=1

t=lt—1t-1 t ot |T|

Z Z 21/’12,1,3,15—1 = Z Z ZU’km Vi>2,reR (62)

k=11=k s=I k=11=k s

tot |7

ZZ > W < b VteT,k<teT,reR (63)
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l |7
SN vy <yt VieT,l<teT,recR (64)
k=1 s=l j:t:d£j>0
s s |T|
> Vg <l VteT,s<tcT,rcR (65)
k=11=k j=t:d7;>0
o |z
Y>>0 thiadl < min{Cr, DY}y VkeT (66)
i€ER I=k s=Il t=s
Yt = 0 Vk<I<s<teT,reR (67)
yi € {0,1} VteT,icF. (68)

Constraints (61) are the demand satisfaction constraints written as initial flow constraints. Constraints (62)
are the flow conservation constraints. Constraints (63), (64) and (65) are the setup forcing constraints for the
production plant, the warehouses and the retailers, respectively. Constraints (66) are the capacity constraints
at the production plant.

3.4 Transportation formulation

In the following formulation, the interactions between the facilities are modeled based on the transportation
formulation of Krarup and Bilde [24] for the SI-ULSP. For any retailer r, let 6},,, be the quantity that
is produced by the production plant in period k, transported to the warehouse of retailer r in period I,
transported to retailer r in period s and used to satisfy d;. Let also Hj, , be the cost linked to 6y,,:

HI,, = Zé;}c hef + Z;;ll hc‘;w(r) + Z;:S hcj. The transportation formulation (TP) is given as follows:

Min 3 (z sczyz+zzzzﬂglste;lst) ©9)

teT \ieF reR k=1 Il=k s=l

i t i
St 3N O =dy VteT,reR (70)
k=11=k s=l
t t
ZZ%stédIyi ViteT,k<teT,reR (71)
=k s=I
l t
SO O < dyy VteT,I<tcTrreR (72)
k=1 s=l
YD b <diyl VteT,s<teT,rcR (73)
k=1 Il=k
7| |T| |T|

330303 b < min{Ci DY weT (1

1ER =k s=l t=s
eiste = 0 Vk<Ii<s<teT,reR (75)
yi € {0,1} VteT,ieF. (76)
Constraints (70) are the demand satisfaction constraints. Constraints (71), (72) and (73) are the setup forcing

constraints for the production plant, the warehouses and the retailers, respectively. Constraints (74) are the
capacity constraints at the production plant.

3.5 Multi-commodity formulation

The next formulation proposed is based on the distinction of each retailer-period pair (i.e., each dj is viewed
as a distinct commodity). For this formulation, for any retailer r, let wgz be the amount produced at the
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production plant in period k to satisfy dj, let w,lgz be the amount transported from the production plant to the
warehouse of retailer r in period k to satisfy dj and let wi; be the amount transported from the warehouse
of retailer r to retailer r in period k to satisfy dj. Let also o7 be the amount stocked at the production
plant at the end of period k to satisfy d}, let oj7 be the amount stocked at the warehouse of retailer r at the
end of period k to satisfy d} and let o7} be the amount stocked at retailer r at the end of period k to satisfy
d;. In the following formulation, we denote by d; the Kronecker delta which takes the value 1 if k =t and
0 otherwise. The multi-commodity formulation (MC) is as follows:

Min Y Y eyt + 373 heboli + 303 heyVoli + 30> hejods (77)

teT \ieF reR k<t reR k<t reR k<t
oy Wy = wip +opy VteT,k<teT,reR (78)
Or g Wiy = wiy + ohp VteT,k<teT,r€R (79)
oR g Wiy = Oped] + (1 — bpe)oiy VteT,k<teT,reR (80)
wyy < djyh VteT,k<teT,reR (81)
wiy < dyyde VieT,k<teT,reR (82)
wiy < djy; VieT k<teTreR (83)
|
>N wii < min{Cy, D} }yf VEeT (84)
reR t=k
Wy Why Wiy, Ty Ty O > 0 VteT,k<teT,reR (85)
yi € {0;1} VteT,i€F. (86)

Constraints (78), (79) and (80) are the balance constraints for each commodity at the production plant,
at the warehouses and at the retailers, respectively. Constraints (81), (82) and (83) are the setup forcing
constraints for the production plant, the warehouses and the retailers, respectively. Constraints (84) are the
capacity constraints at the production plant.

The last formulation combines the idea of an echelon stock presented in Federgruen and Tzur [14] and
the MC formulation. It is called the multi-commodity echelon formulation (MCE). To get this formulation,
the inventory variables of the MC formulation are replaced with multi-commodity echelon variables E,lcg
representing the amount stocked at the end of period k at all predecessors of retailer r» which are in level [
or more, and which will be used to fulfill the specific demand dj. We define the multi-commodity echelon
variables E!" as:

oy +op +ory ifl=0
B, =1 ol +o2 ifl =1
oy ifl =2.

The multi-commodity echelon formulation (MCE) is then as follows:

Minz Z sciyl + Z Z heh By + Z Z (hci’”’(r) - hcﬁ) B+ Z Z (hcz - hciw(r)) B (87)

teT \i€F rER k<t reR k<t reR k<t

5. t. (81) — (86)

BT 4 wiy = Ody + (1 — 0p) ERy VteT,k<teT,r€R (88)
Epy+ wiy = 0pdf + (1= 0) Ejy VteT,k<teT,rcR (89)
BTy 4 wip = Oedy + (1= 0pe) ERY VteT,k<teT,reR (90)
EYr > ElT VteT,k<teT,rcR (91)
B > B VteT,k<teT,reR (92)
EY B B >0 VteT,k<teT,reR. (93)
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Constraints (88), (89) and (90) are the balance constraints for each commodity at the production plant,
at the warehouses and at the retailers respectively. Constraints (91) and (92) are the echelon constraints
ensuring that the multi-echelon stock at a specific facility for a specific commodity is greater than or equal
to the sum of the multi-echelon stocks at all its direct successors for the same commodity.

3.6 Summary

The formulations previously introduced are extensions of the MIP formulations proposed for the OWMR. For
all the formulations presented, the adaptation of the original decision variables naturally leads to an increase
in their number. For the N and TP formulations, this increase translates into an additionnal dimension
with the new subscript %k in the decision variables ¢,,, and 6y,., to reflect the third level. For all the other
formulations, the increase in the number of decision variables is just the result of the increase in the number
of facilities due to the added third level. Thus, the increase in the number of decision variables for the N
and TP formulations is much higher than for the other formulations when going from a two-level LSP to a
three-level LSP.

Table 1 gives a summary of the number of variables and constraints for each formulation previously
introduced, and the paper from which the formulation has been adapted to our problem. Recall that these
papers present a one-level or two-level problem whereas we consider a three-level problem. Note that, to
the best of our knowledge, the ES-N, ES-F-N, ES-F-TP, ES-F-LS and MCE formulations we propose are
completely new. In Table 1, one can see that the richer formulations, i.e., the ones that have more information
in the decision variables, are the largest ones.

Table 1: Summary of the sizes of all formulations

Formulation Variables Constraints Reference
C  O(F| x|T| O(|F| x |T|])  Pochet and Wolsey [34]
C-N O(|R| x|T|?) O(|F|x|T|) Eppen and Martin [12]
C-TP O(|R| x|T|?) O(R|x|T|?) Krarup and Bilde [24]
C-LS O(R| x |T|?) O(|R| x |T|?) Pochet and Wolsey [34]
ES  O(|F| x|T)) O(|F| x |T|)  Pochet and Wolsey [34]
ES-N  O(F| x[T[)  O(IF| x [T])
ES-TP  O(|F|x |T|?) O(|F| x |T|?) Solyah and Siiral [37]
ES-LS  O(F| x|T|) O(F|x|T|?) Melo and Wolsey [27]
ES-F  O(|F| x |T)) O(|F| x |T|)  Federgruen and Tzur [14]
ES-F-N  O(F| x [T)  O(|F| x T|?)
ES-F-TP  O(|F| x |T|?) O(|F| x |T|?)
ES-F-LS  O(|F| x|T|) O(|F|x|T|?)
N  O(R| x|T|*) O(|R| x|T|?) Solyal and Siiral [37]
TP  O(|R| x [T)*) O(|R| x |T|?) Levi et al. [26]
MC  O(|R| x |T|?) O(|R| x|T|?) Melo and Wolsey [27]
MCE  O(R| x [T) O(R| x |TP?)

3.7 Analysis of the LP relaxation of formulations

We explore the strength of the MIP formulations in terms of the objective function value of their LP relaxation,
without considering the production capacity constraint (5). In the LP relaxations of the MIP formulations,
we replace the binary requirements on the setup variables by the following constraints:

0<y <1 VicFVteT. (94)
We denote by 275 the objective function value of the LP relaxation of formulation X. We denote by F(X)
the set of feasible solutions for formulation X. The following example is used to illustrate most of the strict
dominance relations between the formulations. The strict dominance relation between formulations MC and
N cannot be observed empirically on small instances such as the one presented hereafter. However, we have

observed it for large instances, for example with |R| = 200 and |T'| = 30.
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Example 1. Consider an instance of the 3LSPD with T' = 4, |W| = 2 and |R| = 4. Each warehouse is
responsible for two retailers. The first warehouse is responsible for the first two retailers and the second
warehouse is responsible for the other two. We have, for any t € T, hc! = 30, hcy’* =50, hey’? =60, hep' =
10, hcp? =20, hep® =100, hept =10, scf =100, sc’* = 500, sci’® = 600, sc;* = 100, sc;? = 200, sc;® =
300, sc;* =50 and d™ = (10,20, 15,10), d" = (5, 30,10, 10), d" = (45,20, 20, 10), d"™* = (10, 20, 15, 20). For
this instance, the optimal LP solutions values for six of the formulations are zfp = 3903.56, zg; N — 4813.46,
2E57LS = 6017.25, 2F57N = 6096.343, 2MS = 6750.00 and 2, = 6750.00.

Proposition 1

c BS _ BS—F C-LS c TP C—N ES-LS _  ES—F-LS ES N ES-TP
Zpp =2Lp = %p S<Zp <% =Zzrp =Zp =ZLp <z =ZLp
ES—F—-N ES—F-TP TP MC _ N
=2ZLp =zrp <zip=z1p =zp <z2ip (95)

In case the unit inventory holding costs are increasing when we go deeper in the supply chain (i.e., if
hed < hcf”(r) < hef for p € P and any r € R), Proposition 1 can be slightly improved.

Ouw(r) < hey, then:

2t =2 (96)

Proposition 2 If, for p € P and for any r € R, we have hcl < hey

Proposition 3 2, < szN

Proof. This result follows from the fact that the network reformulation used describes the convex hull of the
solutions satisfying (2), (6) and (7) for ¢ € R and (4). O

" c-LS o ,C-TP
Proposition 4 z;,"” < z;p

Proof. In our case, since the production variables for the retailers also appear in constraints (3), we may
not have an exact Wagner-Whitin cost structure for the retailers. Therefore, inequalities (29) may not be
sufficient to describe the convex hull of the solution space for the retailers, whereas the network reformulation
at the retailer level does. Indeed, suppose that in the LP optimal solution one constraint (3) has a non-zero
dual variable. If we dualize this constraint in the objective function, the Wagner-Whitin cost structure may
be violated, and the (I,S, WW) valid inequalities do not describe the convex hull of the solution space for

the retailers part anymore. O
Proposition 5 zC N = ngTP

Proof. This results follows from the fact that at the retailer level both the network and transportation
reformulations exactly describe the convex hull of the solutions satisfying (2), (6) and (7) for ¢ € R and (4)
as stated in Pochet and Wolsey [34]. O

Proposition 6 If, for p € P and for any r € R, we have hcl < hcfw(r) < hcy, then:

2t =2 (97)

Proof. To prove this equality, it is sufficient to prove that we still have Wagner-Whitin costs for the retailers
despite the fact that the production variables 2" also appear in constraint (3) for w = d,,(r). Therefore,
as proved in Pochet and Wolsey [34], the (I, S, WW) inequalities are sufficient to describe the convex hull
of solutions satisfying (2), (6) and (7) for ¢ € R and (4). Let us dualise constraints (2) (for i € PUW)
with positive dual variables pi and constraints (3) with dual variables v{. For any retailer r and any time
period t, the new production cost is uf =(") while the holding cost remains the same. We denote by pcj” this
new production cost. In this modified objective function, we have Wagner-Whitin costs for one particular
retailer r iff:

pci” + hey > pefly VteT
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e v 4 pel > foi_”fr) VteT

Furthermore, in the dual of problem C, at optimality, the constraint linked to the stock variables of the
warehouse d,,(r) linked to retailer r is:

pou(n) _ Se) < b vteT. (98)
Therefore:
yf“’(r) — ijr”fr) + hey > hep — hcf“’(r) vteT. (99)

As, by hypothesis, we have hc; > hcf“’(r), the Wagner-Whitin cost structure still holds for any retailer. This
concludes the proof. O

it ES _ C
Proposition 7 z/'p = 27 p

Proof. The proof consists in showing that any solution to the linear relaxation of ES can be converted into a
solution to the linear relaxation of C with the same total cost, and that the reverse is also true. We will thus
prove that F(C) = F(ES). By the construction indicated in Section 3.2, we directly have F(C) C F(ES).
We will now prove that F(ES) C F(C). Let us take a feasible solution (z,I,y) € F(ES) and construct a fea-
sible solution (x, s,y) € F(C) with the same objective function value. We construct (z, s,y) € F(C) as follows:

I ifieR
st = IZ - Zreé(i) I ifieWw (100)
I = pew It ifi=p.
We furthermore directly map the x and y variables. We now verify that all constraints hold.

1. Constraints (4). For any ¢ € R and any t € T, constraints (4) hold directly because they are equivalent
to constraints (31).

2. Constraints (3). Let us take ¢ € W. We have, according to (31), for any t € T":
Lotap=di+1
Sl +a,= Y di+1I

red(i)
eIl |+l = Z (If_y+a] —I}) + Il
res (i)
el - Y I tai= Y e ni- Y 0
red(i) red(i) red(i)
os  +ai= Z z} + st
red(i)

Thus, constraints (3) hold for any warehouse as well. Using a similar approach, one can prove that
constraints (3) hold for the production plant. Therefore, constraints (3) hold.

3. Constraints (2). These constraints directly hold since the production and setup variables used in
formulations C and ES are the same.

4. Constraint (6). Due to constraints (33), constraints (6) directly hold.

5. Objective function value. A straightforward substitution of the I variables for the s variables in the
objective function of formulation ES directly gives the objective function expression of formulation C.
This concludes the proof.
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s C-LS o ,ES—LS
Proposition 8 27 ,"° < 27

Proof. Using a similar approach as in the proof of Proposition 7, and using the fact that the (I,.S, W) valid
inequalities (29) are a subset of the (I, S, WW) valid inequalities (56), we directly have that F(ES — LS) C
F(C—LS). Indeed, the (I, S, WW) valid inequalities (29) are defined for all retailers r whereas the (I, S, WW)
valid inequalities (56) are defined for any facility . O

i ES—-LS o ,ES—N
Proposition 9 z;'; <zip

Proof. The proof consists in showing that ES-N gives a stronger reformulation than ES-LS. The result follows
from the fact that ES-N uses a network reformulation (38) and (39) that gives the convex hull of the set (2),
(31), (35), (36). On the contrary, the (I, S, WW) valid inequalities (56) only give an approximation of the
convex hull of this set. Indeed, suppose there exist one i € P U W such that, in the optimal LP solution of
ES-LS, we have one constraint (33) whose dual variable is strictly positive. If we dualize this constraint with
its dual value in the objective function, we may destroy the Wagner-Whitin cost structure for the subproblem
linked to the facility ¢ and therefore, the (I,.S, WW) valid inequalities (56) only give an approximation of the

convex hull of the SI-ULSP linked to facility 4. This concludes the proof. O
Proposition 10 275N = ;E5-TF

Proof. This results follows from the fact that at the retailer level both the network and transportation
reformulations exactly describe the convex hull of the solutions satisfying (31), (35), (2) and (36) (see Pochet
and Wolsey [34]). O

iti ES _ ,ES—F
Proposition 11 273 = 2,5

Proof. To prove this result, we just need to prove that the echelon constraints (33) and (57) are equivalent,
since except for the echelon constraints, formulations ES and ES-F have exactly the same objective function
and constraints.

1. (33) = (57). Let (z,I,y) € F(ES) be a feasible solution for formulation ES. One has, thanks to (31),
Ii =Y _ &l —di,. Therefore, for any i € F and any ¢ € T, one has

>y r
t t
o> d iz ¥ (Yr-d)

u=1 jE(S(l') u=1

¢
u=1 je&(i) u=1
since di; = 35 dp-
2. (57) = (33). Let (x,1,y) € F(ES — F) be a feasible solution for formulation ES-F. One has, for any
i€ Fandany t € T, oy =>4, (di+ 1 —I}_) =T} — I+ Y, _, di = di, + I}, since I} = 0.
Therefore,

t t
DI D BPIL
k=1

jES(i) k=1
t t
ez Y Y Y
k=1 jebs(i) k=1 jes&()
eIl>> 1
JE(4)

. t j t i
simce Eje&(i) 2 k=1 d?c =1 & 0
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Using similar arguments, one can prove Propositions 12, 13 and 14.

ES-N _ _ES—F-N

Proposition 12 227" =2,

. ES-TP _ _ES—F-TP
Proposition 13 23 =2p

. ES—LS _  ES—F-LS
Proposition 14 ;3 =zrp

Proposition 15 225~ 7~TF < ,TD

Proof. Let 275 (0,y) and 2E57F~TF (X, I,y) be the LP relaxation objective function values of (,y) € F(TP)
and (X, I,y) € F(ES—F —TP), respectively. To prove the result, we prove that F(TP) C F(ES—F —TP).
The counter example presented at the beginning of the section shows that the strict equality does not hold
in some cases. Let us take a feasible solution (0,y) € F(TP) and construct a feasible solution (X, I,y) €

F(ES—F—TP) with the same objective function value. We construct (X, I,y) € F(ES—F —TP) as follows:

t t
PIPIPIL/™ Vg<teT (101)

i€ERT=q s=r

T t
X4=>"3">"0. Vwe W,r<teT (102)

1€d(w) q=1 s=r

P
Xt

Xi=>3 0y VieRs<teT (103)
q=1r=q

=Y X, —d, Vie FiteT. (104)
u=1k=u

We directly map the y variables since they are the same in both formulations. We show hereafter that
(X, 1,y) constructed using (101)—(104) belongs to F(ES — F — TP).

1. Constraints (48). For any ¢ € F' and any ¢t € T, by construction one has

t T t—1 |T|
i i i i i i
Iy =1; = Z Z Xk —dyy — Z Z Xk +d1
u=1 k=u u=1k=u
T

=> Xjp—di.
k=t

Therefore, constraints (48) hold.
2. Constraints (49). For the production plant p and for any ¢ € T, one has

t t ot ot
DX =222 O
q=1 i€ER q=1 r=q s=r

= dj by (70)
i€ER
—d.

Using a similar approach one can prove that constraints (49) also hold for any warehouse, any retailer
and any time period. Therefore, constraints (49) hold.

3. Constraints (50). If we sum up constraints (71) over all ¢ € R for any k < ¢ € T, we have
2ieRr Z;:k 3ot Ot < Yier iy Besides, 35, p Sk Yot Ohse = XEp by construction and
Yicrdiyn = yp > crdi = diy,. Therefore, X}, < dy; and constraints (50) hold for the produc-
tion plant and any k£ <t € T. Using a similar approach, one can prove that the constraints also hold
for the warehouses and the retailers. Thus, constraints (50) hold.
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4. Constraints (59). For the production plant (i.e., i = p) and for any ¢ € T, one has

t 17| t T
D0 X5z > Y > X (105)
q=1 l=q weW k=1 l=k
t 17| t 1Tl &
5 5)5) 5 3 SUNES 35 35 35 95 SIS
q=1l=q i€R k=q s=k 1€ER k=1 l=k q=1 s=k
t AT T 1 t Tl 1
=535 3 3 3 SUIED 35 30 ) ) DI
1€ER q=1 k=q l=k s=k 1€ER q=1 k=q l=k s=k
t ot |T| 1 t T 1T 1 t Tl 1
R 353033 LS 3 Db b 5H IIED 5 35 30 5 W NENEL
i€R q=1 k=q l=k s=k i€R q=1 k=t+1 l=k s=k i€ER q=1 k=q l=k s=k

t T T 1

D DD DD b 20 (109)

i€R q=1 k=t+1 l=k s=k

As 6 >0, (109) holds. Thus, thanks to the different equivalences, (105) holds and so do constraints (59)
for the production plant and any ¢ € T. Using a similar approach one can prove that constraints (59)
hold for the warehouses and any ¢ € T'. Therefore, constraints (59) hold.

5. Objective function value. For the TP formulation, the holding cost linked to the production plant is

IT| |T| |T| |T| r—1 |T| |7 |T| |T| k—1
DD DD D D hel =33 >0 D D hel
i€ER q=1r=q t=r k=t l=q i€ER q=1r=q t=r k=t l=¢q

[T |7 17| |T| k=1

=200 20D el

i€R q=1r=q t=r k=t l=r

T 1T k& k k—1 4 T |IT] ¢t t k-1 4
=D DD el =D DD Y DD hefliu (110)
i€R q=1 k=qr=q t=r l=q i€R t=1 k=t q=1 r=q l=r
T T (k-1 Eok IT| |T| /k—1 bt
DRSO D3 3) ST 3 3 91 P31 99 ST
q=1k=q \ l=q i€ER r=q t=r i€R t=1 k=t \l=r q=1r=¢q
7| |7 (k-1 E ok 7| |7 rk
DI DA DISIPIED IS (thﬁ’) >0 (112)
q=1k=q \l=q i€ER r=q t=r r=1k=r \l= i€ER q=1 t=r
7| T (k-1 7] |7
SRS OWTI EE 9 ol oia Dopct e
q=1 k=q l=q r=1k=r = weWw

Expression (113) is exactly the holding cost linked to the production plant in the objective function
expression (47) of formulation ES-F-TP, when writen in terms of X variables. Using a similar approach,
one can map the holding costs of the warehouses and the retailers in the two formulations. Besides, the
setup costs for all facilities directly map since the setup variables are the same. Therefore, the objective
function expression of the TP and ES-F-TP formulations are the same. This concludes the proof.

O

" MC _ TP
Proposition 16 25 = z;p

Proof. The proof consists in showing that any solution to the linear relaxation of MC can be converted into
a solution to the linear relaxation of TP with the same objective function value, and that the reverse is also
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true. We will thus prove that F(MC) = F(TP). We first prove that F(TP) C F(MC). Let us take a
feasible solution (6,y) € F(TP) and construct a feasible one (o,w,y) € F(MC) with the same objective
function value. We construct (o, w,y) € F(MC) as follows:

qt_ZZQW Vie Ryg<teT (114)
r=q s=r
Tt_zzeqrst VZER,TStET (115)
q=1 s=r
stzzzgqrst VieR,SStET (116)
q=171=q
k: . .
opy =Y (wh —wii) VieRk<teT (117)
u=1
k . .
o =Y (wyi —wii) VieREk<teT (118)
u=1
k 2 .
% _ | Yumiwiy Vi€ERk<teT 1
Tht = { 0 otherwise. (119)

We directly map the y variables since they are the same in both formulations. We show hereafter that
(o,w,y) constructed using (114)—(119) belongs to F'(MC).

1. Constraints (78)—(80). Note that these constraints can be written just in terms of the w variables if we
eliminate the stock variables. We thus get the following constraints instead of (78)—(80):

k
Zwl>zw;;’ VieR, Vk<teT (120)
k
Zw}ti>2w’ VieR, Vk<teT (121)
j:l
Zwkt =d! Vie R, VteT. (122)

For any : € R and any k <t € T, we have:
t k t
Zwﬁ_ZZZGJTSt ZZZ ;‘rst
j=1r=j s=r j=1r=j s=r

since € > 0 and since t < k. Besides, we have:

)IPI WD 33 W

j=1lr=j s=r qqusr

S »HH

r=1qg=1 s=r
k

_E 14

- Wit
r=1

Therefore, Z§:1 wii > Zle wl and constraints (120) hold. Using a similar approach, one can prove
that constraints (121) and (122) also hold.
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2. Constraints (81)—(83). These constraints hold directly by substituing (114)—(116) in constraints (71)—
(73).

3. Objective function value. In the TP formulation, the holding cost linked to the production plant is
given by

[T ¢

) H D WAL

1€ER t=1 q=1r=q s=r j=q

T ¢ IT| ¢
5 503030 5 3 WIS 35 35 35 9 9 D
1€ER t=1 g=1r=q s=r j=q i€ER t=1 g=1r=q s=r j=r
T ¢ 17| ¢
5555595 9 9 NI 5 95 95 95 p ST
1€ER t=1 j=1 q=1 r=q s=r i€R t=1 j=1r=1q=1 s=r

IT] ¢ IT| ¢
Yy (zmm) D HHIEIPHICE
i€ER t=1 j=1q=1 r=q s=r i€ER t=1 j=1r=1 q=1 s=r

[T ¢

TSR ()

i€ER t=1 j=1u=1

N———

which is exactly the holding cost linked to the production plant in the objective function of the MC
formulation if the inventory variables of the production plant level are replaced by the production
variables using (117). Using a similar approach, one can map the holding costs linked to the warehouses
and retailers and obtain the same expression as in the MC formulation. Besides, the setup costs directly
match between the two formulations. Therefore, the objective function expression of the TP and MC
formulations are the same. This concludes the proof showing that F(TP) C F(MC).

We now prove that F(MC) C F(TP). Let us consider, for each retailer ¢ and each period ¢, a network with
three layers representing the three levels of our distribution structure. In each layer, the nodes (I, t1) represent
each time period ¢; < t at each level [ and there are arcs going from one node to the node representing the
next period. Figure 2 illustrates this network for a particular retailer ¢ and with ¢ = 4. In Figure 2, the
node S represents the source node and we have displayed the variables linked to each arc in the network.

Production Plant

wi} wif 1 wi}
Y Y
‘Warehouse GD Iy '/172\ " '@ o '69
014 024 034
wij w3} w3} wij
A, A,
Retailer 2,1\ by ~ 2,2 2 ‘63\ > ~/2, 4
oih U o054 U o5y

Figure 2: Graphical representation of the network used for the flow decomposition for t = 4
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The key idea is the same as in Cunha and Melo [8]. Indeed, here also we see that variables wgi, w}gi, wﬁi,

oY, oit and o7t describe a feasible flow of d: units of demand arriving in node (2,t) in the network for retailer i.
Besides, we have 22:1 wit = di. Based on the flow decomposition theorem of Ford and Fulkerson [15], any
feasible flow in a network can be decomposed into paths and cycles. In our general distribution network, there
is no directed cycle, which means that the feasible flow can be decomposed into paths only. For any feasible
flow, the decomposition into paths 6 can be done in such a way that (114)—(116) are satisfied. Indeed, the
subscripts k of the set of wift variables along a path directly translates into the subscripts ¢, and s of the
Hérst variables. This results comes fom the fact that, in the MC formulation, the flow of goods between
facilities is depicted by the w variables while the flow of goods between facilities in the TP formulation is
obtained through the subscripts of the 6 variables. An example of such a decomposition is given in Figures 3
and 4. In Figure 3, the flow between facilities is shown in terms of w®, w! and w? variables, and the inventory
at a facility is shown in terms of ¢°, o' and o3 variables. This flow is decomposed into paths 6 in Figure 4.
Note that the w variables may belong to several paths.

24 i
w3y = dj

B GG

dj

Figure 3: Graphical representation of the flow decomposition in terms of w®, w! and w? variables, for t = 4

Figure 4: Graphical representation of the flow decomposition in paths 6° for t = 4
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We now need to prove that the constraints of the formulation TP are satisfied with the variables 6 built
as in the example previously.

1. Constraints (70) For any i E R and any t € T, we have S, wil = di. Therefore, by immediate

subsitution Zq Dy . SO =3 Dt doreg Vst = St w2 = di. Therefore, constraints
(70) hold.

2. Constraints (71)—(73). Substituting the w variables in (81)—(83) using (114)—(116) results directly in
(71)—(73).

3. Objective function value. As stated previously, the formulations TP and MC have the same objective
function value if (114)—(116) are used. This concludes the proof.

O

P MC _  ME
Proposition 17 275 = 2'p

Proof. The proof consists in showing that any solution to the LP relaxation of MC can be converted into a
solution to the LP relaxation of ME and that the reverse is also true. We will thus prove that F(MC) =
F(ME). By the construction indicated in Section 3.5, we directly have F(MC) C F(ME). We will now
prove that F(ME) C F(MC). Let us take a feasible solution (w, E,y) € F(MFE) and construct a feasible
solution (w 0,y) € F(MC) with the same objective function value. We construct (w,o,y) € F(MC) as
follows: o = E?, o}l = Eli — E% and 0% = EY. — E}i. We furthermore directly map the w and y
variables. We now verify that all constraints hold.

1. Balance constraints (78)—(80). For any ¢ € R and any k <t € T, constraints (80) hold directly because
of constraint (90) and of the equality O’,%i = E,fg For any t € T, any k < ¢t and any ¢ € R, one can
substract constraint (90) from (89) to obtain:

Ek 1,¢ El%i—l,t + wkt wﬁi =(1- 5kt)(Elg - E,%;)
<~ lefl,t + wkt = w%é +(1— 5/615)0—]3‘

In the previous calculations, we have used the fact that constraints (89) and (90) hold for any retailer
and any k <t e T. If k < t, we directly have (79) since dx; = 0. If k = ¢, it is obvious that any optimal
solution will have ol = 0 since it represents the inventory on hand at the end of period # to satisfy the
demand of the current period. Thus, constraints (79) hold. Using a similar approach, one can prove
that constraints (78) hold.

2. Constraints (81)—(84). These constraints directly hold since the production and setup variables used in
formulations MC and ME are the same.

3. Constraint (85). Due to constraints (91) and (92), constraints (85) directly hold.

4. Objective function value. A straightforward substitution of the E variables for the o variables in the

objective function of formulation ME directly gives the objective function expression of formulation
MC. This concludes the proof. O

Proposition 18 275 < N,

Proof. Let 275 (0,y) and 2N, (¢, y) be the LP relaxation objective function values of (0,y) € F(TP) and
(v,y) € F(N), respectively. To prove the result, we prove that F(N) C F(T'P). The counter example
presented at the beginning of the section shows that the strict inequality holds in some cases. Let us take
a feasible solution (v,y) € F(N) and construct a feasible solution (,y) € F(TP) with the same objective
function value. We construct (8,y) € F(TP) as follows:

|
0, = Zd . VE<I<s<teT. (123)

We directly map the y variables since they are the same in both formulations. We show hereafter that (6, y)
constructed using (123) belongs to F(TP).
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1. Constraints (70). If, for any ¢ € R and any demand point k € T, we sum up constraints (62) over ¢
(2 <t < k) with constraint (61), one gets
7| t T t—1t—1t—1

k
Z Phine + Z Z Z prlts - Z Z Z Z Uy st =1
t=2 p=11

t=2 p=1 |l=p s=t =p s=I
t |7 k ot—1t—1t—1
X3
¢>§EI§EI§EI§EI¢¢us 220D Yptsaa =1
t=1 p=1 l=p s=t t=2 p=1l=p s=l
E ot ot |7 t t—1t—1t—1
¢>Eijﬁfjffjjijﬂmua-Fiijﬁijﬁiiiijﬁ%us ZEIEEIIEIEEIﬂbJst =1
t=1 p=1 l=p s=k t=1 p=1l=p s=t t=2 p=1l=p s=I
k t T k=1 t t k—1 k-1 t t t
) i _
ZZZZ%JZZZZ%«ZZZZ%ﬁl
t=1 p=1 l=p s=k t=1 p=1l=p s=t t=1 p=1l=p s=I
k t |T| k-1 t t k-1 k-1 s s s
% i _
ZZZZ%#ZZZZ%rZZZZ%rl
=1 p=1Il=p s=k t=1 p=1l=p s=t s=1p=11l=p t=I
k t |T] t k-1 t k-1
ZZZZ%#ZZZZWSZZZZWF
t=1 p=1 l=p s=k t=1 p=1l=p s=t t=1 p=1l=p s=t
t |7

D) B BT

t=1 p=1 l=p s=k
t 17|

YN S i, - di

t=1 p=1 l=p s=k

k t t
i 7
S DD O =d;
t=1p=1I=p
k k k
7 1
SO0 b =i
p=1l1l=p t=l

Thus, constraints (70) hold. Note that the single implication that appears in the previous calculations
comes from the special case where di = 0 for some i and some k.

2. Constraints (71). For any i € R and any t < g € T, let us define a parameter aiq as follows:

i _ [ 1 #Dj, >0
ta 7 ) 0 otherwise.

With this parameter, (123) can be written as 6},,, = Z‘jﬂt al;diy,,; since al; =1 for s <t <jeTif
di > 0, otherwise legt becomes zero. For any retailer ¢ and for any k <t € T, (63) gives
t T

ZZ > Yk <UL

=k s=l j= td;]>0

t T

t

ZZZGS],(/J]CISJ < y:z

I=k s=I j=t
a3yt

I=k s=l ¢

t t

=k s=l
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Therefore, constraints (71) hold. In the same vain, one can prove that constraints (72) and (73) also
hold.

3. Objective function value. The holding cost linked to the production plant in formulation N is given by

t t t
Z Z Z Z Z hcpdstz/)klst
T ¢ t

S DD D P AL

i€ER t=1 k=1 l=k s=l j=ku=s
IT| ¢ t

SN i,

1€R t=1 k=1 l=k s=l u=s j=k

Tt
ZZZZZZMwZW
i€ER t=1 k=1 l=k s=l u=s

IT| T |7 |T] |T| f(1-1

=220 0 2 2 |\ 2 h | i

1€ER k=1 l=k s=l u=st=u \ j=k

7| |7 |T| 1T f1-1

D) BB I) Y PILY L

i€ER k=1 l=k s=l u=s \ j=k

7| |T| |T| |T| 1—-1 4
20000 D hlfiu
i€R k=1 I=k s=l u=s j=k

IT| |T| |T| |T| 1-1 4
2000 0.2 hefbiua
1€ER k=1 l=k s=l t=s j=k

7| ¢ t

D PRI

i€ER t=1 k=1 l=k s=l j=k

which is exactly the holding cost linked to the production plant in the objective function of formulation
TP. Using a similar approach, one can prove the equivalence between formulations N an TP for the
holding costs at the warehouse and retailer level. Besides, the setup costs in the two formulations are
already identical. Therefore, the objective function expression of the TP and N formulations are the
same. This concludes the proof.

4 Numerical experiments

In order to assess the strengths and weaknesses of the different formulations, we conducted computational
experiments based on the instances used in Solyal and Siiral [37]. In their experiments, Solyali and Siiral [37]
set the number of retailers |R| equal to 50, 100 or 150, and the length of the time horizon |T| is equal to
15 or 30. The demand at the retailers is generated both in a static and dynamic way from U[5,100]. The
fixed costs at all levels are also generated both in a static and in a dynamic way. For the warehouse, the
fixed costs are generated from U[1500,4500]. For the retailers, the fixed costs are generated from U[5, 100].
All the demands and fixed costs are generated as integer values. The unit inventory holding costs are static
and are set to 0.5 for the warehouse. For the retailers, the unit inventory holding costs are also static and
are generated from UJ[0.5,1]. The holding costs take continuous values. The authors generated 10 random
instances for each combination of settings, resulting in a total of 240 instances.
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As we have one more level than in Solyali and Siiral [37], we adapted these instances. In our instances, the
number of retailers |R] is set equal to 50, 100 or 200. The number of warehouses |W]| is set equal to 5, 10, 15
or 20. We used two different horizon lengths: |T| = 15 and 30. The demand at the retailers is generated both
in a static and dynamic way from U[5,100]. In the case of a static demand, we have df =d" V¢t € T,r € R.
The fixed costs at all levels are also generated in a static and in a dynamic way. For the production plant,
the fixed costs are generated from U[30000, 45000]. For the warehouses, the fixed costs are generated from
UJ[1500,4500]. For the retailers, the fixed costs are generated from U[5,100]. All the demands and fixed
costs are generated as integer values. The unit inventory holding costs are static and are set to 0.25 for the
production plant and 0.5 for the warehouses. For the retailers, the unit inventory holding costs are generated
from U[0.5,1]. The holding costs take continuous values. For each combination of settings, we generate five
different instances leading to 480 different instances to be solved for each formulation.

In order to test our formulations, we additionnally define two structures for the distribution network
represented in Figure 1. In the first structure, we consider a balanced network where each warehouse has the
same number of retailers, except when the number of retailers is not a multiple of the number of warehouses.
In the second structure, we consider an unbalanced network where 80% of the retailers are assigned to 20%
of the warehouses. For each pair (]W|,|R]), Tables 2 and 3 give the number of retailers assigned to each
warehouse for the balanced and unbalanced networks, respectively. Each structure is tested on the 480
instances we generated.

Table 2: Assignment of the retailers to the warehouses for the balanced network

Number of warehouses

Number of retailers

50 100 200
5 10 Vw e W 20 Vw € W 40 Vw € W
10 5Vwe W 10 Vw e W 20 Vw e W
5 3 if w € [1,10] 6 if w e [1,5] 14 if w € [1,10]
4 if w € [11,15] 7if w € [6,15] 12 if w € [12,15]
20 3 if w e [1,10] 5Vwe W 10 Yw € W

2 if w € [11,20]

Table 3: Assignment of the retailers to the warehouses for the unbalanced network

Number of warehouses Number of retailers

50 100 200
40 if w =1
5 3if w € [2,3] 80 if w =1 160 if w = 1
2if w e [4,5] 5 if w =€ [2,5] 10 if w =€ [2,5]

17 if w € [1,2]

10 2 if w € [3,10]
9if w e [1,2]

15 8ifw=3
2 if w € [4,15]
5if w e [1,2]

20 4if w e [3,4]

2 if w € [5,20]

38 if w € [1,2]
3if w € [3,10]

25 if w € [1,2]
26 if w=3
2 if w € [4,15]

17 if w € [1,4]
2 if w € [5,20]

80 if w € [1,2]
5if w € [3,10]

54 if w € [1,2]
56 if w =3
3if w € [4,15]

38 if w € [1,4]
3if w € [5,20]

For the experiments, we used the CPLEX 12.6.1.0 C++ library and turned off CPLEX’s parallel mode.

We set the CPLEX MIP tolerance parameter to 1076,

All the other CPLEX parameters are set to their

default value. The computation time limit imposed to solve each MIP instance is 6 hours.
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We compare the formulations with respect to different indicators:

e number of instances for which the MIP is solved to optimality;
e CPU time (s) taken to solve the LP relaxation;

e CPU time (s) taken to solve the MIP;

e objective function value of the LP relaxation;

e objective function value of the MIP optimal solution when available, cost of the best solution found
otherwise;

e number of nodes in the branch-and-cut tree;
e integrality gap (%);
e optimality gap (%).

For a particular instance, if we denote by z7p the objective function value of the LP relaxation with formu-
lation X and by z* the optimal objective function value of this instance when available (or the best objective
function value obtained among all formulations for this instance otherwise), the integrality gap is computed
as (z* — 23p) / z*. The optimality gap is the gap between the best solution found and the best lower bound
given by CPLEX at the end of the CPU time limit. Detailed results can be found in the appendices of
this report.

In the following sections, results will be reported in two tables. The first table illustrates the aggregated
results obtained for |T'| = 15 while the second table displays the aggregated results obtained for |T| = 30.
In each table, each row represents the results obtained for a particular formulation while each column refers
to the different indicators previously defined. In the tables, MIP-opt denotes the number of MIP optimal
solutions obtained (out of 240 instances in each table); LP-CPU and MIP-CPU represent the CPU time taken
to solve the LP and MIP instances, respectively; LP-cost and MIP-cost represent the cost of the LP and MIP
optimal solutions (or best solution found at the end of the time limit for the MIP solutions), respectively;
I-gap gives the integrality gap and O-gap indicates the optimality gap. In Sections 4.1 and 4.2 we will report
the results for the uncapacitated and capacitated instances, respectively. In Section 4.3, we will perform an
analysis of the influence of the parameters in our experiments.

4.1 Uncapacitated instances

We first report the results for the balanced network in Section 4.1.1, followed by the unbalanced network
in Section 4.1.2. For the uncapacitated instances, we performed our experiments on a 3.07 GHz Intel Xeon
processor with only one thread. For these instances, CPLEX was able to find a feasible MIP solution for
all uncapacitated instances with a balanced network and with an unbalanced network. The LP relaxation
values are calculated separately. Note that we do not impose any time limit to solve the LP relaxations.

4.1.1 Balanced network

In the balanced network, each warehouse is responsible for approximately the same number of retailers (see
Table 2).

Tables 4 and 5 illustrate the performance of the different MIP formulations for || = 15 and |T| = 30,
respectively. In Table 4, which presents the results for the small instances, one can see that the formulations
MC, MCE, N and TP obtain the best performance in general, with all MIP optimal solutions found, the
lowest MIP-CPU and a value of the LP relaxation which is very close to the optimal MIP cost. Yet, the LP
relaxation for these three formulations is not the same as the MIP optimal cost, as witnessed by the small
but positive values for the I-gap. Besides, the MC formulation has the lowest MIP-CPU time among all
formulations. However, the CPU time needed to solve the LP relaxation of these formulations is much higher
than with the other formulations. The high performance of these formulations is also expected because of
the rich information which is contained in the decision variables used for each formulation.
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Table 4: Performance of the formulations for the balanced network - 1h time limit, |T'| = 15

Formulation LP-cost LP-CPU  MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

C 186156 0.03 327484 8291.35 71832.2 157 40.94 2.94

C-N 225136 0.2 327315 10023.89 202204.1 141 29.89 3.12

C-TP 225136 0.13 327247 8567.71 29431 158 29.89 2.78

C-LS 225136 0.19 327501 8337.91 14132.7 158 29.89 3.26
ES 186156 0.02 326906 600.53 29725.7 240 40.94 0
ES-N 320903 0.47 326906 117.47 4253.7 240 1.62 0
ES-TP 320903 1.69 326906 176.9 2652.1 240 1.62 0
ES-LS 320897 1.51 326906 297.58 1760.4 240 1.62 0
ES-F 186156 0.03 326906 875.35 29628 238 40.94 0
ES-F-N 320903 0.7 326906 120.92 3401.4 240 1.62 0
ES-F-TP 320903 1.3 326906 214.16 3673.9 240 1.62 0
ES-F-LS 320897 1.12 326906 208.61 3110.4 240 1.62 0
MC 326832 26.45 326906 35.51 0.7 240 0.02 0
MCE 326832 37.8 326906 40.44 0.7 240 0.02 0
N 326887 121.27 326906 74.25 0.3 240 0 0
T 326832 80.21 326906 81.67 0.8 240 0.02 0

Table 5: Performance of the formulations for the uncapacitated balanced network - |T| = 30

Formulation LP-cost LP-CPU  MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

C 240367 0.07 664638 21600.07 35356.6 0 60.86  24.58
C-N 338679 0.83 705070 21600.19 19020.5 0 46.62  30.58
C-TP 338679 0.62 780467 21600.2 3018 0 46.62  29.57
C-LS 338679 2 771246 21516.86 4602.1 0 46.62  28.39
ES 240367 0.05 645908 15252.18 91231.2 84 60.86 4.03
ES-N 624974 6.77 643306 6069.55 53462.9 186 2.77 0.09
ES-TP 624974 30.3 643714 7744.16 14847.4 175 2.77 0.64
ES-LS 624935 4.09 644312 9034.64 4785.6 160 2.77 0.78
ES-F 240367 0.14 644747 14404.42 24790.8 90 60.86 2
ES-F-N 624974 11.14 643863 6270.86 32940.9 181 2.77 0.1
ES-F-TP 624974 26.5 643385 8174.27 23707.9 173 2.77 0.4
ES-F-LS 624935 5.04 643843 9930.78 17481.5 155 2.77 0.76
MC 642779 826.09 643303 1021.77 5.1 240 0.08 0
MCE 642779 996.56 643303 1276.72 5.2 240 0.08 0
N 643057  27969.13 1068367 9209.08 0.9 188 0.04 16.86
T 642779 1901.78 693483 5773.58 2.4 211 0.08 3.62

For the small instances, the classical formulations obtain the worst results, mainly because of a poor LP
relaxation as shown by the integrality gap reported in Table 4. The echelon stock based formulations can be
divided into two groups with formulations ES and ES-F on one side, and formulations ES-N, ES-TP, ES-LS,
ES-F-N, ES-F-TP and ES-F-LS on the other side. The last six formulations are much stronger than the
first two formulations, as indicated by the integrality gap reported in Table 4. Formulations ES-N, ES-TP,
ES-LS, ES-F-N, ES-F-TP and ES-F-LS were able to solve all instances, which is not the case for the ES-F
formulations. This better performance of formulations ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS
is easily explained by the use of a reformulation of the uncapacitated lot sizing structure found in the ES
formulation, and the resulting improved LP bound.

The classical based formulations have in general a much higher number of nodes in the branch-and-cut
tree than the other formulations, which is a consequence of the weak LP relaxation bound. The same remarks
hold for the formulations ES and ES-F. For the MC, MCE, N and TP formulations, the number of nodes
is really small, less than 1 on average, showing the high performance of the LP relaxation. Concerning the
O-gap, the classical based formulations have a gap of approximately 3% while the other formulations have
an average gap that is less than 0.0003%. This illustrates once again the weakness of the classical based
formulations. Note that for the N and TP formulations, the LP-CPU is higher than the MIP-CPU because
of the efficiency of the heuristic used by CPLEX at the root node before going in the branch-and-cut tree.

Finally, one can see in Table 4 that despite the reformulation used at the retailer level or the valid
inequalities added, the C-N, C-TP and C-LS formulations do not succeed in closing a lot of the integrality
gap, which remains high around 30%. This contrasts with the same reformulations or valid inequalities
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added in the ES formulation but at all levels instead of just at the retailer level. Indeed, the I-gap for the
ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS formulations is low, around 1.6%. This indicates that
the combination of the reformulation and the echelon stock structure is very efficient if we compare the
performance of the ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS formulations to the one of the
classical formulations.

Table 5 reports the performance of each formulation for the large instances, with |T'| = 30. The poor
performance of the classical formulations is even more apparent for these large instances. Yet, the LP re-
laxations are still easily solved to optimality but have a low value compared to the true MIP optimal cost.
The performance of the richer formulations N, TP, MC and MCE is also more contrasted than for the small
instances. The number of instances solved to optimality for the N formulation is much lower than for the
three other rich formulations. This can be explained by the inability of the N formulation to solve the LP
relaxation of the instances in a short time. One can see a similar behavior, but to a lesser extent, for the TP
formulation. This difficulty for the formulations N and TP to even solve the LP relaxations of many large
instances can be explained by the huge number of variables used in the models when |T'| = 30, which is a
major drawback of these two formulations. This practical drawback is the price one has to pay for the strong
LP relaxation given by these two formulations, as stated by the theoretical results presented in Section 3.7.
Finally, the MC formulation still provides the best performances for these large instances, both in terms of
CPU time to solve the MIP instances and in terms of number of optimal solutions found within the time limit.

In light of the results provided in Tables 4 and 5, we can draw the following conclusions about the
performance of our formulations on an uncapacitated balanced network:

e the classical formulations are the poorest, mainly because of a bad LP relaxation and providing a
stronger reformulation only at the retailer level does not lead to better results at the MIP level,

e applying the echelon stock reformulation to the classical formulation does not have any impact on
the LP relaxation value (as we also theoretically proved), but results nevertheless show a substantial
improvement in CPU time, optimality gap and number of instances solved to optimality. The conjecture
is that because the echelon stock reformulation exposes the single item lot sizing structure at the three
different levels, CPLEX is able to derive better cuts;

e the echelon stock reformulation can still be improved by explicitly using one of the lot sizing reformula-
tions at each level, i.e., using formulations ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS, with
ES-N generally having the best performance among these six formulations;

e when comparing the various echelon stock reformulations with the traditional echelon stock con-
straints (33) to their counterpart using the constraint proposed in Federgruen and Tzur (57), we observe
individual differences, but overall no general tendencies appear and the formulations provide fairly sim-
ilar results;

e the N and TP formulations have difficulty to solve the LP relaxations of some instances because of the
huge size of the model resulting in an overall substantially weaker performance compared to the best
formulation;

e the MC formulation performs the best for the balanced network;

o the results we obtained here are in line with the ones obtained by Solyali and Siiral [37] and Cunha
and Melo [8] for the OWMR.

4.1.2 Unbalanced network

We performed the same experiments as in Section 4.1.1 but considering an unbalanced distribution network.
In the unbalanced network, 20% of the warehouses are responsible for 80% of the retailers (see Table 3).

Tables 6 and 7 illustrate the performance of our formulations for the small and large instances, respectively.
In Table 6, one can see that, compared to Table 4 and except for the classical formulations, there is an
increase in CPU time to solve the instances as MIPs. This increase ranges between 0.16% and 78.5% for the
ES formulation and for the ES-F-LS formulation, respectively. As far as the classical based formulations are
concerned, they have a better performance on the unbalanced network, compared to the balanced network, in
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Table 6: Performance of the formulations for the uncapacitated unbalanced network - |T'| = 15

Formulation LP-cost LP-CPU  MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

C 177633 0.02 310925 5668.75 21108.3 197 40.78 0.66

C-N 217549 0.18 310882 5267.93 119965 197 28.84 0.28

C-TP 217549 0.12 310892 5285.29 19746.6 197 28.84 0.68

C-LS 217549 0.18 311225 7311.02 4038 169 28.84 2.61
ES 177633 0.02 310871 601.5 14711.3 239 40.78 0
ES-N 300182 0.55 310871 182.27 4045.6 240 2.99 0
ES-TP 300182 1.68 310871 262.02 3084 240 2.99 0
ES-LS 300178 1.6 310871 413.61 2917.2 240 2.99 0
ES-F 177633 0.04 310871 1165.83 17758 240 40.78 0
ES-F-N 300182 0.89 310871 186.75 3731.2 240 2.99 0
ES-F-TP 300182 1.92 310871 303.41 3814.9 240 2.99 0
ES-F-LS 300178 1.24 310871 372.34 3508.8 240 2.99 0
MC 310750 20.33 310871 39.88 1.6 240 0.03 0
MCE 310750 41.06 310871 48.25 1.6 240 0.03 0
N 310832 125.33 310871 112.39 1 240 0.01 0
T 310750 58.37 310871 93.97 2.7 240 0.03 0

Table 7: Performance of the formulations for the uncapacitated unbalanced network - |T'| = 30

Formulation LP-cost LP-CPU  MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

C 231785 0.06 624878 21103.84 36751.6 10 60.35  19.39
C-N 330865 0.73 627028 21600.18 25819 0 45.2 26.26
C-TP 330865 0.54 642133 21600.15 4824.3 0 45.2 23.54
C-LS 330865 1.81 647389 21600.2 3378.2 0 45.2 23.9
ES 231785 0.05 613737 14747.68 26616.9 91 60.35 4.89
ES-N 583375 8 610963 8690.4 30168.7 164 4.14 0.37
ES-TP 583375 29.78 611589 10271.05 15351.3 149 4.14 1.36
ES-LS 583349 6.53 612763 12294.87 7218.3 128 4.14 1.63
ES-F 231785 0.17 613421 14546.53 14335 90 60.35 2.99
ES-F-N 583375 20.82 611004 9512 24099.6 157 4.14 0.45
ES-F-TP 583375 45.58 611424 10509.58 18437.7 147 4.14 1.11
ES-F-LS 583349 10.48 612275 11766.99 10525.3 130 4.14 1.63
MC 610109 460.85 610908 1363.92 19.2 240 0.1 0
MCE 610109 994.48 610908 1476.23 18.7 239 0.1 0
N 610542  11473.94 828581 8018.58 3.7 204 0.04 9.05
T 610109 1700.49 705844 6356.45 14.7 201 0.1 5.55

terms of CPU time used to solve the MIP instances, number of MIP optimal solutions found and integrality
and optimality gap. Note, however, that the improvements for the integrality gap is very limited compared
to the other improvements. Despite these improvements, the performance of the classical formulations is
still far from the performance of the other formulations, highlighting once again the weakness of the classical
formulations. Apart from the two points mentioned here, all the other conclusions drawn in Section 4.1.1 for
the small instances with a balanced network still hold for an unbalanced structure of the supply network.

In Table 7, one can see that there are once again small improvements for the classical formulations
compared to instances solved on a balanced network. For the other formulations, the performance is worse
than in the case of a balanced network. This difficulty is in particular reflected in the number of optimal MIP
solutions found, which decreases by a number ranging from 0 for the MC formulation and up to 32 for the ES-
LS formulation. This indicates that the unbalanced instances are harder to solve than the balanced instances.
This difficulty can be explained by the fact that, in the network, the warehouses that are responsible for many
retailers represent a much larger MIP to solve. Compared to the balanced instances, we have thus several
big distribution channels to cope with, which makes the instances harder to solve. Note, however, that
formulations C, ES and N were able to find more optimal MIP solutions for the unbalanced instances.
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In light of the results provided in Tables 6 and 7, we can draw the following conclusions about the
performance of our formulations on an unbalanced network:

e the unbalanced instances are generally harder to solve than the balanced instances;

e the C based formulations, the N and the ES formulations have a better performance on the unbalanced
instances than on the balanced ones in terms of number of instances solved to optimality;

e the other formulations have a worse performance on the unbalanced instances compared to the balanced
ones;

e the N and TP formulations have a large O-gap for many large instances;

e the MC formulation is the best suited for the unbalanced instances since it is able to solve all instances
to optimality with the lowest CPU time.

4.2 Capacitated instances

For the capacitated instances, we set the production capacity as a given factor C of the average total demand.
The production capacity imposed is thus C; = C' )", p >, cp di / |T|. We additionally consider three different
values for the capacity factor C : C' € {2,1.75,1.5}. We performed these experiments on a 6.67 GHz Intel
Xeon X5650 Westmere processor with one thread. Because of the bad performance of the classical based
formulations and of the formulations ES and ES-F in the previous section, and based on preliminary results,
we decided not to run experiments using these formulations. Note that for the capacitated instances we
impose a time limit of 6 hours even to solve the LP instances.

The results of this section will be reported in tables having the same columns as the tables in Section 4.1
plus two additional columns indicating the number of LP optimal solutions found within the time limit and
the number of instances for which a MIP solution was found, in columns LP-opt and MIP-sol, respectively.
For the columns LP-cost and I-gap, we only report the average cost and integrality gap obtained, respectively,
over instances for which all formulations have both solved the LP relaxation to optimality and have found a
MIP solution within the time limit. In the same vein, for the columns MIP-cost, Nodes and O-gap, we only
report the average MIP cost, number of nodes and optimality gap obtained, respectively, over instances for
which all formulations have found a MIP solution within the time limit. We first report the results for the
balanced network in Section 4.2.1, followed by the unbalanced network in Section 4.2.2.

4.2.1 Balanced network

Tables 8-13 illustrate the performance of the different MIP formulations for the different values of the time
horizon and capacity level. When comparing the results with those obtained for the uncapacitated instances
on the balanced network, we can see that the results are completely different. Indeed, the richer formulations
have more trouble achieving a good performance in terms of CPU time, MIP cost, number of MIP optimal
solutions found and optimality gap. On the contrary, the echelon stock formulations have a better performance
than the richer formulations on these indicators. This difference in performance is even more pronounced
when the capacity level gets tighter. This indicates that the capacity constraint has a major impact on the
performance of the formulations. Despite the properties related to the strength of their LP relaxation, the
richer formulations seem to be less adequate to handle capacitated instances.

We also see that the MC formulation does not perform the best for the capacitated instances on the
balanced network. The best performance, in terms of MIP-CPU time, number of optimal solutions found
and optimality gap, is obtained by one of the echelon stock formulations, depending on the capacity level.
Within the richer formulations, our newly introduced MCE formulation performs the best on average. Note
also that the addition of the capacity constraint makes the problem harder, as stated by the increase in CPU
time to solve both the MIP and LP instances. This difficulty is also apparent by observing that the number of
MIP solutions found is not equal to the number of instances present in the data set used for the experiments.
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Table 8: Performance of the formulations for the capacitated balanced network - |T'| = 15,C = 2.0

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 514798 1.06 240 510641 9517.05 141103 161 207 4.69 0.06
EST 514798 2.39 240 510677 10367.67 38086.4 151 240 4.69 0.1
ESLS 514786 1.71 240 510675 9030.44 37633.7 164 233 4.7 0.1
ES-F-N 514798 1.14 240 510641 9914.74 119257.7 156 220 4.69 0.05
ES-F-T 514798 1.48 240 510694 10892.41 59856.5 144 237 4.69 0.1
ES-F-LS 514786 1.5 240 510730 10732.17 50980.4 146 237 4.7 0.13
MC 519979 185.39 240 511242 16582.34 9397.9 92 240 3.76 1.02
MCE 519979 192.17 240 511042 14987.63 6900.8 113 240 3.76 0.77

N 520090 173.84 240 511024 17180.75 4452.9 89 240 3.74 0.92

T 519979 398.16 240 511809 18104.03 3372.2 76 240 3.76 1.14

Table 9: Performance of the formulations for the capacitated balanced network - |T'| = 30,C = 2.0

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 942317 18.72 240 904162 21544.09 107672.3 2 240 1.83 1

EST 942317 24.31 240 904226 21576.36 25025.4 1 240 1.83 1.16
ESLS 942276 7.91 240 904223 21538.3 26318.8 2 231 1.83 1.07
ES-F-N 942317 15.15 240 904163 21587.23 55846.7 1 240 1.83 1.05
ES-F-T 942317 26.26 240 904256 21600.23 31181.1 0 230 1.83 111
ES-F-LS 942276 8.89 240 904321 21591.14 21633.9 1 240 1.83 1.36
MC 950697 2626.04 240 905226 21600.5 1371.2 0 240 1 1.63
MCE 950697 2522.05 240 904873 21602.85 1543.1 0 240 1 1.55
N 950883 7689.24 191 904841 21705.65 89.8 0 141 0.98 14.78
T 950697 8999.21 193 906231 21866.83 61.9 0 191 1 22.66

Table 10: Performance of the formulations for the capacitated balanced network - |T'| = 15,C = 1.75

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 559141 1.18 240 572268 11059.05 118612.4 142 231 3.88 0.31
EST 559141 2.48 240 572377 15230.97 47566.4 80 161 3.88 0.32
ESLS 559131 1.88 240 572395 14929.48 43995.6 83 159 3.88 0.32
ES-F-N 559141 1.16 240 572279 14882.05 110598.3 81 150 3.88 0.28
ES-F-T 559141 1.58 240 572384 13894.41 59972.3 106 218 3.88 0.35
ES-F-LS 559131 1.66 240 572430 14001.68 44803.5 100 182 3.88 0.37
MC 564010 144.67 240 573036 17253.53 15058.5 83 240 3.06 0.9
MCE 564010 153.53 240 572939 17060.25 12080.5 83 240 3.06 0.8

N 564113 113.09 240 573023 17532.16 10689.8 " 240 3.04 0.72

T 564010 283.63 240 573307 18183.12 10585.5 67 240 3.06 1.06

Table 11: Performance of the formulations for the capacitated balanced network - |T'| = 30,C = 1.75

Formulation  LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 1039555 17.06 240 1008623 21600.1 41473.5 0 234 4.04 3.42
EST 1039555 21.94 240 1008814 21562.91 27470.6 2 236 4.04 0.98
ESLS 1039519 8.75 240 1008846 20913.82 34887.1 13 128 4.04 0.64
ES-F-N 1039555 16.97 240 1008642 21600.35 28611.6 0 240 4.04 3.5
ES-F-T 1039555 26.38 240 1008828 21600.22 39757.8 0 220 4.04 0.61
ES-F-LS 1039519 10.13 240 1008907 21582.47 22652.9 1 236 4.04 3.06
MC 1047761 2460.44 240 1009976 21602.48 1250.3 0 240 3.31 4.06
MCE 1047761 2196.98 240 1009805 21473.28 2074.7 6 239 3.31 2.75
N 1047959  6634.88 202 1009953 21673.02 54.8 0 131 3.29 17.99
T 1047761 7936.58 203 1010453 21737.07 44.7 0 210 3.31 19.81

Finally, note that in Tables 9, 11 and 13, for formulations N, TP, MC and MCE, the values obtained for
O-gap is higher than the values obtained for I-gap. Since the I-gap is calculated relative to the optimal or
best solution found among all formulations this indicates that these formulations have a good LP relaxation
but are unable to provide a MIPsolution with a low objective function value.
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Table 12: Performance of the formulations for the capacitated balanced network - |T'| = 15,C = 1.5
Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 621721 1.7 240 583124 13304.05 184360.4 116 198 1.3 0.15
EST 621721 2.71 240 583221 14763.63 74318 99 210 1.3 0.22
ESLS 621714 3.1 240 583280 13068.93 52541.1 112 190 1.3 0.22
ES-F-N 621721 1.34 240 583119 13388.01 189937.4 112 193 1.3 0.15
ES-F-T 621721 1.8 240 583187 14895.36 98617 96 207 1.3 0.2
ES-F-LS 621714 2.09 240 583231 14321.8 65407.7 101 205 1.3 0.21
MC 626314 136.62 240 583888 17125.63 19017.5 75 238 0.58 0.23
MCE 626314 156.63 240 583528 16940.93 20167.1 78 234 0.58 0.21
N 626403 124.95 240 583690 18349.35 12262 62 212 0.57 0.24
T 626314 360.09 240 584047 18712.05 11320.1 55 227 0.58 0.32
Table 13: Performance of the formulations for the capacitated balanced network - |T'| =30,C = 1.5
Formulation  LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap
ESN 1174947 18.96 240 935711 21561.77  66408.5 1 194 1.59 1.43
EST 1174947 25.97 240 935867 21587.74  25253.1 1 169 1.59 1.48
ESLS 1174914 10.5 240 935960 21500.33  31446.1 2 193 1.59 1.36
ES-F-N 1174947 19.29 240 935702 21596.85 72474.6 1 236 1.59 1.43
ES-F-T 1174947 30.31 240 935812 21600.2 38381.7 0 234 1.59 1.43
ES-F-LS 1174914 11.96 240 935882 21516.6 28078.8 0 236 1.59 1.58
MC 1183634  2257.01 240 936937 21600.38 1858.3 0 240 0.89 3.5
MCE 1183634 1947.3 240 936360 21600.3 1762.5 0 240 0.89 3
N 1183835  5867.03 218 936620 21700.5 201.2 0 181 0.87 9.56
T 1183634 6773.7 222 937192 21781.93 175.3 0 213 0.89 9.52

4.2.2 Unbalanced network

Tables 14-19 illustrate the performance of the different MIP formulations on the unbalanced instances for
the different values of the time horizon and capacity level. If we compare the results with those obtained for
the uncapacitated instances on the unbalanced network, we can see similar differences as the ones observed
in Section 4.2.1. The richer formulations also have more trouble obtaining a good performance than on
the uncapacitated instances, and actually have a worse performance than the echelon stock formulations on
numerous performance indicators. These differences are even clearer for the unbalanced instances, especially
for the number of best solutions found, which is generally much higher for the echelon stock formulations.
Within the richer formulations, the MCE formulation still has the best performance on average. Note finally
that, compared to the balanced structure, the unbalanced structure of the supply network combined with
the production capacity restriction results in general in better values for the number of MIP solutions found

and for the number of MIP optimal solutions found.

Table 14: Performance of the formulations for the capacitated unbalanced network - || = 15,C = 2.0

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap
ESN 482906 1 240 504744 1263.92 28050.1 238 238 5.14 0
EST 482906 1.96 240 504744 2106.83 22230.3 236 240 5.14 0

ESLS 482904 1.28 240 504744 1531.26 13069.1 239 240 5.14 0
ES-F-N 482906 1.37 240 504744 971.1 22544.2 239 239 5.14 0
ES-F-T 482906 2.07 240 504744 1644.95 18161.5 238 240 5.14 0

ES-F-LS 482904 1.43 240 504744 1913.39 16423.3 238 240 5.14 0
MC 489860 142.82 240 504920 12934.8 6092.6 130 239 3.81 0.42
MCE 489860 129.69 240 504851 11098.95 6894.4 155 237 3.81 0.24
N 489920 118.19 240 504904 13804.04 5405.5 144 239 3.8 0.31
T 489860 302.27 240 505029 13626.37 4472.6 142 240 3.81 0.46
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Table 15: Performance of the formulations for the capacitated unbalanced network - |T'| = 30,C = 2.0

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 907791 13.45 240 944359 19921.34 58469 27 239 2.35 1.13
EST 907791 16.8 240 944361 20266.64 28715.4 22 240 2.35 1.39
ESLS 907775 9.8 240 944359 20163.36 20849 24 219 2.35 1.39
ES-F-N 907791 20.31 240 944359 19939.28 54412.1 26 240 2.35 1.13
ES-F-T 907791 40.57 240 944359 20053.67 36504 27 240 2.35 1.25
ES-F-LS 907775 14.12 240 944359 20118.8 23147.8 23 238 2.35 1.35
MC 918996 2226.9 240 944688 21481.4 1455.2 3 240 1.19 2.36
MCE 918996 1806.59 240 944560 21522.96 1864.2 4 240 1.19 2.26

N 919144 6767.62 200 944659 21672.53 100.5 0 155 1.18 15.51

T 918996 8348.99 203 944892 21705.5 115.8 0 194 1.19 13.87

Table 16: Performance of the formulations for the capacitated unbalanced network - |T'| = 15,C = 1.75

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 526754 1.06 240 549514 2224.54 45994.8 238 240 4.26 0
EST 526754 2.01 240 549524 3193.44 28369.3 227 240 4.26 0.01
ESLS 526751 1.46 240 549516 2433.6 25883.5 236 239 4.26 0
ES-F-N 526754 1.38 240 549514 1786.29 39305.9 240 240 4.26 0
ES-F-T 526754 2.11 240 549521 2851.11 28501.2 231 240 4.26 0.01
ES-F-LS 526751 1.57 240 549536 3660.7 27184.3 225 240 4.26 0.02
MC 533035 125.55 240 549761 14359.29 10031.3 113 240 3.15 0.56
MCE 533035 122.02 240 549700 12873.73 11765.1 141 240 3.15 0.41
N 533092 106.24 240 549853 15213.96 7213.3 119 240 3.14 0.56
T 533035 391.23 240 550351 16143.75 5282.3 96 240 3.15 0.95

Table 17: Performance of the formulations for the capacitated unbalanced network - |T'| = 30,C = 1.75

Formulation  LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt  MIP-sol I-gap O-gap

ESN 997363 17.08 240 820837 21465.26 31462.3 2 240 4.44 3.59
EST 997363 18.61 240 820851 20596.13 24642 18 240 4.44 1.16
ESLS 997346 10.65 240 820839 20652.97 27727.7 16 236 4.44 1.2
ES-F-N 997363 21.66 240 820837 21569.18 25981.1 2 240 4.44 3.58
ES-F-T 997363 40.57 240 820847 20649.26 27377.4 17 240 4.44 0.9
ES-F-LS 997346 14.9 240 820870 21016.96 17628.5 11 239 4.44 2.67
MC 1008358 2052.43 240 821206 21600.27 1539 0 239 3.42 4.63
MCE 1008358 1608.27 240 821114 21228.93 2128.1 10 240 3.42 2.93

N 1003245 6127.87 212 821343 21691.07 96.8 0 178 3.92 14.76

T 1008358 7664.68 208 822087 21787.94 110.8 0 201 3.42 13.79

Table 18: Performance of the formulations for the capacitated unbalanced network - |T'| = 15,C = 1.5

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 587569 1.19 240 577246 5628.17 129453 203 222 1.6 0
EST 587569 2.03 240 577254 8291.62 82475.7 174 204 1.6 0.02
ESLS 587566 1.54 240 577264 7252.8 102829.8 185 215 1.6 0.02
ES-F-N 587569 1.47 240 577251 5830.11 107024.6 202 227 1.6 0
ES-F-T 587569 2.05 240 577255 6830.86 91531.8 195 225 1.6 0.01
ES-F-LS 587566 1.62 240 577268 7764.41 72522.2 184 216 1.6 0.02
MC 593073 130.26 240 577413 14334.42 26345.4 110 234 0.7 0.09
MCE 593073 134.1 240 577386 14168.51 34757.1 114 236 0.7 0.08
N 593130 105.81 240 577546 17307.97 14994.4 7 238 0.69 0.14
T 593073 321.95 240 577558 17069.16 15284 81 239 0.7 0.14

In light of the results provided in Tables 8-19, we can draw the following conclusions about the performance
of our formulations on capacitated instances:

e the capacitated instances are harder to solve than the uncapacitated instances;

e the richer formulations have a relative worse performance than on uncapacitated instances compared
to the echelon stock formulations;

e the echelon stock formulations are better than the richer formulations;

e within the richer formulations, the MCE formulation has the best performances.
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Table 19: Performance of the formulations for the capacitated unbalanced network - |T'| = 30,C = 1.5

Formulation  LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt  MIP-sol I-gap O-gap

ESN 1120686 18.64 240 940086 20794.78 42369.6 14 239 1.81 1.42
EST 1120686 21.21 240 940100 20907.78 28587.9 10 236 1.81 1.54
ESLS 1120671 12.15 240 940115 20799.68 23392.2 13 159 1.81 1.45
ES-F-N 1120686 23.88 240 940094 20896.34 40821.4 13 239 1.81 1.39
ES-F-T 1120686 40.68 240 940101 20726.33 35502.7 13 236 1.81 1.28
ES-F-LS 1120671 16.63 240 940122 20910.24 24093 11 234 1.81 1.4
MC 1131290 1982.83 240 940358 21526.09 2193.1 2 240 0.91 2.58
MCE 1131290 1472.36 240 940314 21551.76 3249 1 240 0.91 2.2
N 1131441 5397.68 218 940574 21810.5 155.1 0 203 0.89 13.01
T 1117718 6687.1 217 940594 21838.89 130.3 0 182 1.87 13.54

4.3 Influence of the parameters

Table 20 reports the performance of the MC formulation for all experiments with a balanced uncapacitated
network and with |T'| = 30. The first two columns indicate the parameter that varies and the respective
values taken by the parameter. Since most of the following conclusions also apply for the other formulations
and for the experiments with an unbalanced network, we only report here the results for the MC formulation
with a balanced network. The analyses that are specific to this formulation are discussed at the end of this
section. All the other results are available in the appendices of this report.

In Table 20, one can see that when |R| increases, the problems gets harder and the CPU time taken to
solve both the LP and MIP instances increases. On the contrary, when |W| increases, the CPU time taken to
solve the MIP instances decreases. Indeed, with the same number of retailers, if the number of warehouses
increases, the supply network has a smaller number of channels linked to each warehouse. This leads to a
smaller problem per warehouse and makes the global problem easier to solve, thus reducing the CPU time
and the number of nodes. The integrality gap is also lower but less significantly.

Table 20 indicates that for the MC formulation, generally the instances with dynamic fixed costs are much
easier to solve compared to the instances with a static fixed cost. We further note that the dynamic demand
case is generally slightly easier to solve than the static demand case.

Finally, the detailed results provided in the appendices of this report illustrate the fact that the impact of
the setting of the parameters (static or dynamic demand, static or dynamic fixed cost), depends on the kind
of formulation used. For the classical based formulations, apart for the very small instances where |R| = 50
and |T'| = 15, the instances with a dynamic fixed cost are harder to solve, thus requiring a higher CPU time.
For the ES-N, ES-TP and ES-LS formulations, the instances with a dynamic fixed cost are also harder to
solve. On the contrary, for the N, TP and MC formulations, the instances with a static fixed cost are harder
to solve in terms of CPU time required. For the ES and ES-F formulations, there is no clear impact of the
setting of the parameters on the CPU time required to solve the instances. Note however that this result
does not question the higher global performance of the MC formulation stated in the previous sections.

Table 20: Performances of the MC formulation for the uncapacitated balanced network - |T'| = 30

Parameter  Value LP-cost LP-CPU MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

50 423630 60.36 423765 88.07 1.9 80 0.04 0

IR 100 609655  414.54 610096 643.15 4.5 80 0.08 0
200 895053  2003.37 896048 2334.08 8.8 80 0.12 0

5 540034  587.33 541416 1451.26 14.8 60 0.23 0

W 10 621960  912.23 622489 1095.86 3.5 60 0.07 0
15 678045  1023.23 678196 827.76 1.5 60 0.02 0

20 731078  781.58 731111 712.18 0.5 60 0 0

Cost SF 658846  1040.45 659632 1508.85 8.6 120 0.12 0
osts DF 626713  611.74 626974 534.68 1.6 120 0.04 0
Demand SD 644294  840.35 644921 1077.51 6.4 120 0.1 0
DD 641265  811.84 641685 966.03 3.7 120 0.06 0
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Conclusions and future research

We have extended eleven MIP formulations proposed in the context of the OWMR and have applied them
to the 3LSPD. We also introduced the ES-N, ES-F-N, ES-F-TP, ES-F-LS and MCE formulations that had
not been tested before in the context of the OWMR. For our numerical experiments, we have considered
two network structures (a balanced one and an unbalanced one) and have assessed the performance of the
formulations proposed using several indicators. We have also considered the possibility of having production
capacities at the plant level. The results indicate that, for the uncapacitated case, the unbalanced instances
are harder to solve than the balanced instances and lead to a worse performance of all formulations, except
for the classical formulations. On the contrary, for the capacitated case, the unbalanced instances give
better values for our different performance indicators compared to the balanced instances. The classical
formulations are much weaker than the other formulations and do not suit our problem, mainly because
of a very weak LP relaxation. On the contrary, the MC formulation obtains the best performance on the
uncapacitated instances and is able to solve all instances for both network structures. This result is similar
to the conclusion of Cunha and Melo [8] for the OWMR. The other formulations obtain results that are not
entirely satisfactory for the uncapacitated instances. In particular, for the rich formulations TP and N, the
non-satisfactory performances on the large instances, in terms of number of MIP optimal solutions found and
CPU time, are due to the huge size of the model. As a consequence, it is already very time-consuming to
solve the LP relaxation of these formulations. When we impose capacity restrictions for production at the
plant level, the performance of the formulations are reversed: the rich formulations have a worse performance
and the echelon formulations have the best performance. Within the rich formulations, for the capacitated
instances, our newly introduced MCE formulation generally has the best performance.

In future research, we want to introduce transportation capacities to limit the flows between all facilities.
We will then use the results of our study and the possible substructures induced by transportation capacities
to chose the best formulation possible to solve the problem, either heuristically or using decomposition
methods.

Appendices

See the online document for Tables 21-204.
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