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Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs. Les auteurs
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Abstract: We address a three-level lot sizing and replenishment problem with a distribution structure
(3LSPD), which is an extension of the one-warehouse multi-retailer problem (OWMR). We consider one
production plant that produces one type of item over a discrete and finite planning horizon. The items
produced are used to replenish warehouses and then retailers using direct shipments. Each retailer is linked
to a unique warehouse and there are no transfers between warehouses nor between retailers. We also assume
that transportation is uncapacitated. However, we consider the possibility of imposing production capacity
constraints at the production plant level. The objective is to minimize the sum of the fixed production
and replenishment costs and of the unit variable inventory holding costs at all three levels. We compare 16
different MIP formulations to solve the problem. All of these formulations are adapted from existing MIP for-
mulations found in the one-warehouse multi-retailer literature, but most formulations are new in the context
of the 3LSPD. We run experiments on both balanced and unbalanced networks. In the balanced network each
warehouse serves the same number of retailers whereas in the unbalanced network 20% of the warehouses
serve 80% of the retailers. Our results indicate that the multi-commodity formulation is well suited for un-
capacititated instances and that the echelon stock reformulations are better for capacitated instances. They
also show that the richer formulations are not necessarily the best ones and that the unbalanced instances
are harder to solve.

Keywords: Production planning and control, lot sizing, replenishment, mixed integer programming formu-
lations, deterministic demand, one-warehouse multi-retailer problem, multi-level

Résumé : Nous étudions un problème intégré de planification de production et de transport sur trois niveaux
avec une structure de distribution (3LSPD), problème qui est une extension du one-warehouse multi-retailer
problem (OWMR). On considère une usine de production qui fabrique un type de produit sur un horizon
de planification fini et discret. Les biens produits sont transportés de l’usine vers des centres de stockage
puis ensuite vers des détaillants via des livraisons directes. Chaque détaillant est relié à un unique centre
de stockage et les transferts de produits entre les centres de stockage ou entre les détaillants ne sont pas
autorisés. Cependant, nous considérons la possibilité d’imposer des restrictions sur la capacité de production
au niveau de l’usine de production. L’objectif est de minimiser la somme des coûts fixes de production
et de commande et des coûts variables unitaires de stockage. On compare ici 16 formulations mixtes en
nombres entiers différentes pour résoudre le problème. Toutes les formulations proposées sont des adaptations
des formulations mixtes en nombres entiers rencontrées dans la littérature sur le problème One-Warehouse
Multi-Retailer, et la plupart des formulations développées ici sont proposées pour la première fois dans le
contexte du 3LSPD. Nous réalisons des expériences numériques tant sur un réseau équilibré que sur un
réseau non équilibré. Dans le réseau équilibré chaque centre de stockage est responsable du même nombre de
détaillants alors que dans le réseau non équilibré 20% des centres de stockage sont responsables de 80% des
détaillants. Nos résultats indiquent que la formulation multi-commodity est la plus adaptée pour la résolution
des instances sans contrainte de capacité alors que les formulation echelon-stock sont plus adaptées pour les
formulations avec contraintes de capacité. Les résultats montrent aussi que les formulations les plus riches ne
sont pas nécessairement les meilleures et que les instances ayant un réseau non équilibré sont les plus difficiles
à résoudre.

Mots clés : Planification de production et transport, formulations mixtes en nombres entiers, demande
déterministe, taille de lot, multi-niveau
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1 Introduction

Over the last decades, lot sizing problems have drawn the attention of many researchers, mainly because of

their numerous applications in production, distribution and inventory management problems. Extensions of

the basic lot sizing problem (LSP) are often encountered in the context of supply chain planning. Usually, the

customers of a company, which have a certain demand, are located in a different area from the production

plant where the items are actually produced and where lot sizing decisions are made. This leads to a

replenishment problem where the company needs to determine when to replenish its customers so as to

minimize the replenishment costs. Companies facing these two operational problems often make decisions in

sequence. This leads, however, to solutions that can be far from the optimal solution of an integrated lot

sizing and replenishment problem.

We address here an integrated three-level lot sizing and replenishment problem with a distribution struc-

ture (3LSPD). We consider a general manufacturing company that has one production plant (level zero),

several warehouses (level one) and multiple retailers (level two) facing a dynamic and known demand for

one item over a discrete and finite time horizon. The supply chain considered has a distribution structure:

the warehouses are all linked to the single plant and all retailers are linked to exactly one warehouse. When

we consider the demand of a particular retailer, the flow of goods in the supply chain network is hence as

follows: an item is produced at the production plant, then sent to the warehouse linked to the retailer for

storage and finally sent to the retailer to satisfy its demand. Figure 1 illustrates this flow of goods in a

distribution network which consists of one production plant, three warehouses and three retailers linked to

each warehouse. The objective of the problem is to determine the optimal timing and flows of goods between

the different facilities while minimizing the operational and replenishment costs in the whole network (sum

of the fixed setup and replenishment costs and unit inventory holding costs).

Warehouse 3

Warehouse 1
Warehouse 2

Production plant

Retailers Retailers

Retailers

Figure 1: Graphical representation of the problem considered

More specifically, given the set T of time periods, we face an integrated problem where decisions are

made at all facilities for each time period. The optimal solution of the problem will indicate, for each time

period, the optimal quantities to be produced and to be ordered from their predecessor for the production

plant and for the warehouses and retailers, respectively, so that the final demand at each retailer is satisfied.

In this problem, the objective is to minimize the sum over all periods t of the fixed setup costs scpt at the

production plant, the fixed replenishment costs scwt and scrt of the warehouses and of the retailers, and the

unit inventory holding costs hcit of all facilities i. We do not include any unit production cost at the plant

since the total production cost is a constant when all the demand is satisfied and when the unit production
cost is constant over time. The same holds for the unit replenishment cost at the warehouses and retailers.
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Transfers of goods between the warehouses and between the retailers are not allowed. Finally, we only

consider uncapacitated direct shipments and do not incorporate any routing in the transportation decisions.

Note that in a disaggregated context, the problem faced by any facility can be seen as the basic LSP. This

basic LSP has attracted a lot of research since the seminal paper of Wagner and Whitin [39] who proposed

a dynamic programming approach to solve the single item uncapacitated lot sizing problem (SI-ULSP). The

reader is referred to Brahimi et al. [5] and to Pochet and Wolsey [34] for a review of the work done on the

SI-ULSP and its extensions, and to Jans and Degraeve [19] for a review of industrial applications.

We consider both a capacitated and an uncapacitated version of the 3LSPD. In the capacitated version,

the capacity constraints are imposed at the production plant level to limit the production quantities in each

time period. There are no capacities on the flows between the facilities nor on the inventory level. Note

that with the addition of the capacity constraints at the production plant level, the problem faced by the

production plant can be seen as a basic capacitated lot sizing problem (CLSP). The reader is referred to

Karimi et al. [21] for a review of models and algorithms used to solve the CLSP.

The motivation to work on MIP formulations for the 3LSPD is to extend the works of Solyalı and Süral [37]

and Cunha and Melo [8] who compare several MIP formulations for the one-warehouse multi-retailer problem

(OWMR). In the OWMR, a central warehouse replenishes several retailers that face a dynamic demand for

one or several items over a discrete and finite time horizon. The objective of the problem is to jointly

determine the optimal timing and quantities that are shipped between the warehouse and the retailers to

minimize the sum of setup costs and inventory holding costs for the whole system. This problem has been

shown to be NP -hard by Arkin et al. [2] and appears as a substructure in the production routing problem

(PRP). Compared to the OWMR, the PRP also optimizes routing decisions to visit the different customers

of the central warehouse. The reader is refered to Adulyasak et al. [1] for a detailed review of formulations

and solution algorithms for the PRP.

Solyalı and Süral [37] compare four MIP formulations and Cunha and Melo [8] compare eight different

MIP formulations for the OWMR. The 3LSPD can be considered as the generalization of the OWMR to

three levels. Our aim in this work is to adapt these OWMR MIP formulations to the 3LSPD and to verify

if the results obtained on the two-level OWMR still stand for the 3LSPD.

Our paper makes two main contributions. First, we fill a gap by adapting several MIP formulations that

have been proposed in the context of the two-level OWMR (Solyalı and Süral [37], Cunha and Melo [8]) to the

3LSPD. To the best of our knowledge, this is the first attempt to provide strong formulations for the 3LSPD

that could solve instances of large scale. We also give several properties about the relationships between the

linear relaxations of these formulations. Second, we report the results of extensive numerical experiments

using a general-purpose solver to assess the strengths and weaknesses of the different formulations. Indeed,

we perform experiments for different structures of the main parameters (fixed or dynamic demand, fixed or

dynamic setup costs) and for two distribution structures of the supply chain network. In one case we consider

a balanced distribution network in which each warehouse is responsible for the same number of retailers. In

the other case, we consider an unbalanced distribution network where 20% of the warehouses replenish 80%

of the retailers. The results obtained highlight the importance of properly choosing a formulation depending

on the characteristics of the problem.

The remainder of this paper is organized as follows. First, we survey the work related to our study

in Section 2. We then present sixteen different MIP formulations for the problem in Section 3. These

MIP formulations can be divided into three groups of formulations: the classical formulations, which use

the standard MIP formulation of the basic LSP, the echelon stock based formulations, inspired from the

echelon stock concept for the multi-level LSP, and the richer formulations, containing more information in

the decision variables, inspired from the work on the polyhedral structure of the solutions of both the SI-ULSP

and the two-level lot sizing problems. Section 4 presents computational results to determine the strengths

and weaknesses of the different formulations that we propose, and to analyze the impact of the different

parameters. This is followed by the conclusion in Section 4.3.
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2 Literature review

We first review the literature on the OWMR in Section 2.1, followed by the literature on the three-level lot

sizing problem in Section 2.2.

2.1 OWMR literature review

The 3LSPD studied in this paper is a generalization of the OWMR to three levels. Both problems have a

distribution structure and there are similar production, inventory and replenishment decisions to be made

at each time period to satisfy the demand of the retailers. The main difference is that the OWMR only

considers two levels in its distribution network: the warehouse and the retailers.

Many formulations have been proposed for the OWMR. Federgruen and Tzur [14] propose the echelon

stock formulation (ES), based on the echelon stock concept for multi-level lot sizing problems. Using the

echelon stock concept, the traditional inventory decision variables are replaced by the echelon stock variables

representing the total inventory of a component at a given facility and all of its descendents. Levi et al. [26]

propose the transportation formulation inspired from the facility location literature. Melo and Wolsey [27]

propose the multi-commodity formulation (MC) based on the distinction of each retailer-time period pair.

Solyalı and Süral [37] compare four different MIP formulations for the OWMR: the shortest path formulation

(SP), the transportation formulation (TP) and the echelon stock formulation and its strenghtened version

(SES). The SES formulation is inspired from the ES formulation of Federgruen and Tzur [14] and uses

transportation decision variables to strenghten the ES formulation. Solyalı and Süral [37] extend these

formulations to the possibility of having a non-zero initial inventory. They also provide results concerning the

LP bounds of each formulation and numerical experiments are performed with and without inital inventory.

In the same vein, Cunha and Melo [8] consider eight different MIP formulations: the shortest path formulation

(SP), the transportation formulation (TP), the strenghtened echelon stock formulation (SES), the Wagner-

Whitin echelon stock based formulation (ESWW), the two-level lot sizing Wagner-Whitin based formulation

(2LSWW) and its partial version (p2LSWW), the multi-commodity formulation (MC) and the dynamic

programming formulation (DP). They compare the LP bounds of these formulations and show in particular

that the DP formulation gives the best LP bound. They then perform numerous computational experiments

with both dynamic and static unit transportation costs. Note that there also exists a classical MIP formulation

for the OWMR which is the extension of the classical MIP formulation for the ULSP proposed by Zangwill [42].

Some work has also been done to develop families of valid inequalities for the OWMR to strengthen the

MIP formulations given in Solyalı and Süral [37] and Cunha and Melo [8]. This is the case in Senoussi et

al. [36]. Starting from a PRP and considering a warehouse that is really far from the retailers, they aggregate

the retailers in different clusters to discard routing decisions and get a real OWMR with both fixed and

unit transportation costs, and with transportation capacity. They propose six sets of valid inequalities: one

to determine the maximum number of vehicles, one to break symmetries, one to have full trucks (based on

the optimal properties of the solution), two which extend the (l, S) inequalities of the SI-ULSP proposed in

Barany, Van Roy and Wolsey [3], and the last one to reduce the number of variables in their model. They

conduct numerous experiments both with and without all the valid inequalities to see the impact of these

valid inequalities. Melo [10] proposes another set of valid inequalities and also designs a separation algorithm

to find the violated inequalities. This separation procedure is used in a cutting plane algorithm to perform

experiments on a multi-item OWMR problem.

2.2 Three-level lot sizing problem

Because of the different nature of the decisions made at each facility and because of the three levels, one

can find several supply chain structures in the literature on three-level lot sizing problems (3L-LSP). The

following section only reviews the literature for which the supply chain structure is the same as in our

problem: one production plant, several warehouses and several retailers. When not explicitely mentionned,

the supply network structure considered in the papers reviewed in this section is a distribution structure as

in our problem.
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Only a few papers address a three-level lot sizing problem with a number of facilities per level which is

the same as in our problem. The ones that we found all address extensions of the 3LSPD considered in this

paper. Gebennini, Gamberini and Manzini [17] propose a heuristic to solve a problem where they consider

safety stocks and allow backorders. The backorder in a particular period is the quantity of unmet demand for

this time period. The basic model they propose is non-linear because of the safety stock cost but is linearized

with an approximation of the objective function. There are also due dates for the deliveries to the customers.

The authors design a procedure to solve the approximate problem.

Barbarosoglu and Ozgur [4] address the 3L-LSP where each retailer is linked to every warehouse. They

thus do not have a distribution structure in their network but a general one instead. They also work in

a just-in-time (JIT) environment. The JIT environment translates into a constraint that prevents retailers

from keeping inventory. The model contains both fixed and unit transportation costs. The authors propose

a transportation based MIP model and use Lagrangean relaxation to solve the problem. They relax the

constraints linking the production and distribution components to obtain a production subproblem which

can be decomposed into knapsack problems, and a distribution subproblem that can be easily solved for

each item-customer pair. A customized procedure is then used to build feasible solutions from the solutions

obtained in these two sub-problems.

Several extensions relate to applications for industrial cases. Kopanos, Puigjnaer and Georgiadis [23]

address an industrial case in Greece in the food industry. They have a fixed cost per vehicle used for

the deliveries between the facilities and there are several transportation modes available. They consider

restrictions on the vehicles that can make the deliveries between facilities. They extend their MIP model to

consider several production plants and use a general-purpose solver in both cases to solve their instances. Haq,

Vrat and Kanda [18] also use a general-purpose solver to solve an industrial case of urea manufacturing. They

propose a MIP model that contains transportation lead time and backlog but these features are discarded in

the numerical experiments performed.

Heuristics have also been proposed to solve extensions of the 3LSPD applied to industrial cases. Leje-

une [25] proposes to solve a problem with a fixed cost per truck used and unit transportation costs. The

author also considers transportation capacities and time availability of the carriers. A combination of branch-

and-bound (B&B) and variable neighborhood search (VNS) is used to solve the problem. In each node of the

B&B tree, there are several neighborhoods where binary variables are split between fixed variables, variables

to be fixed and free variables. The branching decisions are made depending on these sets. For each node

there is also a limit on the children nodes. A computational experiment using data of a US chemical company

indicates that this method outperforms CPLEX. In the same vein, Özdamar and Yazgaç [32] treat the case

study of a detergent company in Turkey. They design an algorithm to approximately solve the problem. The

authors consider transportation capacities and propose an aggregate and a disaggregate MIP model. The

algorithm is based on an iterative hierarchical approach as well as on a rolling horizon.

Note that in the works mentioned in this section, only three different types of MIP formulation have been

used: Haq, Vrat and Kanda [18], Lejeune [25], Gebennini, Gamberini and Manzini [17] and Özdamar and

Yazgaç [32] use a classical formulation, Barbarosoglu and Ozgur [4] use a combined classical and transporta-

tion formulation, and Kopanos, Puigjnaer and Georgiadis [23] use a transportation formulation. The classical

formulation and the combined transportation and classical formulation will be presented in Section 3.1 while

the transportation formulation will be given in Section 3.4.

3 Formulations

Let G = (F,A) be a graph with F the set of nodes (facilities in our problem) and A the set of arcs. Let

P = {p} ⊂ F be the set containing the unique production plant, W ⊂ F be the set of warehouses and R ⊂ F
be the set of retailers. Following the problem description in Section 1, we have F = P ∪W ∪R. Let δ(i) be

the set of all direct successors of facility i and δw(r) be the warehouse linked to the retailer r ∈ R. Let drt
be the demand for retailer r in period t. The notion of the demand faced by any retailer is extended to the
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warehouses and to the production plant in the following fashion:

dit =

{ ∑
r∈R d

r
t if i = p∑

r∈δ(i) d
r
t if i ∈W.

Using the notion of the demand faced by any facility, we introduce Di
t, the total demand between period t

and the end of the time horizon computed as Di
t =

∑
k≥t d

i
k. Similarly, we introduce, for any facility i, the

demand between periods k and t as dikt =
∑
k≤l≤t d

i
l. In the following sections, all the MIP formulations are

presented in their capacitated version.

3.1 Classical formulations

We first present a simple MIP formulation that extends the basic MIP formulation for the ULSP as used by

Pochet and Wolsey [34]. We call this formulation the classical formulation (C). This formulation is based on

three sets of decisions variables: xit represents the production quantities in period t if i = p and the quantities

ordered from the predecessor if i ∈W ∪R, sit is the inventory held at the end of period t in facility i, and yit
is a boolean setup variable taking value 1 iff xit > 0. The formulation is as follows:

Min
∑
t∈T

(∑
i∈F

scity
i
t +

∑
i∈F

hcits
i
t

)
(1)

s.t. xit ≤ Di
ty
i
t ∀ t ∈ T, i ∈ F (2)

sit−1 + xit =
∑
j∈δ(i)

xjt + sit ∀ t ∈ T, i ∈ P ∪W (3)

srt−1 + xrt = drt + srt ∀ t ∈ T, r ∈ R (4)

xpt ≤ min{Ct, Dp
t }y

p
t ∀t ∈ T (5)

xit, s
i
t ≥ 0 ∀ t ∈ T, i ∈ F (6)

yit ∈ {0, 1} ∀ t ∈ T, i ∈ F. (7)

The objective function minimizes the sum of the fixed setup and replenishment costs and of the unit inventory

holding costs. Constraints (2) are the setup forcing constraints for all facilities. Constraints (3) are the

inventory balance equations for the production plant and the warehouses whereas (4) are the inventory

balance equations for the retailers. Constraints (5) are the capacity constraints at the production plant.

The classical formulation C can be improved by using some ideas coming from the ULSP literature.

We observe that when we only consider the inventory balance equations (4) and the setup constraints (2)

specifically for the retailers, we have a single item lot sizing structure for each retailer since the inventory

balance equations (4) only incorporate the independent demand for each retailer. This means that we can

use the existing reformulations of the ULSP for each of the retailers. These reformulations are not directly

applicable to the warehouse or plant level, since at these levels the inventory balance constraints contain

dependent demand in the form of decision variables related to the ordering decisions at the direct successors.

We will propose three different alternative formulations to model the lot sizing structure at the retailer level.

First, we use the network reformulation proposed by Eppen and Martin [12] to change the decision

variables linked to the retailers and rewrite the constraints where these variables appear. The reformulation

proposed by Eppen and Martin [12] is based on the property of extreme flows in a network as applied by

Zangwill [43] to the SI-ULSP. This property, also known as the zero inventory ordering property, states that

if there is a positive entering stock at any period in the SI-ULSP, then the flow coming from production is

equal to zero. Conversely, if the production is positive at any period, then the entering stock for this period

is equal to zero. Although this property does not hold for the capacitated case, Eppen and Martin [12] show

that their proposed reformulation is valid for the capacitated case. For any retailer r ∈ R, let zrkt be the

proportion of drkt that is ordered in period k. Let also spcrkt =
∑
k≤u<t

∑t
l=u+1 h

r
ud
r
l be the cost linked to

the variable zrkt for any retailer i. The classical-network formulation (C-N) for the 3LSPD is as follows:
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Min
∑
t∈T

∑
i∈F

scity
i
t +

∑
i∈P∪W

hcits
i
t +

∑
r∈R

∑
k≤t

spcrktz
r
kt

 (8)

s.t. xit ≤ Di
ty
i
t ∀ t ∈ T, i ∈ P ∪W (9)

|T |∑
k=t:drtk>0

zrtk ≤ yrt ∀ t ∈ T, r ∈ R (10)

spt−1 + xpt =
∑

w∈δ(p)

xwt + spt ∀ t ∈ T (11)

swt−1 + xwt =
∑

r∈δ(w)

∑
k≥t

zrtkd
r
tk + swt ∀ t ∈ T,w ∈W (12)

|T |∑
t=1

zr1t = 1 ∀ r ∈ R (13)

t−1∑
l=1

zrl,t−1 =

|T |∑
k=t

zrtk ∀ t ≥ 2, r ∈ R (14)

xpt ≤ min{Ct, Dp
t }y

p
t ∀t ∈ T (15)

zrkt ≥ 0 ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (16)

xit, s
i
t ≥ 0 ∀ t ∈ T, i ∈ P ∪W (17)

yit ∈ {0, 1} ∀ t ∈ T, i ∈ F. (18)

Constraints (10) are the setup forcing constraints for the retailers. Constraints (12) are the inventory bal-

ance constraints for the warehouses. Constraints (13) are the initial flow constraints for each retailer and

constraints (14) are the flow conservation constraints.

Second, one can use the transportation reformulation of the ULSP proposed by Krarup and Bilde [24] to

give another formulation for the problem. For any retailer r, let φrkt represent the quantity that is ordered in

period k ≤ t and used to satisfy drt . Let also tcrkt =
∑
k≤u<t h

r
u be the holding cost linked to the variable φrkt.

The classical-transportation formulation (C-TP) for the 3LSPD is as follows:

Min
∑
t∈T

∑
i∈F

scity
i
t +

∑
i∈P∪W

hcits
i
t +

∑
r∈R

∑
k≤t

tcrktφ
r
kt

 (19)

s.t. xit ≤ Di
ty
i
t ∀ t ∈ T, i ∈ P ∪W (20)

φrtk ≤ drkyrt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (21)

spt−1 + xpt =
∑
j∈δ(p)

xjt + spt ∀ t ∈ T (22)

swt−1 + xwt =
∑

r∈δ(w)

∑
k≥t

φrtk + swt ∀ t ∈ T,w ∈W (23)

t∑
k=1

φrkt = drt ∀ t ∈ T, ∀ r ∈ R (24)

xpt ≤ min{Ct, Dp
t }y

p
t ∀t ∈ T (25)

φrkt ≥ 0 ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (26)

xit, s
i
t ≥ 0 ∀ t ∈ T, i ∈ P ∪W (27)

yit ∈ {0, 1} ∀ t ∈ T, i ∈ F. (28)
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Constraints (21) are the setup forcing constraints for the retailers. Constraints (23) are the inventory balance

constraints for the warehouses. Constraints (24) are the demand satisfaction constraints for each retailer.

Finally, one can also use the polyhedral results for the SI-ULSP to improve the classical formulation

C at the retailer level. In particular, Barany et al. [3] propose the (l, S) valid inequalities that describe

the polyhedron of solutions of the SI-ULSP. Besides, if the SI-ULSP has Wagner-Whitin costs (i.e., pct +

hct ≥ pct+1, ∀ t ∈ T , where pct is the unit production cost in period t), Pochet and Wolsey [34] propose

the (l, S,WW ) valid inequalities. When adapted to our problem, these (l, S,WW ) inequalities are defined

as follows:

srk−1 ≥
l∑

j=k

drj

(
1−

j∑
u=k

yru

)
∀ k ≤ l ∈ T, r ∈ R. (29)

These inequalities are always valid, even if the costs do not satisfy the Wagner-Whitin condition. However, in

case the Wagner-Whitin cost condition holds, they are sufficient to describe the convex hull of the SI-ULSP.

These inequalities are added to (1)–(7) to form the classical-lS formulation (C-LS).

3.2 Echelon stock formulations

Employing the idea of an echelon stock presented in Federgruen and Tzur [14], the 3LSPD can be decomposed

into several independent SI-ULSPs. To do so, the inventory variables of the classical formulation C are

replaced with echelon stock variables representing the total inventory at all descendents of a particular

facility. We define the echelon stock Iit for facility i in period t as:

Iit =


sit +

∑
w∈W swt +

∑
r∈R s

r
t if i = p

sit +
∑
r∈δ(i) s

r
t if i ∈W

sit if i ∈ R.

The echelon stock formulation (ES) is then as follows:

Min
∑
t∈T

∑
i∈F

scity
i
t +

∑
p∈P

hcpt I
p
t +

∑
w∈W

(hcwt − hc
p
t ) I

w
t +

∑
r∈R

(
hcrt − hc

δw(r)
t

)
Irt

 (30)

s.t. Iit−1 + xit = dit + Iit ∀ t ∈ T, i ∈ F (31)

xit ≤ Di
ty
i
t ∀ t ∈ T, i ∈ F (32)

Iit ≥
∑
j∈δ(i)

Ijt ∀ t ∈ T, i ∈ P ∪W (33)

xpt ≤ min{Ct, Dp
t }y

p
t ∀t ∈ T (34)

xit, I
i
t ≥ 0 ∀ t ∈ T, i ∈ F (35)

yit ∈ {0, 1} ∀ t ∈ T, i ∈ F. (36)

The objective function (30) is written in terms of echelon stock variables. Constraints (31) are the inventory

balance constraints using the new echelon stock variables. Constraints (33) are the echelon stock constraints

ensuring that the echelon stock at a specific facility is greater than the sum of the echelon stocks at all

its direct successors. These constraints come from the non-negativity constraints (6) imposed on the stock

variables in the classical formulation C. Note that with the introduction of the echelon stock variables, the

problem has an uncapacitated lot sizing structure (in constraints (2) and (31)) with independent demand at

each level. This means that we can now apply the known reformulation techniques for the ULSP (network,

transportation and (l, S,WW ) inequalities) at each level.

First, in the same spirit as in the C-N formulation, we can use a network reformulation on the ES

formulation. We define Zikt to be the proportion of dikt that is produced in period k for i = p, and to be the
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proportion of dikt that is ordered in period k for i ∈ W ∪ R. The echelon stock network formulation (ES-N)

is then as follows:

Min
∑
t∈T

∑
i∈F

scity
i
t +

∑
p∈P

hcpt I
p
t +

∑
w∈W

(hcwt − hc
p
t ) I

w
t +

∑
r∈R

(
hcrt − hc

δw(r)
t

)
Irt

 (37)

s.t.

|T |∑
k=1

Zi1k = 1 ∀ i ∈ F (38)

t−1∑
l=1

Zil,t−1 =

|T |∑
l=t

Zitl ∀ t ≥ 2, i ∈ F (39)

|T |∑
k=t:ditk

Zitk ≤ yit ∀ t ∈ T, i ∈ F (40)

Iit =

 t∑
l=1

|T |∑
k=l

dilkZ
i
lk

− di1t ∀ t ∈ T, i ∈ F (41)

Iit ≥
∑
j∈δ(i)

Ijt ∀ t ∈ T, i ∈ P ∪W (42)

|T |∑
k=t

Zptkd
p
tk ≤ min{Ct, Dp

t }y
p
t ∀t ∈ T (43)

Iit ≥ 0 ∀ t ∈ T, i ∈ F (44)

Zitk ≥ 0 ∀ t ∈ T, k ≥ t ∈ T, i ∈ F (45)

yit ∈ {0, 1} ∀ t ∈ T, i ∈ F. (46)

Constraints (38) are the initial flow constraints for each facility and constraints (39) are the flow conservation

constraints. Constraints (40) are the setup forcing constraints. Constraints (41) link the flow variables and

the echelon stock variables. Constraints (43) are the capacity constraints at the production plant.

Then, in the same spirit as in the C-TP formulation, we can use a transportation reformulation on the

ES formulation. We define Xi
kt to be the quantity that is produced in period k and used to satisfy dit for

i = p, and to be the quantity that is ordered in period k for i ∈ W ∪ R and used to satisfy dit. The echelon

stock transportation formulation (ES-TP) is then as follows:

Min
∑
t∈T

∑
i∈F

scity
i
t +

∑
p∈P

hcpt I
p
t +

∑
w∈W

(hcwt − hc
p
t ) I

w
t +

∑
r∈R

(
hcrt − hc

δw(r)
t

)
Irt

 (47)

s.t. Iit−1 +

|T |∑
k=t

Xi
tk = dit + Iit ∀ t ∈ T, i ∈ F (48)

t∑
k=1

Xi
kt = dit ∀ t ∈ T, i ∈ F (49)

Xi
tk ≤ dikyit ∀k ∈ T, t ≤ k ∈ T, i ∈ F (50)

Iit ≥
∑
j∈δ(i)

Ijt ∀ t ∈ T, i ∈ P ∪W (51)

|T |∑
k=t

Xp
tk ≤ min{Ct, Dp

t }y
p
t ∀t ∈ T (52)
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Xi
kt ≥ 0 ∀ k ≤ t ∈ T, i ∈ F (53)

Iit ≥ 0 ∀ t ∈ T, i ∈ F (54)

yit ∈ {0, 1} ∀ t ∈ T, i ∈ F. (55)

Constraints (48) are the inventory balance constraints. These are included in order to correctly calculate the

inventory levels. Constraints (49) are the demand satisfaction constraints. Constraints (50) are the setup

forcing constraints. Constraints (52) are the capacity constraints at the production plant.

Finally, we can also add the (l, S,WW ) valid inequalities in the context of the ES formulation. Using the

echelon stock variables, these inequalities are given as follows:

Iik−1 +

t∑
q=k

diqty
i
q ≥ dikt ∀k ≤ t ∈ T, i ∈ F. (56)

These inequalities are added to (30)–(36) to form the echelon stock-lS formulation (ES-LS).

Following the model proposed in Federgruen and Tzur [14], another change can be made to the eche-

lon stock formulation ES. Indeed, one can alternatively write the echelon stock constraints (33) using the

production variables of the ES, ES-N or ES-TP formulation, respectively:

t∑
k=1

xik ≥
∑
j∈δ(i)

t∑
k=1

xjk ∀t ∈ T, i ∈ P ∪W. (57)

t∑
k=1

∑
l≥k

diklZ
i
kl ≥

∑
j∈δ(i)

t∑
k=1

∑
l≥k

djklZ
j
kl ∀t ∈ T, i ∈ P ∪W. (58)

t∑
k=1

∑
l≥k

Xi
kl ≥

∑
j∈δ(i)

t∑
k=1

∑
l≥k

Xj
kl ∀t ∈ T, i ∈ P ∪W. (59)

If we substitute (33) by (57), (58) and (59) in formulations ES or ES-LS, ES-N and ES-TP, respectively, we

obtain the echelon stock Federgruen formulations ES-F or ES-F-LS, ES-F-N and ES-F-TP, respectively.

3.3 Network formulation

The following formulation uses the network reformulation as proposed by Eppen and Martin [12] for the
SI-ULSP to rewrite the variables and constraints of the problem. Such a reformulation has also been applied

by Solyalı and Süral [37] and Cunha and Melo [8] for the OWMR. For any retailer r, let ψrklst be the

proportion of drst that is produced by the production plant in period k, transported to the warehouse of

retailer r in period l and to retailer r in period s. Let also ncrklst be the cost linked to the variable ψrklst:

ncrklst =
∑l−1
j=k hc

p
jd
r
st +

∑s−1
j=l hc

δw(r)
j drst +

∑t−1
j=s hc

r
jd
r
j+1,t. The network formulation (N) is given as follows:

Min
∑
t∈T

(∑
i∈F

scity
i
t +

∑
r∈R

t∑
k=1

t∑
l=k

t∑
s=l

ncrklstψ
r
klst

)
(60)

|T |∑
t=1

ψr111t = 1 ∀ r ∈ R (61)

t−1∑
k=1

t−1∑
l=k

t−1∑
s=l

ψik,l,s,t−1 =

t∑
k=1

t∑
l=k

|T |∑
s=t

ψiklts ∀ t ≥ 2, r ∈ R (62)

t∑
l=k

t∑
s=l

|T |∑
j=t:drsj>0

ψrklsj ≤ y
p
k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (63)



10 G–2017-59 – Revised Les Cahiers du GERAD

l∑
k=1

t∑
s=l

|T |∑
j=t:drsj>0

ψrklsj ≤ y
δw(r)
l ∀ t ∈ T, l ≤ t ∈ T, r ∈ R (64)

s∑
k=1

s∑
l=k

|T |∑
j=t:drsj>0

ψrklsj ≤ yrs ∀ t ∈ T, s ≤ t ∈ T, r ∈ R (65)

∑
i∈R

|T |∑
l=k

|T |∑
s=l

|T |∑
t=s

ψiklstd
i
st ≤ min{Ck, Dp

k}y
p
k ∀k ∈ T (66)

ψrklst ≥ 0 ∀ k ≤ l ≤ s ≤ t ∈ T, r ∈ R (67)

yit ∈ {0, 1} ∀t ∈ T, i ∈ F. (68)

Constraints (61) are the demand satisfaction constraints written as initial flow constraints. Constraints (62)

are the flow conservation constraints. Constraints (63), (64) and (65) are the setup forcing constraints for the

production plant, the warehouses and the retailers, respectively. Constraints (66) are the capacity constraints

at the production plant.

3.4 Transportation formulation

In the following formulation, the interactions between the facilities are modeled based on the transportation

formulation of Krarup and Bilde [24] for the SI-ULSP. For any retailer r, let θrklst be the quantity that

is produced by the production plant in period k, transported to the warehouse of retailer r in period l,

transported to retailer r in period s and used to satisfy drt . Let also Hr
klst be the cost linked to θrklst:

Hr
klst =

∑l−1
j=k hc

p
j +

∑s−1
j=l hc

δw(r)
j +

∑t−1
j=s hc

r
j . The transportation formulation (TP) is given as follows:

Min
∑
t∈T

(∑
i∈F

scity
i
t +

∑
r∈R

t∑
k=1

t∑
l=k

t∑
s=l

Hr
klstθ

r
klst

)
(69)

s.t.

t∑
k=1

t∑
l=k

t∑
s=l

θrklst = drt ∀ t ∈ T, r ∈ R (70)

t∑
l=k

t∑
s=l

θrklst ≤ drty
p
k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (71)

l∑
k=1

t∑
s=l

θrklst ≤ drty
δw(r)
l ∀ t ∈ T, l ≤ t ∈ T, r ∈ R (72)

s∑
k=1

s∑
l=k

θrklst ≤ drtyrs ∀ t ∈ T, s ≤ t ∈ T, r ∈ R (73)

∑
i∈R

|T |∑
l=k

|T |∑
s=l

|T |∑
t=s

θiklst ≤ min{Ck, Dp
k}y

p
k ∀k ∈ T (74)

θrklst ≥ 0 ∀ k ≤ l ≤ s ≤ t ∈ T, r ∈ R (75)

yit ∈ {0, 1} ∀t ∈ T, i ∈ F. (76)

Constraints (70) are the demand satisfaction constraints. Constraints (71), (72) and (73) are the setup forcing

constraints for the production plant, the warehouses and the retailers, respectively. Constraints (74) are the

capacity constraints at the production plant.

3.5 Multi-commodity formulation

The next formulation proposed is based on the distinction of each retailer-period pair (i.e., each drt is viewed

as a distinct commodity). For this formulation, for any retailer r, let w0r
kt be the amount produced at the
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production plant in period k to satisfy drt , let w1r
kt be the amount transported from the production plant to the

warehouse of retailer r in period k to satisfy drt and let w2r
kt be the amount transported from the warehouse

of retailer r to retailer r in period k to satisfy drt . Let also σ0r
kt be the amount stocked at the production

plant at the end of period k to satisfy drt , let σ1r
kt be the amount stocked at the warehouse of retailer r at the

end of period k to satisfy drt and let σ2r
kt be the amount stocked at retailer r at the end of period k to satisfy

drt . In the following formulation, we denote by δkt the Kronecker delta which takes the value 1 if k = t and

0 otherwise. The multi-commodity formulation (MC) is as follows:

Min
∑
t∈T

∑
i∈F

scity
i
t +

∑
r∈R

∑
k≤t

hcpkσ
0r
kt +

∑
r∈R

∑
k≤t

hc
δw(r)
k σ1r

kt +
∑
r∈R

∑
k≤t

hcrkσ
2r
kt

 (77)

σ0r
k−1,t + w0r

kt = w1r
kt + σ0r

kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (78)

σ1r
k−1,t + w1r

kt = w2r
kt + σ1r

kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (79)

σ2r
k−1,t + w2r

kt = δktd
r
t + (1− δkt)σ2r

kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (80)

w0r
kt ≤ drty

p
k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (81)

w1r
kt ≤ drty

δw(r)
k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (82)

w2r
kt ≤ drtyrk ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (83)∑

r∈R

|T |∑
t=k

w0r
kt ≤ min{Ck, Dp

k}y
p
k ∀k ∈ T (84)

w0r
kt , w

1r
kt , w

2r
kt , σ

0r
kt , σ

1r
kt , σ

2r
kt ≥ 0 ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (85)

yit ∈ {0; 1} ∀t ∈ T, i ∈ F. (86)

Constraints (78), (79) and (80) are the balance constraints for each commodity at the production plant,

at the warehouses and at the retailers, respectively. Constraints (81), (82) and (83) are the setup forcing

constraints for the production plant, the warehouses and the retailers, respectively. Constraints (84) are the

capacity constraints at the production plant.

The last formulation combines the idea of an echelon stock presented in Federgruen and Tzur [14] and

the MC formulation. It is called the multi-commodity echelon formulation (MCE). To get this formulation,

the inventory variables of the MC formulation are replaced with multi-commodity echelon variables Elrkt
representing the amount stocked at the end of period k at all predecessors of retailer r which are in level l

or more, and which will be used to fulfill the specific demand drt . We define the multi-commodity echelon

variables Elrkt as:

Elrkt =

 σ0r
kt + σ1r

kt + σ2r
kt if l = 0

σ1r
kt + σ2r

kt if l = 1
σ2r
kt if l = 2.

The multi-commodity echelon formulation (MCE) is then as follows:

Min
∑
t∈T

∑
i∈F

scity
i
t +

∑
r∈R

∑
k≤t

hcpkE
0r
kt +

∑
r∈R

∑
k≤t

(
hc
δw(r)
k − hcpk

)
E1r
kt +

∑
r∈R

∑
k≤t

(
hcrk − hc

δw(r)
k

)
E2r
kt

 (87)

s. t. (81)− (86)

E0r
k−1,t + w0r

kt = δktd
r
t + (1− δkt)E0r

kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (88)

E1r
k−1,t + w1r

kt = δktd
r
t + (1− δkt)E1r

kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (89)

E2r
k−1,t + w2r

kt = δktd
r
t + (1− δkt)E2r

kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (90)

E0r
kt ≥ E1r

kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (91)

E1r
kt ≥ E2r

kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (92)

E0r
kt , E

1r
kt , E

2r
kt ≥ 0 ∀ t ∈ T, k ≤ t ∈ T, r ∈ R. (93)
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Constraints (88), (89) and (90) are the balance constraints for each commodity at the production plant,

at the warehouses and at the retailers respectively. Constraints (91) and (92) are the echelon constraints

ensuring that the multi-echelon stock at a specific facility for a specific commodity is greater than or equal

to the sum of the multi-echelon stocks at all its direct successors for the same commodity.

3.6 Summary

The formulations previously introduced are extensions of the MIP formulations proposed for the OWMR. For

all the formulations presented, the adaptation of the original decision variables naturally leads to an increase

in their number. For the N and TP formulations, this increase translates into an additionnal dimension

with the new subscript k in the decision variables ψrklst and θrklst to reflect the third level. For all the other

formulations, the increase in the number of decision variables is just the result of the increase in the number

of facilities due to the added third level. Thus, the increase in the number of decision variables for the N

and TP formulations is much higher than for the other formulations when going from a two-level LSP to a

three-level LSP.

Table 1 gives a summary of the number of variables and constraints for each formulation previously

introduced, and the paper from which the formulation has been adapted to our problem. Recall that these

papers present a one-level or two-level problem whereas we consider a three-level problem. Note that, to

the best of our knowledge, the ES-N, ES-F-N, ES-F-TP, ES-F-LS and MCE formulations we propose are

completely new. In Table 1, one can see that the richer formulations, i.e., the ones that have more information

in the decision variables, are the largest ones.

Table 1: Summary of the sizes of all formulations

Formulation Variables Constraints Reference

C O(|F | × |T |) O(|F | × |T |) Pochet and Wolsey [34]
C-N O(|R| × |T |2) O(|F | × |T |) Eppen and Martin [12]

C-TP O(|R| × |T |2) O(|R| × |T |2) Krarup and Bilde [24]
C-LS O(|R| × |T |2) O(|R| × |T |2) Pochet and Wolsey [34]

ES O(|F | × |T |) O(|F | × |T |) Pochet and Wolsey [34]
ES-N O(|F | × |T |2) O(|F | × |T |2)

ES-TP O(|F | × |T |2) O(|F | × |T |2) Solyalı and Süral [37]
ES-LS O(|F | × |T |) O(|F | × |T |2) Melo and Wolsey [27]
ES-F O(|F | × |T |) O(|F | × |T |) Federgruen and Tzur [14]

ES-F-N O(|F | × |T |2) O(|F | × |T |2)
ES-F-TP O(|F | × |T |2) O(|F | × |T |2)
ES-F-LS O(|F | × |T |) O(|F | × |T |2)

N O(|R| × |T |4) O(|R| × |T |2) Solyalı and Süral [37]
TP O(|R| × |T |4) O(|R| × |T |2) Levi et al. [26]
MC O(|R| × |T |2) O(|R| × |T |2) Melo and Wolsey [27]

MCE O(|R| × |T |2) O(|R| × |T |2)

3.7 Analysis of the LP relaxation of formulations

We explore the strength of the MIP formulations in terms of the objective function value of their LP relaxation,

without considering the production capacity constraint (5). In the LP relaxations of the MIP formulations,

we replace the binary requirements on the setup variables by the following constraints:

0 ≤ yit ≤ 1 ∀ i ∈ F,∀ t ∈ T. (94)

We denote by zXLP the objective function value of the LP relaxation of formulation X. We denote by F (X)

the set of feasible solutions for formulation X. The following example is used to illustrate most of the strict

dominance relations between the formulations. The strict dominance relation between formulations MC and

N cannot be observed empirically on small instances such as the one presented hereafter. However, we have

observed it for large instances, for example with |R| = 200 and |T | = 30.



Les Cahiers du GERAD G–2017-59 – Revised 13

Example 1. Consider an instance of the 3LSPD with T = 4, |W | = 2 and |R| = 4. Each warehouse is

responsible for two retailers. The first warehouse is responsible for the first two retailers and the second

warehouse is responsible for the other two. We have, for any t ∈ T , hcpt = 30, hcw1
t = 50, hcw2

t = 60, hcr1t =

10, hcr2t = 20, hcr3t = 100, hcr4t = 10, scpt = 100, scw1
t = 500, scw2

t = 600, scr1t = 100, scr2t = 200, scr3t =

300, scr4t = 50 and dr1 = (10, 20, 15, 10), dr2 = (5, 30, 10, 10), dr3 = (45, 20, 20, 10), dr4 = (10, 20, 15, 20). For

this instance, the optimal LP solutions values for six of the formulations are zCLP = 3903.56, zC−NLP = 4813.46,

zES−LSLP = 6017.25, zES−NLP = 6096.343, zMC
LP = 6750.00 and zNLP = 6750.00.

Proposition 1

zCLP = zESLP = zES−FLP ≤ zC−LSLP ≤ zC−TPLP = zC−NLP ≤ zES−LSLP = zES−F−LSLP ≤ zES−NLP = zES−TPLP

= zES−F−NLP = zES−F−TPLP ≤ zTPLP = zMC
LP = zME

LP ≤ zNLP (95)

In case the unit inventory holding costs are increasing when we go deeper in the supply chain (i.e., if

hcpt ≤ hc
δw(r)
t ≤ hcrt for p ∈ P and any r ∈ R), Proposition 1 can be slightly improved.

Proposition 2 If, for p ∈ P and for any r ∈ R, we have hcpt ≤ hc
δw(r)
t ≤ hcrt , then:

zC−LSLP = zC−NLP (96)

Proposition 3 zCLP ≤ z
C−N
LP

Proof. This result follows from the fact that the network reformulation used describes the convex hull of the

solutions satisfying (2), (6) and (7) for i ∈ R and (4).

Proposition 4 zC−LSLP ≤ zC−TPLP

Proof. In our case, since the production variables for the retailers also appear in constraints (3), we may

not have an exact Wagner-Whitin cost structure for the retailers. Therefore, inequalities (29) may not be

sufficient to describe the convex hull of the solution space for the retailers, whereas the network reformulation

at the retailer level does. Indeed, suppose that in the LP optimal solution one constraint (3) has a non-zero

dual variable. If we dualize this constraint in the objective function, the Wagner-Whitin cost structure may

be violated, and the (l, S,WW ) valid inequalities do not describe the convex hull of the solution space for

the retailers part anymore.

Proposition 5 zC−NLP = zC−TPLP

Proof. This results follows from the fact that at the retailer level both the network and transportation

reformulations exactly describe the convex hull of the solutions satisfying (2), (6) and (7) for i ∈ R and (4)

as stated in Pochet and Wolsey [34].

Proposition 6 If, for p ∈ P and for any r ∈ R, we have hcpt ≤ hc
δw(r)
t ≤ hcrt , then:

zC−LSLP = zC−NLP (97)

Proof. To prove this equality, it is sufficient to prove that we still have Wagner-Whitin costs for the retailers

despite the fact that the production variables xr also appear in constraint (3) for w = δw(r). Therefore,

as proved in Pochet and Wolsey [34], the (l, S,WW ) inequalities are sufficient to describe the convex hull

of solutions satisfying (2), (6) and (7) for i ∈ R and (4). Let us dualise constraints (2) (for i ∈ P ∪W )

with positive dual variables µit and constraints (3) with dual variables νit . For any retailer r and any time

period t, the new production cost is ν
δw(r)
t while the holding cost remains the same. We denote by pc′rt this

new production cost. In this modified objective function, we have Wagner-Whitin costs for one particular

retailer r iff:

pc′rt + hcrt ≥ pc′rt+1 ∀t ∈ T
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⇔ ν
δw(r)
t + hcrt ≥ ν

δw(r)
t+1 ∀t ∈ T

⇔ ν
δw(r)
t − νδw(r)

t+1 + hcrt ≥ 0 ∀t ∈ T.

Furthermore, in the dual of problem C, at optimality, the constraint linked to the stock variables of the

warehouse δw(r) linked to retailer r is:

ν
δw(r)
t+1 − νδw(r)

t ≤ hcδw(r)
t ∀t ∈ T. (98)

Therefore:

ν
δw(r)
t − νδw(r)

t+1 + hcrt ≥ hcrt − hc
δw(r)
t ∀t ∈ T. (99)

As, by hypothesis, we have hcrt ≥ hc
δw(r)
t , the Wagner-Whitin cost structure still holds for any retailer. This

concludes the proof.

Proposition 7 zESLP = zCLP

Proof. The proof consists in showing that any solution to the linear relaxation of ES can be converted into a

solution to the linear relaxation of C with the same total cost, and that the reverse is also true. We will thus

prove that F (C) = F (ES). By the construction indicated in Section 3.2, we directly have F (C) ⊆ F (ES).

We will now prove that F (ES) ⊆ F (C). Let us take a feasible solution (x, I, y) ∈ F (ES) and construct a fea-

sible solution (x, s, y) ∈ F (C) with the same objective function value. We construct (x, s, y) ∈ F (C) as follows:

sit =


Iit if i ∈ R
Iit −

∑
r∈δ(i) I

r
t if i ∈W

Iit −
∑
w∈W Iwt if i = p.

(100)

We furthermore directly map the x and y variables. We now verify that all constraints hold.

1. Constraints (4). For any i ∈ R and any t ∈ T , constraints (4) hold directly because they are equivalent

to constraints (31).

2. Constraints (3). Let us take i ∈W . We have, according to (31), for any t ∈ T :

Iit−1 + xit = dit + Iit

⇔ Iit−1 + xit =
∑
r∈δ(i)

drt + Iit

⇔ Iit−1 + xit =
∑
r∈δ(i)

(
Irt−1 + xrt − Irt

)
+ Iit

⇔ Iit−1 −
∑
r∈δ(i)

Irt−1 + xit =
∑
r∈δ(i)

xrt + Iit −
∑
r∈δ(i)

Iit

⇔ sit−1 + xit =
∑
r∈δ(i)

xrt + sit.

Thus, constraints (3) hold for any warehouse as well. Using a similar approach, one can prove that

constraints (3) hold for the production plant. Therefore, constraints (3) hold.

3. Constraints (2). These constraints directly hold since the production and setup variables used in

formulations C and ES are the same.

4. Constraint (6). Due to constraints (33), constraints (6) directly hold.

5. Objective function value. A straightforward substitution of the I variables for the s variables in the

objective function of formulation ES directly gives the objective function expression of formulation C.

This concludes the proof.
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Proposition 8 zC−LSLP ≤ zES−LSLP

Proof. Using a similar approach as in the proof of Proposition 7, and using the fact that the (l, S,WW ) valid

inequalities (29) are a subset of the (l, S,WW ) valid inequalities (56), we directly have that F (ES − LS) ⊆
F (C−LS). Indeed, the (l, S,WW ) valid inequalities (29) are defined for all retailers r whereas the (l, S,WW )

valid inequalities (56) are defined for any facility i.

Proposition 9 zES−LSLP ≤ zES−NLP

Proof. The proof consists in showing that ES-N gives a stronger reformulation than ES-LS. The result follows

from the fact that ES-N uses a network reformulation (38) and (39) that gives the convex hull of the set (2),

(31), (35), (36). On the contrary, the (l, S,WW ) valid inequalities (56) only give an approximation of the

convex hull of this set. Indeed, suppose there exist one i ∈ P ∪W such that, in the optimal LP solution of

ES-LS, we have one constraint (33) whose dual variable is strictly positive. If we dualize this constraint with

its dual value in the objective function, we may destroy the Wagner-Whitin cost structure for the subproblem

linked to the facility i and therefore, the (l, S,WW ) valid inequalities (56) only give an approximation of the

convex hull of the SI-ULSP linked to facility i. This concludes the proof.

Proposition 10 zES−NLP = zES−TPLP

Proof. This results follows from the fact that at the retailer level both the network and transportation

reformulations exactly describe the convex hull of the solutions satisfying (31), (35), (2) and (36) (see Pochet

and Wolsey [34]).

Proposition 11 zESLP = zES−FLP

Proof. To prove this result, we just need to prove that the echelon constraints (33) and (57) are equivalent,

since except for the echelon constraints, formulations ES and ES-F have exactly the same objective function

and constraints.

1. (33) ⇒ (57). Let (x, I, y) ∈ F (ES) be a feasible solution for formulation ES. One has, thanks to (31),

Iit =
∑t
u=1 x

i
u − di1t. Therefore, for any i ∈ F and any t ∈ T , one has

Iit ≥
∑
j∈δ(i)

Ijt

⇔
t∑

u=1

xiu − di1t ≥
∑
j∈δ(i)

(
t∑

u=1

xju − d
j
1t

)

⇔
t∑

u=1

xiu ≥
∑
j∈δ(i)

t∑
u=1

xju

since di1t =
∑
j∈δ(i) d

j
1t.

2. (57) ⇒ (33). Let (x, I, y) ∈ F (ES − F ) be a feasible solution for formulation ES-F. One has, for any

i ∈ F and any t ∈ T ,
∑t
k=1 x

i
k =

∑t
k=1

(
dik + Iik − Iik−1

)
= Iit − Ii0 +

∑t
k=1 d

i
k = dik + Iit , since Ii0 = 0.

Therefore,

t∑
k=1

xik ≥
∑
j∈δ(i)

t∑
k=1

xjk

⇔
t∑

k=1

dik + Iit ≥
∑
j∈δ(i)

t∑
k=1

djk +
∑
j∈δ(i)

Ijt

⇔ Iit ≥
∑
j∈δ(i)

Ijt

since
∑
j∈δ(i)

∑t
k=1 d

j
k =

∑t
k=1 d

i
k.
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Using similar arguments, one can prove Propositions 12, 13 and 14.

Proposition 12 zES−NLP = zES−F−NLP

Proposition 13 zES−TPLP = zES−F−TPLP

Proposition 14 zES−LSLP = zES−F−LSLP

Proposition 15 zES−F−TPLP ≤ zTPLP

Proof. Let zTPLP (θ, y) and zES−F−TPLP (X, I, y) be the LP relaxation objective function values of (θ, y) ∈ F (TP )

and (X, I, y) ∈ F (ES−F −TP ), respectively. To prove the result, we prove that F (TP ) ⊆ F (ES−F −TP ).

The counter example presented at the beginning of the section shows that the strict equality does not hold

in some cases. Let us take a feasible solution (θ, y) ∈ F (TP ) and construct a feasible solution (X, I, y) ∈
F (ES−F−TP ) with the same objective function value. We construct (X, I, y) ∈ F (ES−F−TP ) as follows:

Xp
qt =

∑
i∈R

t∑
r=q

t∑
s=r

θiqrst ∀q ≤ t ∈ T (101)

Xw
rt =

∑
i∈δ(w)

r∑
q=1

t∑
s=r

θiqrst ∀w ∈W, r ≤ t ∈ T (102)

Xi
st =

s∑
q=1

s∑
r=q

θiqrst ∀i ∈ R, s ≤ t ∈ T (103)

Iit =

t∑
u=1

|T |∑
k=u

Xi
uk − di1t ∀i ∈ F, t ∈ T. (104)

We directly map the y variables since they are the same in both formulations. We show hereafter that

(X, I, y) constructed using (101)–(104) belongs to F (ES − F − TP ).

1. Constraints (48). For any i ∈ F and any t ∈ T , by construction one has

Iit − Iit−1 =

t∑
u=1

|T |∑
k=u

Xi
uk − di1t −

t−1∑
u=1

|T |∑
k=u

Xi
uk + di1,t−1

=

|T |∑
k=t

Xi
tk − dit.

Therefore, constraints (48) hold.

2. Constraints (49). For the production plant p and for any t ∈ T , one has

t∑
q=1

Xp
qt =

∑
i∈R

t∑
q=1

t∑
r=q

t∑
s=r

θiqrst

=
∑
i∈R

dit by (70)

= dpt .

Using a similar approach one can prove that constraints (49) also hold for any warehouse, any retailer

and any time period. Therefore, constraints (49) hold.

3. Constraints (50). If we sum up constraints (71) over all i ∈ R for any k ≤ t ∈ T , we have∑
i∈R

∑t
l=k

∑t
s=l θ

i
klst ≤

∑
i∈R d

i
ty
p
k. Besides,

∑
i∈R

∑t
l=k

∑t
s=l θ

i
klst = Xp

kt by construction and∑
i∈R d

i
ty
p
k = ypk

∑
i∈R d

i
t = dpt y

p
k. Therefore, Xp

kt ≤ dpt y
p
k and constraints (50) hold for the produc-

tion plant and any k ≤ t ∈ T . Using a similar approach, one can prove that the constraints also hold

for the warehouses and the retailers. Thus, constraints (50) hold.
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4. Constraints (59). For the production plant (i.e., i = p) and for any t ∈ T , one has

t∑
q=1

|T |∑
l=q

Xp
ql ≥

∑
w∈W

t∑
k=1

|T |∑
l=k

Xw
kl (105)

⇔
t∑

q=1

|T |∑
l=q

∑
i∈R

l∑
k=q

l∑
s=k

θiqksl ≥
∑
i∈R

t∑
k=1

|T |∑
l=k

k∑
q=1

l∑
s=k

θiqksl (106)

⇔
∑
i∈R

t∑
q=1

|T |∑
k=q

|T |∑
l=k

l∑
s=k

θiqksl ≥
∑
i∈R

t∑
q=1

t∑
k=q

|T |∑
l=k

l∑
s=k

θiqksl (107)

⇔
∑
i∈R

t∑
q=1

t∑
k=q

|T |∑
l=k

l∑
s=k

θiqksl +
∑
i∈R

t∑
q=1

|T |∑
k=t+1

|T |∑
l=k

l∑
s=k

θiqksl ≥
∑
i∈R

t∑
q=1

t∑
k=q

|T |∑
l=k

l∑
s=k

θiqksl (108)

⇔
∑
i∈R

t∑
q=1

|T |∑
k=t+1

|T |∑
l=k

l∑
s=k

θiqksl ≥ 0. (109)

As θ ≥ 0, (109) holds. Thus, thanks to the different equivalences, (105) holds and so do constraints (59)

for the production plant and any t ∈ T . Using a similar approach one can prove that constraints (59)

hold for the warehouses and any t ∈ T . Therefore, constraints (59) hold.

5. Objective function value. For the TP formulation, the holding cost linked to the production plant is

∑
i∈R

|T |∑
q=1

|T |∑
r=q

|T |∑
t=r

|T |∑
k=t

r−1∑
l=q

hcpl θ
i
qrtk =

∑
i∈R

|T |∑
q=1

|T |∑
r=q

|T |∑
t=r

|T |∑
k=t

k−1∑
l=q

hcpl θ
i
qrtk

−
∑
i∈R

|T |∑
q=1

|T |∑
r=q

|T |∑
t=r

|T |∑
k=t

k−1∑
l=r

hcpl θ
i
qrtk

=
∑
i∈R

|T |∑
q=1

|T |∑
k=q

k∑
r=q

k∑
t=r

k−1∑
l=q

hcpl θ
i
qrtk −

∑
i∈R

|T |∑
t=1

|T |∑
k=t

t∑
q=1

t∑
r=q

k−1∑
l=r

hcpl θ
i
qrtk (110)

=

|T |∑
q=1

|T |∑
k=q

k−1∑
l=q

hcpl

∑
i∈R

k∑
r=q

k∑
t=r

θiqrtk −
∑
i∈R

|T |∑
t=1

|T |∑
k=t

(
k−1∑
l=r

hcpl

)
t∑

q=1

t∑
r=q

θiqrtk (111)

=

|T |∑
q=1

|T |∑
k=q

k−1∑
l=q

hcpl

∑
i∈R

k∑
r=q

k∑
t=r

θiqrtk −
|T |∑
r=1

|T |∑
k=r

(
k−1∑
l=r

hcpl

)∑
i∈R

r∑
q=1

k∑
t=r

θiqrtk (112)

=

|T |∑
q=1

|T |∑
k=q

k−1∑
l=q

hcpl

Xp
qk −

|T |∑
r=1

|T |∑
k=r

(
k−1∑
l=r

hcpl

) ∑
w∈W

Xw
rk. (113)

Expression (113) is exactly the holding cost linked to the production plant in the objective function

expression (47) of formulation ES-F-TP, when writen in terms of X variables. Using a similar approach,

one can map the holding costs of the warehouses and the retailers in the two formulations. Besides, the

setup costs for all facilities directly map since the setup variables are the same. Therefore, the objective

function expression of the TP and ES-F-TP formulations are the same. This concludes the proof.

Proposition 16 zMC
LP = zTPLP

Proof. The proof consists in showing that any solution to the linear relaxation of MC can be converted into

a solution to the linear relaxation of TP with the same objective function value, and that the reverse is also
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true. We will thus prove that F (MC) = F (TP ). We first prove that F (TP ) ⊆ F (MC). Let us take a

feasible solution (θ, y) ∈ F (TP ) and construct a feasible one (σ,w, y) ∈ F (MC) with the same objective

function value. We construct (σ,w, y) ∈ F (MC) as follows:

w0i
qt =

t∑
r=q

t∑
s=r

θiqrst ∀i ∈ R, q ≤ t ∈ T (114)

w1i
rt =

r∑
q=1

t∑
s=r

θiqrst ∀i ∈ R, r ≤ t ∈ T (115)

w2i
st =

s∑
q=1

s∑
r=q

θiqrst ∀i ∈ R, s ≤ t ∈ T (116)

σ0i
kt =

k∑
u=1

(
w0i
ut − w1i

ut

)
∀i ∈ R, k ≤ t ∈ T (117)

σ1i
kt =

k∑
u=1

(
w1i
ut − w2i

ut

)
∀i ∈ R, k ≤ t ∈ T (118)

σ2i
kt =

{ ∑k
u=1 w

2i
ut ∀i ∈ R, k < t ∈ T

0 otherwise.
(119)

We directly map the y variables since they are the same in both formulations. We show hereafter that

(σ,w, y) constructed using (114)–(119) belongs to F (MC).

1. Constraints (78)–(80). Note that these constraints can be written just in terms of the w variables if we

eliminate the stock variables. We thus get the following constraints instead of (78)–(80):

k∑
j=1

w0i
jt ≥

k∑
j=1

w1i
jt ∀i ∈ R, ∀k ≤ t ∈ T (120)

k∑
j=1

w1i
jt ≥

k∑
j=1

w2i
jt ∀i ∈ R, ∀k ≤ t ∈ T (121)

t∑
k=1

w2i
kt = dit ∀i ∈ R, ∀t ∈ T. (122)

For any i ∈ R and any k ≤ t ∈ T , we have:

k∑
j=1

w0i
jt =

k∑
j=1

t∑
r=j

t∑
s=r

θijrst ≥
k∑
j=1

k∑
r=j

t∑
s=r

θijrst

since θ ≥ 0 and since t ≤ k. Besides, we have:

k∑
j=1

k∑
r=j

t∑
s=r

θijrst =

k∑
q=1

k∑
r=q

t∑
s=r

θiqrst

=

k∑
r=1

r∑
q=1

t∑
s=r

θiqrst

=

k∑
r=1

w1i
rt.

Therefore,
∑k
j=1 w

0i
jt ≥

∑k
r=1 w

1i
rt and constraints (120) hold. Using a similar approach, one can prove

that constraints (121) and (122) also hold.
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2. Constraints (81)–(83). These constraints hold directly by substituing (114)–(116) in constraints (71)–

(73).

3. Objective function value. In the TP formulation, the holding cost linked to the production plant is

given by

∑
i∈R

|T |∑
t=1

t∑
q=1

t∑
r=q

t∑
s=r

r−1∑
j=q

hcpjθ
i
qrst

=
∑
i∈R

|T |∑
t=1

t∑
q=1

t∑
r=q

t∑
s=r

t∑
j=q

hcpjθ
i
qrst −

∑
i∈R

|T |∑
t=1

t∑
q=1

t∑
r=q

t∑
s=r

t∑
j=r

hcpjθ
i
qrst

=
∑
i∈R

|T |∑
t=1

t∑
j=1

j∑
q=1

t∑
r=q

t∑
s=r

hcpjθ
i
qrst −

∑
i∈R

|T |∑
t=1

t∑
j=1

j∑
r=1

r∑
q=1

t∑
s=r

hcpjθ
i
qrst

=
∑
i∈R

|T |∑
t=1

t∑
j=1

j∑
q=1

hcpj

(
t∑

r=q

t∑
s=r

θiqrst

)
−
∑
i∈R

|T |∑
t=1

t∑
j=1

j∑
r=1

hcpj

(
r∑
q=1

t∑
s=r

θiqrst

)

=
∑
i∈R

|T |∑
t=1

t∑
j=1

j∑
u=1

hcpj
(
w0i
ut − w1i

ut

)
,

which is exactly the holding cost linked to the production plant in the objective function of the MC

formulation if the inventory variables of the production plant level are replaced by the production

variables using (117). Using a similar approach, one can map the holding costs linked to the warehouses

and retailers and obtain the same expression as in the MC formulation. Besides, the setup costs directly

match between the two formulations. Therefore, the objective function expression of the TP and MC

formulations are the same. This concludes the proof showing that F (TP ) ⊆ F (MC).

We now prove that F (MC) ⊆ F (TP ). Let us consider, for each retailer i and each period t, a network with

three layers representing the three levels of our distribution structure. In each layer, the nodes (l, t1) represent

each time period t1 ≤ t at each level l and there are arcs going from one node to the node representing the

next period. Figure 2 illustrates this network for a particular retailer i and with t = 4. In Figure 2, the

node S represents the source node and we have displayed the variables linked to each arc in the network.

2, 1 2, 2 2, 3 2, 4

1, 1 1, 2 1, 3 1, 4

0, 1 0, 2 0, 3 0, 4Production Plant

Warehouse

Retailer

S

w0i
14

w0i
24 w0i

34 w0i
44

σ2i
14 σ2i

24 σ2i
34

σ1i
14 σ1i

24 σ1i
34

σ0i
14 σ0i

24 σ0i
34

w1i
14 w1i

24 w1i
34 w1i

44

w2i
14 w2i

24 w2i
34 w2i

44

di4

Figure 2: Graphical representation of the network used for the flow decomposition for t = 4
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The key idea is the same as in Cunha and Melo [8]. Indeed, here also we see that variables w0i
kt, w

1i
kt, w

2i
kt,

σ0i
kt, σ

1i
kt and σ2i

kt describe a feasible flow of dit units of demand arriving in node (2, t) in the network for retailer i.

Besides, we have
∑t
k=1 w

2i
kt = dit. Based on the flow decomposition theorem of Ford and Fulkerson [15], any

feasible flow in a network can be decomposed into paths and cycles. In our general distribution network, there

is no directed cycle, which means that the feasible flow can be decomposed into paths only. For any feasible

flow, the decomposition into paths θi can be done in such a way that (114)–(116) are satisfied. Indeed, the

subscripts k of the set of wlikt variables along a path directly translates into the subscripts q, r and s of the

θiqrst variables. This results comes fom the fact that, in the MC formulation, the flow of goods between

facilities is depicted by the w variables while the flow of goods between facilities in the TP formulation is

obtained through the subscripts of the θ variables. An example of such a decomposition is given in Figures 3
and 4. In Figure 3, the flow between facilities is shown in terms of w0, w1 and w2 variables, and the inventory

at a facility is shown in terms of σ0, σ1 and σ3 variables. This flow is decomposed into paths θ in Figure 4.

Note that the w variables may belong to several paths.

2, 1 2, 2 2, 3 2, 4

1, 1 1, 2 1, 3 1, 4

0, 1 0, 2 0, 3 0, 4

S

w0i
14 = di4

σ1i
24 = di4

σ0i
14 = di4

w1i
24 = di4

w2i
34 = di4

σ2i
34 = di4

di4

Figure 3: Graphical representation of the flow decomposition in terms of w0, w1 and w2 variables, for t = 4

2, 1 2, 2 2, 3 2, 4

1, 1 1, 2 1, 3 1, 4

0, 1 0, 2 0, 3 0, 4

S

θi1234 = di4

di4

Figure 4: Graphical representation of the flow decomposition in paths θi for t = 4



Les Cahiers du GERAD G–2017-59 – Revised 21

We now need to prove that the constraints of the formulation TP are satisfied with the variables θ built

as in the example previously.

1. Constraints (70). For any i ∈ R and any t ∈ T , we have
∑t
k=1 w

2i
kt = dit. Therefore, by immediate

subsitution
∑t
q=1

∑t
r=q

∑t
s=r θ

i
qrst =

∑t
s=1

∑s
q=1

∑s
r=q θ

i
qrst =

∑t
s=1 w

2i
st = dit. Therefore, constraints

(70) hold.

2. Constraints (71)–(73). Substituting the w variables in (81)–(83) using (114)–(116) results directly in

(71)–(73).

3. Objective function value. As stated previously, the formulations TP and MC have the same objective

function value if (114)–(116) are used. This concludes the proof.

Proposition 17 zMC
LP = zME

LP

Proof. The proof consists in showing that any solution to the LP relaxation of MC can be converted into a

solution to the LP relaxation of ME and that the reverse is also true. We will thus prove that F (MC) =

F (ME). By the construction indicated in Section 3.5, we directly have F (MC) ⊆ F (ME). We will now

prove that F (ME) ⊆ F (MC). Let us take a feasible solution (w,E, y) ∈ F (ME) and construct a feasible

solution (w, σ, y) ∈ F (MC) with the same objective function value. We construct (w, σ, y) ∈ F (MC) as

follows: σ2i
kt = E2i

kt, σ
1i
kt = E1i

kt − E2i
kt and σ0i

kt = E0i
kt − E1i

kt. We furthermore directly map the w and y

variables. We now verify that all constraints hold.

1. Balance constraints (78)–(80). For any i ∈ R and any k ≤ t ∈ T , constraints (80) hold directly because

of constraint (90) and of the equality σ2i
kt = E2i

kt. For any t ∈ T , any k ≤ t and any i ∈ R, one can

substract constraint (90) from (89) to obtain:

E1i
k−1,t − E2i

k−1,t + w1i
kt − w2i

kt = (1− δkt)(E1i
kt − E2i

kt)

⇔ σ1i
k−1,t + w1i

kt = w2i
kt + (1− δkt)σ1i

kt.

In the previous calculations, we have used the fact that constraints (89) and (90) hold for any retailer i

and any k ≤ t ∈ T . If k < t, we directly have (79) since δkt = 0. If k = t, it is obvious that any optimal

solution will have σlitt = 0 since it represents the inventory on hand at the end of period t to satisfy the

demand of the current period. Thus, constraints (79) hold. Using a similar approach, one can prove

that constraints (78) hold.

2. Constraints (81)–(84). These constraints directly hold since the production and setup variables used in

formulations MC and ME are the same.

3. Constraint (85). Due to constraints (91) and (92), constraints (85) directly hold.

4. Objective function value. A straightforward substitution of the E variables for the σ variables in the

objective function of formulation ME directly gives the objective function expression of formulation

MC. This concludes the proof.

Proposition 18 zTPLP ≤ zNLP

Proof. Let zTPLP (θ, y) and zNLP (ψ, y) be the LP relaxation objective function values of (θ, y) ∈ F (TP ) and

(ψ, y) ∈ F (N), respectively. To prove the result, we prove that F (N) ⊆ F (TP ). The counter example

presented at the beginning of the section shows that the strict inequality holds in some cases. Let us take

a feasible solution (ψ, y) ∈ F (N) and construct a feasible solution (θ, y) ∈ F (TP ) with the same objective

function value. We construct (θ, y) ∈ F (TP ) as follows:

θiklst =

|T |∑
j=t

ditψ
i
klsj ∀k ≤ l ≤ s ≤ t ∈ T. (123)

We directly map the y variables since they are the same in both formulations. We show hereafter that (θ, y)

constructed using (123) belongs to F (TP ).
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1. Constraints (70). If, for any i ∈ R and any demand point k ∈ T , we sum up constraints (62) over t

(2 ≤ t ≤ k) with constraint (61), one gets
|T |∑
t=1

ψi111t +

k∑
t=2

t∑
p=1

t∑
l=p

|T |∑
s=t

ψiplts −
k∑
t=2

t−1∑
p=1

t−1∑
l=p

t−1∑
s=l

ψip,l,s,t−1 = 1

⇔
k∑
t=1

t∑
p=1

t∑
l=p

|T |∑
s=t

ψiplts −
k∑
t=2

t−1∑
p=1

t−1∑
l=p

t−1∑
s=l

ψip,l,s,t−1 = 1

⇔
k∑
t=1

t∑
p=1

t∑
l=p

|T |∑
s=k

ψiplts +

k∑
t=1

t∑
p=1

t∑
l=p

k−1∑
s=t

ψiplts −
k∑
t=2

t−1∑
p=1

t−1∑
l=p

t−1∑
s=l

ψip,l,s,t−1 = 1

⇔
k∑
t=1

t∑
p=1

t∑
l=p

|T |∑
s=k

ψiplts +

k−1∑
t=1

t∑
p=1

t∑
l=p

k−1∑
s=t

ψiplts −
k−1∑
t=1

t∑
p=1

t∑
l=p

t∑
s=l

ψiplst = 1

⇔
k∑
t=1

t∑
p=1

t∑
l=p

|T |∑
s=k

ψiplts +

k−1∑
t=1

t∑
p=1

t∑
l=p

k−1∑
s=t

ψiplts −
k−1∑
s=1

s∑
p=1

s∑
l=p

s∑
t=l

ψiplts = 1

⇔
k∑
t=1

t∑
p=1

t∑
l=p

|T |∑
s=k

ψiplts +

k−1∑
t=1

t∑
p=1

t∑
l=p

k−1∑
s=t

ψiplts −
k−1∑
t=1

t∑
p=1

t∑
l=p

k−1∑
s=t

ψiplts = 1

⇔
k∑
t=1

t∑
p=1

t∑
l=p

|T |∑
s=k

ψiplts = 1

⇒
k∑
t=1

t∑
p=1

t∑
l=p

|T |∑
s=k

dikψ
i
plts = dik

⇔
k∑
t=1

t∑
p=1

t∑
l=p

θipltk = dik

⇔
k∑
p=1

k∑
l=p

k∑
t=l

θipltk = dik

Thus, constraints (70) hold. Note that the single implication that appears in the previous calculations

comes from the special case where dik = 0 for some i and some k.

2. Constraints (71). For any i ∈ R and any t ≤ q ∈ T , let us define a parameter aitq as follows:

aitq =

{
1 if Di

tq > 0
0 otherwise.

With this parameter, (123) can be written as θiklst =
∑|T |
j=t a

i
sjd

i
tψ
i
klsj since aisj = 1 for s ≤ t ≤ j ∈ T if

dit > 0, otherwise θiklst becomes zero. For any retailer i and for any k ≤ t ∈ T , (63) gives
t∑
l=k

t∑
s=l

|T |∑
j=t:disj>0

ψiklsj ≤ y
p
k

⇔
t∑
l=k

t∑
s=l

|T |∑
j=t

aisjψ
i
klsj ≤ y

p
k

⇔
t∑
l=k

t∑
s=l

θiklst
dit
≤ ypk

⇔
t∑
l=k

t∑
s=l

θiklst ≤ dity
p
k.
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Therefore, constraints (71) hold. In the same vain, one can prove that constraints (72) and (73) also

hold.

3. Objective function value. The holding cost linked to the production plant in formulation N is given by

∑
i∈R

|T |∑
t=1

t∑
k=1

t∑
l=k

t∑
s=l

l−1∑
j=k

hcpjd
i
stψ

i
klst

=
∑
i∈R

|T |∑
t=1

t∑
k=1

t∑
l=k

t∑
s=l

l−1∑
j=k

t∑
u=s

hcpjd
i
uψ

i
klst

=
∑
i∈R

|T |∑
t=1

t∑
k=1

t∑
l=k

t∑
s=l

t∑
u=s

l−1∑
j=k

hcpjd
i
uψ

i
klst

=
∑
i∈R

|T |∑
t=1

t∑
k=1

t∑
l=k

t∑
s=l

t∑
u=s

diuψ
i
klst

l−1∑
j=k

hcpj

=
∑
i∈R

|T |∑
k=1

|T |∑
l=k

|T |∑
s=l

|T |∑
u=s

|T |∑
t=u

 l−1∑
j=k

hcpj

 diuψ
i
klst

=
∑
i∈R

|T |∑
k=1

|T |∑
l=k

|T |∑
s=l

|T |∑
u=s

 l−1∑
j=k

hcpj

 θiklsu

=
∑
i∈R

|T |∑
k=1

|T |∑
l=k

|T |∑
s=l

|T |∑
u=s

l−1∑
j=k

hcpjθ
i
klsu

=
∑
i∈R

|T |∑
k=1

|T |∑
l=k

|T |∑
s=l

|T |∑
t=s

l−1∑
j=k

hcpjθ
i
klst

=
∑
i∈R

|T |∑
t=1

t∑
k=1

t∑
l=k

t∑
s=l

l−1∑
j=k

hcpjθ
i
klst,

which is exactly the holding cost linked to the production plant in the objective function of formulation

TP. Using a similar approach, one can prove the equivalence between formulations N an TP for the

holding costs at the warehouse and retailer level. Besides, the setup costs in the two formulations are

already identical. Therefore, the objective function expression of the TP and N formulations are the

same. This concludes the proof.

4 Numerical experiments

In order to assess the strengths and weaknesses of the different formulations, we conducted computational

experiments based on the instances used in Solyalı and Süral [37]. In their experiments, Solyalı and Süral [37]

set the number of retailers |R| equal to 50, 100 or 150, and the length of the time horizon |T | is equal to

15 or 30. The demand at the retailers is generated both in a static and dynamic way from U[5, 100]. The

fixed costs at all levels are also generated both in a static and in a dynamic way. For the warehouse, the

fixed costs are generated from U[1500, 4500]. For the retailers, the fixed costs are generated from U[5, 100].

All the demands and fixed costs are generated as integer values. The unit inventory holding costs are static

and are set to 0.5 for the warehouse. For the retailers, the unit inventory holding costs are also static and

are generated from U[0.5, 1]. The holding costs take continuous values. The authors generated 10 random

instances for each combination of settings, resulting in a total of 240 instances.



24 G–2017-59 – Revised Les Cahiers du GERAD

As we have one more level than in Solyalı and Süral [37], we adapted these instances. In our instances, the

number of retailers |R| is set equal to 50, 100 or 200. The number of warehouses |W | is set equal to 5, 10, 15

or 20. We used two different horizon lengths: |T | = 15 and 30. The demand at the retailers is generated both

in a static and dynamic way from U[5, 100]. In the case of a static demand, we have drt = dr ∀ t ∈ T, r ∈ R.

The fixed costs at all levels are also generated in a static and in a dynamic way. For the production plant,

the fixed costs are generated from U[30000, 45000]. For the warehouses, the fixed costs are generated from

U[1500, 4500]. For the retailers, the fixed costs are generated from U[5, 100]. All the demands and fixed

costs are generated as integer values. The unit inventory holding costs are static and are set to 0.25 for the

production plant and 0.5 for the warehouses. For the retailers, the unit inventory holding costs are generated

from U[0.5, 1]. The holding costs take continuous values. For each combination of settings, we generate five

different instances leading to 480 different instances to be solved for each formulation.

In order to test our formulations, we additionnally define two structures for the distribution network

represented in Figure 1. In the first structure, we consider a balanced network where each warehouse has the

same number of retailers, except when the number of retailers is not a multiple of the number of warehouses.

In the second structure, we consider an unbalanced network where 80% of the retailers are assigned to 20%

of the warehouses. For each pair (|W |, |R|), Tables 2 and 3 give the number of retailers assigned to each

warehouse for the balanced and unbalanced networks, respectively. Each structure is tested on the 480

instances we generated.

Table 2: Assignment of the retailers to the warehouses for the balanced network

Number of warehouses
Number of retailers

50 100 200

5 10 ∀w ∈W 20 ∀w ∈W 40 ∀w ∈W

10 5 ∀w ∈W 10 ∀w ∈W 20 ∀w ∈W

15
3 if w ∈ J1, 10K 6 if w ∈ J1, 5K 14 if w ∈ J1, 10K
4 if w ∈ J11, 15K 7 if w ∈ J6, 15K 12 if w ∈ J12, 15K

20
3 if w ∈ J1, 10K

5 ∀w ∈W 10 ∀w ∈W
2 if w ∈ J11, 20K

Table 3: Assignment of the retailers to the warehouses for the unbalanced network

Number of warehouses
Number of retailers

50 100 200

5
40 if w = 1

80 if w = 1 160 if w = 13 if w ∈ J2, 3K
5 if w =∈ J2, 5K 10 if w =∈ J2, 5K2 if w ∈ J4, 5K

10
17 if w ∈ J1, 2K 38 if w ∈ J1, 2K 80 if w ∈ J1, 2K
2 if w ∈ J3, 10K 3 if w ∈ J3, 10K 5 if w ∈ J3, 10K

15
9 if w ∈ J1, 2K 25 if w ∈ J1, 2K 54 if w ∈ J1, 2K

8 if w = 3 26 if w = 3 56 if w = 3
2 if w ∈ J4, 15K 2 if w ∈ J4, 15K 3 if w ∈ J4, 15K

20
5 if w ∈ J1, 2K

17 if w ∈ J1, 4K 38 if w ∈ J1, 4K4 if w ∈ J3, 4K
2 if w ∈ J5, 20K 3 if w ∈ J5, 20K2 if w ∈ J5, 20K

For the experiments, we used the CPLEX 12.6.1.0 C++ library and turned off CPLEX’s parallel mode.

We set the CPLEX MIP tolerance parameter to 10−6. All the other CPLEX parameters are set to their

default value. The computation time limit imposed to solve each MIP instance is 6 hours.
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We compare the formulations with respect to different indicators:

• number of instances for which the MIP is solved to optimality;

• CPU time (s) taken to solve the LP relaxation;

• CPU time (s) taken to solve the MIP;

• objective function value of the LP relaxation;

• objective function value of the MIP optimal solution when available, cost of the best solution found

otherwise;

• number of nodes in the branch-and-cut tree;

• integrality gap (%);

• optimality gap (%).

For a particular instance, if we denote by zXLP the objective function value of the LP relaxation with formu-

lation X and by z∗ the optimal objective function value of this instance when available (or the best objective

function value obtained among all formulations for this instance otherwise), the integrality gap is computed

as (z∗ − zXLP ) / z∗. The optimality gap is the gap between the best solution found and the best lower bound

given by CPLEX at the end of the CPU time limit. Detailed results can be found in the appendices of

this report.

In the following sections, results will be reported in two tables. The first table illustrates the aggregated

results obtained for |T | = 15 while the second table displays the aggregated results obtained for |T | = 30.

In each table, each row represents the results obtained for a particular formulation while each column refers

to the different indicators previously defined. In the tables, MIP-opt denotes the number of MIP optimal

solutions obtained (out of 240 instances in each table); LP-CPU and MIP-CPU represent the CPU time taken

to solve the LP and MIP instances, respectively; LP-cost and MIP-cost represent the cost of the LP and MIP

optimal solutions (or best solution found at the end of the time limit for the MIP solutions), respectively;

I-gap gives the integrality gap and O-gap indicates the optimality gap. In Sections 4.1 and 4.2 we will report

the results for the uncapacitated and capacitated instances, respectively. In Section 4.3, we will perform an

analysis of the influence of the parameters in our experiments.

4.1 Uncapacitated instances

We first report the results for the balanced network in Section 4.1.1, followed by the unbalanced network

in Section 4.1.2. For the uncapacitated instances, we performed our experiments on a 3.07 GHz Intel Xeon

processor with only one thread. For these instances, CPLEX was able to find a feasible MIP solution for

all uncapacitated instances with a balanced network and with an unbalanced network. The LP relaxation

values are calculated separately. Note that we do not impose any time limit to solve the LP relaxations.

4.1.1 Balanced network

In the balanced network, each warehouse is responsible for approximately the same number of retailers (see

Table 2).

Tables 4 and 5 illustrate the performance of the different MIP formulations for |T | = 15 and |T | = 30,

respectively. In Table 4, which presents the results for the small instances, one can see that the formulations

MC, MCE, N and TP obtain the best performance in general, with all MIP optimal solutions found, the

lowest MIP-CPU and a value of the LP relaxation which is very close to the optimal MIP cost. Yet, the LP

relaxation for these three formulations is not the same as the MIP optimal cost, as witnessed by the small

but positive values for the I-gap. Besides, the MC formulation has the lowest MIP-CPU time among all

formulations. However, the CPU time needed to solve the LP relaxation of these formulations is much higher

than with the other formulations. The high performance of these formulations is also expected because of

the rich information which is contained in the decision variables used for each formulation.
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Table 4: Performance of the formulations for the balanced network - 1h time limit, |T | = 15

Formulation LP-cost LP-CPU MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

C 186156 0.03 327484 8291.35 71832.2 157 40.94 2.94
C-N 225136 0.2 327315 10023.89 202204.1 141 29.89 3.12

C-TP 225136 0.13 327247 8567.71 29431 158 29.89 2.78
C-LS 225136 0.19 327501 8337.91 14132.7 158 29.89 3.26

ES 186156 0.02 326906 600.53 29725.7 240 40.94 0
ES-N 320903 0.47 326906 117.47 4253.7 240 1.62 0

ES-TP 320903 1.69 326906 176.9 2652.1 240 1.62 0
ES-LS 320897 1.51 326906 297.58 1760.4 240 1.62 0
ES-F 186156 0.03 326906 875.35 29628 238 40.94 0

ES-F-N 320903 0.7 326906 120.92 3401.4 240 1.62 0
ES-F-TP 320903 1.3 326906 214.16 3673.9 240 1.62 0
ES-F-LS 320897 1.12 326906 208.61 3110.4 240 1.62 0

MC 326832 26.45 326906 35.51 0.7 240 0.02 0
MCE 326832 37.8 326906 40.44 0.7 240 0.02 0

N 326887 121.27 326906 74.25 0.3 240 0 0
T 326832 80.21 326906 81.67 0.8 240 0.02 0

Table 5: Performance of the formulations for the uncapacitated balanced network - |T | = 30

Formulation LP-cost LP-CPU MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

C 240367 0.07 664638 21600.07 35356.6 0 60.86 24.58
C-N 338679 0.83 705070 21600.19 19020.5 0 46.62 30.58

C-TP 338679 0.62 780467 21600.2 3018 0 46.62 29.57
C-LS 338679 2 771246 21516.86 4602.1 0 46.62 28.39

ES 240367 0.05 645908 15252.18 91231.2 84 60.86 4.03
ES-N 624974 6.77 643306 6069.55 53462.9 186 2.77 0.09

ES-TP 624974 30.3 643714 7744.16 14847.4 175 2.77 0.64
ES-LS 624935 4.09 644312 9034.64 4785.6 160 2.77 0.78
ES-F 240367 0.14 644747 14404.42 24790.8 90 60.86 2

ES-F-N 624974 11.14 643863 6270.86 32940.9 181 2.77 0.1
ES-F-TP 624974 26.5 643385 8174.27 23707.9 173 2.77 0.4
ES-F-LS 624935 5.04 643843 9930.78 17481.5 155 2.77 0.76

MC 642779 826.09 643303 1021.77 5.1 240 0.08 0
MCE 642779 996.56 643303 1276.72 5.2 240 0.08 0

N 643057 27969.13 1068367 9209.08 0.9 188 0.04 16.86
T 642779 1901.78 693483 5773.58 2.4 211 0.08 3.62

For the small instances, the classical formulations obtain the worst results, mainly because of a poor LP

relaxation as shown by the integrality gap reported in Table 4. The echelon stock based formulations can be

divided into two groups with formulations ES and ES-F on one side, and formulations ES-N, ES-TP, ES-LS,

ES-F-N, ES-F-TP and ES-F-LS on the other side. The last six formulations are much stronger than the

first two formulations, as indicated by the integrality gap reported in Table 4. Formulations ES-N, ES-TP,

ES-LS, ES-F-N, ES-F-TP and ES-F-LS were able to solve all instances, which is not the case for the ES-F

formulations. This better performance of formulations ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS

is easily explained by the use of a reformulation of the uncapacitated lot sizing structure found in the ES

formulation, and the resulting improved LP bound.

The classical based formulations have in general a much higher number of nodes in the branch-and-cut

tree than the other formulations, which is a consequence of the weak LP relaxation bound. The same remarks

hold for the formulations ES and ES-F. For the MC, MCE, N and TP formulations, the number of nodes

is really small, less than 1 on average, showing the high performance of the LP relaxation. Concerning the

O-gap, the classical based formulations have a gap of approximately 3% while the other formulations have

an average gap that is less than 0.0003%. This illustrates once again the weakness of the classical based

formulations. Note that for the N and TP formulations, the LP-CPU is higher than the MIP-CPU because

of the efficiency of the heuristic used by CPLEX at the root node before going in the branch-and-cut tree.

Finally, one can see in Table 4 that despite the reformulation used at the retailer level or the valid

inequalities added, the C-N, C-TP and C-LS formulations do not succeed in closing a lot of the integrality

gap, which remains high around 30%. This contrasts with the same reformulations or valid inequalities
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added in the ES formulation but at all levels instead of just at the retailer level. Indeed, the I-gap for the

ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS formulations is low, around 1.6%. This indicates that

the combination of the reformulation and the echelon stock structure is very efficient if we compare the

performance of the ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS formulations to the one of the

classical formulations.

Table 5 reports the performance of each formulation for the large instances, with |T | = 30. The poor

performance of the classical formulations is even more apparent for these large instances. Yet, the LP re-

laxations are still easily solved to optimality but have a low value compared to the true MIP optimal cost.

The performance of the richer formulations N, TP, MC and MCE is also more contrasted than for the small

instances. The number of instances solved to optimality for the N formulation is much lower than for the

three other rich formulations. This can be explained by the inability of the N formulation to solve the LP

relaxation of the instances in a short time. One can see a similar behavior, but to a lesser extent, for the TP

formulation. This difficulty for the formulations N and TP to even solve the LP relaxations of many large

instances can be explained by the huge number of variables used in the models when |T | = 30, which is a

major drawback of these two formulations. This practical drawback is the price one has to pay for the strong

LP relaxation given by these two formulations, as stated by the theoretical results presented in Section 3.7.

Finally, the MC formulation still provides the best performances for these large instances, both in terms of

CPU time to solve the MIP instances and in terms of number of optimal solutions found within the time limit.

In light of the results provided in Tables 4 and 5, we can draw the following conclusions about the

performance of our formulations on an uncapacitated balanced network:

• the classical formulations are the poorest, mainly because of a bad LP relaxation and providing a

stronger reformulation only at the retailer level does not lead to better results at the MIP level;

• applying the echelon stock reformulation to the classical formulation does not have any impact on

the LP relaxation value (as we also theoretically proved), but results nevertheless show a substantial

improvement in CPU time, optimality gap and number of instances solved to optimality. The conjecture

is that because the echelon stock reformulation exposes the single item lot sizing structure at the three

different levels, CPLEX is able to derive better cuts;

• the echelon stock reformulation can still be improved by explicitly using one of the lot sizing reformula-

tions at each level, i.e., using formulations ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS, with

ES-N generally having the best performance among these six formulations;

• when comparing the various echelon stock reformulations with the traditional echelon stock con-

straints (33) to their counterpart using the constraint proposed in Federgruen and Tzur (57), we observe

individual differences, but overall no general tendencies appear and the formulations provide fairly sim-

ilar results;

• the N and TP formulations have difficulty to solve the LP relaxations of some instances because of the

huge size of the model resulting in an overall substantially weaker performance compared to the best

formulation;

• the MC formulation performs the best for the balanced network;

• the results we obtained here are in line with the ones obtained by Solyalı and Süral [37] and Cunha

and Melo [8] for the OWMR.

4.1.2 Unbalanced network

We performed the same experiments as in Section 4.1.1 but considering an unbalanced distribution network.

In the unbalanced network, 20% of the warehouses are responsible for 80% of the retailers (see Table 3).

Tables 6 and 7 illustrate the performance of our formulations for the small and large instances, respectively.

In Table 6, one can see that, compared to Table 4 and except for the classical formulations, there is an

increase in CPU time to solve the instances as MIPs. This increase ranges between 0.16% and 78.5% for the

ES formulation and for the ES-F-LS formulation, respectively. As far as the classical based formulations are

concerned, they have a better performance on the unbalanced network, compared to the balanced network, in
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Table 6: Performance of the formulations for the uncapacitated unbalanced network - |T | = 15

Formulation LP-cost LP-CPU MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

C 177633 0.02 310925 5668.75 21108.3 197 40.78 0.66
C-N 217549 0.18 310882 5267.93 119965 197 28.84 0.28

C-TP 217549 0.12 310892 5285.29 19746.6 197 28.84 0.68
C-LS 217549 0.18 311225 7311.02 4038 169 28.84 2.61

ES 177633 0.02 310871 601.5 14711.3 239 40.78 0
ES-N 300182 0.55 310871 182.27 4045.6 240 2.99 0

ES-TP 300182 1.68 310871 262.02 3084 240 2.99 0
ES-LS 300178 1.6 310871 413.61 2917.2 240 2.99 0
ES-F 177633 0.04 310871 1165.83 17758 240 40.78 0

ES-F-N 300182 0.89 310871 186.75 3731.2 240 2.99 0
ES-F-TP 300182 1.92 310871 303.41 3814.9 240 2.99 0
ES-F-LS 300178 1.24 310871 372.34 3508.8 240 2.99 0

MC 310750 20.33 310871 39.88 1.6 240 0.03 0
MCE 310750 41.06 310871 48.25 1.6 240 0.03 0

N 310832 125.33 310871 112.39 1 240 0.01 0
T 310750 58.37 310871 93.97 2.7 240 0.03 0

Table 7: Performance of the formulations for the uncapacitated unbalanced network - |T | = 30

Formulation LP-cost LP-CPU MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

C 231785 0.06 624878 21103.84 36751.6 10 60.35 19.39
C-N 330865 0.73 627028 21600.18 25819 0 45.2 26.26

C-TP 330865 0.54 642133 21600.15 4824.3 0 45.2 23.54
C-LS 330865 1.81 647389 21600.2 3378.2 0 45.2 23.9

ES 231785 0.05 613737 14747.68 26616.9 91 60.35 4.89
ES-N 583375 8 610963 8690.4 30168.7 164 4.14 0.37

ES-TP 583375 29.78 611589 10271.05 15351.3 149 4.14 1.36
ES-LS 583349 6.53 612763 12294.87 7218.3 128 4.14 1.63
ES-F 231785 0.17 613421 14546.53 14335 90 60.35 2.99

ES-F-N 583375 20.82 611004 9512 24099.6 157 4.14 0.45
ES-F-TP 583375 45.58 611424 10509.58 18437.7 147 4.14 1.11
ES-F-LS 583349 10.48 612275 11766.99 10525.3 130 4.14 1.63

MC 610109 460.85 610908 1363.92 19.2 240 0.1 0
MCE 610109 994.48 610908 1476.23 18.7 239 0.1 0

N 610542 11473.94 828581 8018.58 3.7 204 0.04 9.05
T 610109 1700.49 705844 6356.45 14.7 201 0.1 5.55

terms of CPU time used to solve the MIP instances, number of MIP optimal solutions found and integrality

and optimality gap. Note, however, that the improvements for the integrality gap is very limited compared

to the other improvements. Despite these improvements, the performance of the classical formulations is

still far from the performance of the other formulations, highlighting once again the weakness of the classical

formulations. Apart from the two points mentioned here, all the other conclusions drawn in Section 4.1.1 for

the small instances with a balanced network still hold for an unbalanced structure of the supply network.

In Table 7, one can see that there are once again small improvements for the classical formulations

compared to instances solved on a balanced network. For the other formulations, the performance is worse

than in the case of a balanced network. This difficulty is in particular reflected in the number of optimal MIP

solutions found, which decreases by a number ranging from 0 for the MC formulation and up to 32 for the ES-

LS formulation. This indicates that the unbalanced instances are harder to solve than the balanced instances.

This difficulty can be explained by the fact that, in the network, the warehouses that are responsible for many

retailers represent a much larger MIP to solve. Compared to the balanced instances, we have thus several

big distribution channels to cope with, which makes the instances harder to solve. Note, however, that

formulations C, ES and N were able to find more optimal MIP solutions for the unbalanced instances.



Les Cahiers du GERAD G–2017-59 – Revised 29

In light of the results provided in Tables 6 and 7, we can draw the following conclusions about the

performance of our formulations on an unbalanced network:

• the unbalanced instances are generally harder to solve than the balanced instances;

• the C based formulations, the N and the ES formulations have a better performance on the unbalanced

instances than on the balanced ones in terms of number of instances solved to optimality;

• the other formulations have a worse performance on the unbalanced instances compared to the balanced

ones;

• the N and TP formulations have a large O-gap for many large instances;

• the MC formulation is the best suited for the unbalanced instances since it is able to solve all instances

to optimality with the lowest CPU time.

4.2 Capacitated instances

For the capacitated instances, we set the production capacity as a given factor C of the average total demand.

The production capacity imposed is thus Ct = C
∑
i∈R

∑
t∈T d

i
t / |T |. We additionally consider three different

values for the capacity factor C : C ∈ {2, 1.75, 1.5}. We performed these experiments on a 6.67 GHz Intel

Xeon X5650 Westmere processor with one thread. Because of the bad performance of the classical based

formulations and of the formulations ES and ES-F in the previous section, and based on preliminary results,

we decided not to run experiments using these formulations. Note that for the capacitated instances we

impose a time limit of 6 hours even to solve the LP instances.

The results of this section will be reported in tables having the same columns as the tables in Section 4.1

plus two additional columns indicating the number of LP optimal solutions found within the time limit and

the number of instances for which a MIP solution was found, in columns LP-opt and MIP-sol, respectively.

For the columns LP-cost and I-gap, we only report the average cost and integrality gap obtained, respectively,

over instances for which all formulations have both solved the LP relaxation to optimality and have found a

MIP solution within the time limit. In the same vein, for the columns MIP-cost, Nodes and O-gap, we only

report the average MIP cost, number of nodes and optimality gap obtained, respectively, over instances for

which all formulations have found a MIP solution within the time limit. We first report the results for the

balanced network in Section 4.2.1, followed by the unbalanced network in Section 4.2.2.

4.2.1 Balanced network

Tables 8–13 illustrate the performance of the different MIP formulations for the different values of the time

horizon and capacity level. When comparing the results with those obtained for the uncapacitated instances

on the balanced network, we can see that the results are completely different. Indeed, the richer formulations

have more trouble achieving a good performance in terms of CPU time, MIP cost, number of MIP optimal

solutions found and optimality gap. On the contrary, the echelon stock formulations have a better performance

than the richer formulations on these indicators. This difference in performance is even more pronounced

when the capacity level gets tighter. This indicates that the capacity constraint has a major impact on the

performance of the formulations. Despite the properties related to the strength of their LP relaxation, the

richer formulations seem to be less adequate to handle capacitated instances.

We also see that the MC formulation does not perform the best for the capacitated instances on the

balanced network. The best performance, in terms of MIP-CPU time, number of optimal solutions found

and optimality gap, is obtained by one of the echelon stock formulations, depending on the capacity level.

Within the richer formulations, our newly introduced MCE formulation performs the best on average. Note

also that the addition of the capacity constraint makes the problem harder, as stated by the increase in CPU

time to solve both the MIP and LP instances. This difficulty is also apparent by observing that the number of

MIP solutions found is not equal to the number of instances present in the data set used for the experiments.



30 G–2017-59 – Revised Les Cahiers du GERAD

Table 8: Performance of the formulations for the capacitated balanced network - |T | = 15, C = 2.0

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 514798 1.06 240 510641 9517.05 141103 161 207 4.69 0.06
EST 514798 2.39 240 510677 10367.67 38086.4 151 240 4.69 0.1

ESLS 514786 1.71 240 510675 9030.44 37633.7 164 233 4.7 0.1
ES-F-N 514798 1.14 240 510641 9914.74 119257.7 156 220 4.69 0.05
ES-F-T 514798 1.48 240 510694 10892.41 59856.5 144 237 4.69 0.1

ES-F-LS 514786 1.5 240 510730 10732.17 50980.4 146 237 4.7 0.13
MC 519979 185.39 240 511242 16582.34 9397.9 92 240 3.76 1.02

MCE 519979 192.17 240 511042 14987.63 6900.8 113 240 3.76 0.77
N 520090 173.84 240 511024 17180.75 4452.9 89 240 3.74 0.92
T 519979 398.16 240 511809 18104.03 3372.2 76 240 3.76 1.14

Table 9: Performance of the formulations for the capacitated balanced network - |T | = 30, C = 2.0

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 942317 18.72 240 904162 21544.09 107672.3 2 240 1.83 1
EST 942317 24.31 240 904226 21576.36 25025.4 1 240 1.83 1.16

ESLS 942276 7.91 240 904223 21538.3 26318.8 2 231 1.83 1.07
ES-F-N 942317 15.15 240 904163 21587.23 55846.7 1 240 1.83 1.05
ES-F-T 942317 26.26 240 904256 21600.23 31181.1 0 230 1.83 1.11

ES-F-LS 942276 8.89 240 904321 21591.14 21633.9 1 240 1.83 1.36
MC 950697 2626.04 240 905226 21600.5 1371.2 0 240 1 1.63

MCE 950697 2522.05 240 904873 21602.85 1543.1 0 240 1 1.55
N 950883 7689.24 191 904841 21705.65 89.8 0 141 0.98 14.78
T 950697 8999.21 193 906231 21866.83 61.9 0 191 1 22.66

Table 10: Performance of the formulations for the capacitated balanced network - |T | = 15, C = 1.75

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 559141 1.18 240 572268 11059.05 118612.4 142 231 3.88 0.31
EST 559141 2.48 240 572377 15230.97 47566.4 80 161 3.88 0.32

ESLS 559131 1.88 240 572395 14929.48 43995.6 83 159 3.88 0.32
ES-F-N 559141 1.16 240 572279 14882.05 110598.3 81 150 3.88 0.28
ES-F-T 559141 1.58 240 572384 13894.41 59972.3 106 218 3.88 0.35

ES-F-LS 559131 1.66 240 572430 14001.68 44803.5 100 182 3.88 0.37
MC 564010 144.67 240 573036 17253.53 15058.5 83 240 3.06 0.9

MCE 564010 153.53 240 572939 17060.25 12080.5 83 240 3.06 0.8
N 564113 113.09 240 573023 17532.16 10689.8 77 240 3.04 0.72
T 564010 283.63 240 573307 18183.12 10585.5 67 240 3.06 1.06

Table 11: Performance of the formulations for the capacitated balanced network - |T | = 30, C = 1.75

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 1039555 17.06 240 1008623 21600.1 41473.5 0 234 4.04 3.42
EST 1039555 21.94 240 1008814 21562.91 27470.6 2 236 4.04 0.98

ESLS 1039519 8.75 240 1008846 20913.82 34887.1 13 128 4.04 0.64
ES-F-N 1039555 16.97 240 1008642 21600.35 28611.6 0 240 4.04 3.5
ES-F-T 1039555 26.38 240 1008828 21600.22 39757.8 0 220 4.04 0.61

ES-F-LS 1039519 10.13 240 1008907 21582.47 22652.9 1 236 4.04 3.06
MC 1047761 2460.44 240 1009976 21602.48 1250.3 0 240 3.31 4.06

MCE 1047761 2196.98 240 1009805 21473.28 2074.7 6 239 3.31 2.75
N 1047959 6634.88 202 1009953 21673.02 54.8 0 131 3.29 17.99
T 1047761 7936.58 203 1010453 21737.07 44.7 0 210 3.31 19.81

Finally, note that in Tables 9, 11 and 13, for formulations N, TP, MC and MCE, the values obtained for

O-gap is higher than the values obtained for I-gap. Since the I-gap is calculated relative to the optimal or

best solution found among all formulations this indicates that these formulations have a good LP relaxation

but are unable to provide a MIPsolution with a low objective function value.
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Table 12: Performance of the formulations for the capacitated balanced network - |T | = 15, C = 1.5

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 621721 1.7 240 583124 13304.05 184360.4 116 198 1.3 0.15
EST 621721 2.71 240 583221 14763.63 74318 99 210 1.3 0.22

ESLS 621714 3.1 240 583280 13068.93 52541.1 112 190 1.3 0.22
ES-F-N 621721 1.34 240 583119 13388.01 189937.4 112 193 1.3 0.15
ES-F-T 621721 1.8 240 583187 14895.36 98617 96 207 1.3 0.2

ES-F-LS 621714 2.09 240 583231 14321.8 65407.7 101 205 1.3 0.21
MC 626314 136.62 240 583888 17125.63 19017.5 75 238 0.58 0.23

MCE 626314 156.63 240 583528 16940.93 20167.1 78 234 0.58 0.21
N 626403 124.95 240 583690 18349.35 12262 62 212 0.57 0.24
T 626314 360.09 240 584047 18712.05 11320.1 55 227 0.58 0.32

Table 13: Performance of the formulations for the capacitated balanced network - |T | = 30, C = 1.5

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 1174947 18.96 240 935711 21561.77 66408.5 1 194 1.59 1.43
EST 1174947 25.97 240 935867 21587.74 25253.1 1 169 1.59 1.48

ESLS 1174914 10.5 240 935960 21500.33 31446.1 2 193 1.59 1.36
ES-F-N 1174947 19.29 240 935702 21596.85 72474.6 1 236 1.59 1.43
ES-F-T 1174947 30.31 240 935812 21600.2 38381.7 0 234 1.59 1.43

ES-F-LS 1174914 11.96 240 935882 21516.6 28078.8 0 236 1.59 1.58
MC 1183634 2257.01 240 936937 21600.38 1858.3 0 240 0.89 3.5

MCE 1183634 1947.3 240 936360 21600.3 1762.5 0 240 0.89 3
N 1183835 5867.03 218 936620 21700.5 201.2 0 181 0.87 9.56
T 1183634 6773.7 222 937192 21781.93 175.3 0 213 0.89 9.52

4.2.2 Unbalanced network

Tables 14–19 illustrate the performance of the different MIP formulations on the unbalanced instances for

the different values of the time horizon and capacity level. If we compare the results with those obtained for

the uncapacitated instances on the unbalanced network, we can see similar differences as the ones observed

in Section 4.2.1. The richer formulations also have more trouble obtaining a good performance than on

the uncapacitated instances, and actually have a worse performance than the echelon stock formulations on

numerous performance indicators. These differences are even clearer for the unbalanced instances, especially

for the number of best solutions found, which is generally much higher for the echelon stock formulations.

Within the richer formulations, the MCE formulation still has the best performance on average. Note finally

that, compared to the balanced structure, the unbalanced structure of the supply network combined with

the production capacity restriction results in general in better values for the number of MIP solutions found

and for the number of MIP optimal solutions found.

Table 14: Performance of the formulations for the capacitated unbalanced network - |T | = 15, C = 2.0

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 482906 1 240 504744 1263.92 28050.1 238 238 5.14 0
EST 482906 1.96 240 504744 2106.83 22230.3 236 240 5.14 0

ESLS 482904 1.28 240 504744 1531.26 13069.1 239 240 5.14 0
ES-F-N 482906 1.37 240 504744 971.1 22544.2 239 239 5.14 0
ES-F-T 482906 2.07 240 504744 1644.95 18161.5 238 240 5.14 0

ES-F-LS 482904 1.43 240 504744 1913.39 16423.3 238 240 5.14 0
MC 489860 142.82 240 504920 12934.8 6092.6 130 239 3.81 0.42

MCE 489860 129.69 240 504851 11098.95 6894.4 155 237 3.81 0.24
N 489920 118.19 240 504904 13804.04 5405.5 144 239 3.8 0.31
T 489860 302.27 240 505029 13626.37 4472.6 142 240 3.81 0.46
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Table 15: Performance of the formulations for the capacitated unbalanced network - |T | = 30, C = 2.0

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 907791 13.45 240 944359 19921.34 58469 27 239 2.35 1.13
EST 907791 16.8 240 944361 20266.64 28715.4 22 240 2.35 1.39

ESLS 907775 9.8 240 944359 20163.36 20849 24 219 2.35 1.39
ES-F-N 907791 20.31 240 944359 19939.28 54412.1 26 240 2.35 1.13
ES-F-T 907791 40.57 240 944359 20053.67 36504 27 240 2.35 1.25

ES-F-LS 907775 14.12 240 944359 20118.8 23147.8 23 238 2.35 1.35
MC 918996 2226.9 240 944688 21481.4 1455.2 3 240 1.19 2.36

MCE 918996 1806.59 240 944560 21522.96 1864.2 4 240 1.19 2.26
N 919144 6767.62 200 944659 21672.53 100.5 0 155 1.18 15.51
T 918996 8348.99 203 944892 21705.5 115.8 0 194 1.19 13.87

Table 16: Performance of the formulations for the capacitated unbalanced network - |T | = 15, C = 1.75

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 526754 1.06 240 549514 2224.54 45994.8 238 240 4.26 0
EST 526754 2.01 240 549524 3193.44 28369.3 227 240 4.26 0.01

ESLS 526751 1.46 240 549516 2433.6 25883.5 236 239 4.26 0
ES-F-N 526754 1.38 240 549514 1786.29 39305.9 240 240 4.26 0
ES-F-T 526754 2.11 240 549521 2851.11 28501.2 231 240 4.26 0.01

ES-F-LS 526751 1.57 240 549536 3660.7 27184.3 225 240 4.26 0.02
MC 533035 125.55 240 549761 14359.29 10031.3 113 240 3.15 0.56

MCE 533035 122.02 240 549700 12873.73 11765.1 141 240 3.15 0.41
N 533092 106.24 240 549853 15213.96 7213.3 119 240 3.14 0.56
T 533035 391.23 240 550351 16143.75 5282.3 96 240 3.15 0.95

Table 17: Performance of the formulations for the capacitated unbalanced network - |T | = 30, C = 1.75

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 997363 17.08 240 820837 21465.26 31462.3 2 240 4.44 3.59
EST 997363 18.61 240 820851 20596.13 24642 18 240 4.44 1.16

ESLS 997346 10.65 240 820839 20652.97 27727.7 16 236 4.44 1.2
ES-F-N 997363 21.66 240 820837 21569.18 25981.1 2 240 4.44 3.58
ES-F-T 997363 40.57 240 820847 20649.26 27377.4 17 240 4.44 0.9

ES-F-LS 997346 14.9 240 820870 21016.96 17628.5 11 239 4.44 2.67
MC 1008358 2052.43 240 821206 21600.27 1539 0 239 3.42 4.63

MCE 1008358 1608.27 240 821114 21228.93 2128.1 10 240 3.42 2.93
N 1003245 6127.87 212 821343 21691.07 96.8 0 178 3.92 14.76
T 1008358 7664.68 208 822087 21787.94 110.8 0 201 3.42 13.79

Table 18: Performance of the formulations for the capacitated unbalanced network - |T | = 15, C = 1.5

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 587569 1.19 240 577246 5628.17 129453 203 222 1.6 0
EST 587569 2.03 240 577254 8291.62 82475.7 174 204 1.6 0.02

ESLS 587566 1.54 240 577264 7252.8 102829.8 185 215 1.6 0.02
ES-F-N 587569 1.47 240 577251 5830.11 107024.6 202 227 1.6 0
ES-F-T 587569 2.05 240 577255 6830.86 91531.8 195 225 1.6 0.01

ES-F-LS 587566 1.62 240 577268 7764.41 72522.2 184 216 1.6 0.02
MC 593073 130.26 240 577413 14334.42 26345.4 110 234 0.7 0.09

MCE 593073 134.1 240 577386 14168.51 34757.1 114 236 0.7 0.08
N 593130 105.81 240 577546 17307.97 14994.4 77 238 0.69 0.14
T 593073 321.95 240 577558 17069.16 15284 81 239 0.7 0.14

In light of the results provided in Tables 8–19, we can draw the following conclusions about the performance

of our formulations on capacitated instances:

• the capacitated instances are harder to solve than the uncapacitated instances;

• the richer formulations have a relative worse performance than on uncapacitated instances compared

to the echelon stock formulations;

• the echelon stock formulations are better than the richer formulations;

• within the richer formulations, the MCE formulation has the best performances.
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Table 19: Performance of the formulations for the capacitated unbalanced network - |T | = 30, C = 1.5

Formulation LP-cost LP-CPU LP-sol MIP-cost MIP-CPU Nodes MIP-opt MIP-sol I-gap O-gap

ESN 1120686 18.64 240 940086 20794.78 42369.6 14 239 1.81 1.42
EST 1120686 21.21 240 940100 20907.78 28587.9 10 236 1.81 1.54

ESLS 1120671 12.15 240 940115 20799.68 23392.2 13 159 1.81 1.45
ES-F-N 1120686 23.88 240 940094 20896.34 40821.4 13 239 1.81 1.39
ES-F-T 1120686 40.68 240 940101 20726.33 35502.7 13 236 1.81 1.28

ES-F-LS 1120671 16.63 240 940122 20910.24 24093 11 234 1.81 1.4
MC 1131290 1982.83 240 940358 21526.09 2193.1 2 240 0.91 2.58

MCE 1131290 1472.36 240 940314 21551.76 3249 1 240 0.91 2.2
N 1131441 5397.68 218 940574 21810.5 155.1 0 203 0.89 13.01
T 1117718 6687.1 217 940594 21838.89 130.3 0 182 1.87 13.54

4.3 Influence of the parameters

Table 20 reports the performance of the MC formulation for all experiments with a balanced uncapacitated

network and with |T | = 30. The first two columns indicate the parameter that varies and the respective

values taken by the parameter. Since most of the following conclusions also apply for the other formulations

and for the experiments with an unbalanced network, we only report here the results for the MC formulation

with a balanced network. The analyses that are specific to this formulation are discussed at the end of this

section. All the other results are available in the appendices of this report.

In Table 20, one can see that when |R| increases, the problems gets harder and the CPU time taken to

solve both the LP and MIP instances increases. On the contrary, when |W | increases, the CPU time taken to

solve the MIP instances decreases. Indeed, with the same number of retailers, if the number of warehouses

increases, the supply network has a smaller number of channels linked to each warehouse. This leads to a

smaller problem per warehouse and makes the global problem easier to solve, thus reducing the CPU time

and the number of nodes. The integrality gap is also lower but less significantly.

Table 20 indicates that for the MC formulation, generally the instances with dynamic fixed costs are much

easier to solve compared to the instances with a static fixed cost. We further note that the dynamic demand

case is generally slightly easier to solve than the static demand case.

Finally, the detailed results provided in the appendices of this report illustrate the fact that the impact of

the setting of the parameters (static or dynamic demand, static or dynamic fixed cost), depends on the kind

of formulation used. For the classical based formulations, apart for the very small instances where |R| = 50

and |T | = 15, the instances with a dynamic fixed cost are harder to solve, thus requiring a higher CPU time.
For the ES-N, ES-TP and ES-LS formulations, the instances with a dynamic fixed cost are also harder to

solve. On the contrary, for the N, TP and MC formulations, the instances with a static fixed cost are harder

to solve in terms of CPU time required. For the ES and ES-F formulations, there is no clear impact of the

setting of the parameters on the CPU time required to solve the instances. Note however that this result

does not question the higher global performance of the MC formulation stated in the previous sections.

Table 20: Performances of the MC formulation for the uncapacitated balanced network - |T | = 30

Parameter Value LP-cost LP-CPU MIP-cost MIP-CPU Nodes MIP-opt I-gap O-gap

|R|
50 423630 60.36 423765 88.07 1.9 80 0.04 0
100 609655 414.54 610096 643.15 4.5 80 0.08 0
200 895053 2003.37 896048 2334.08 8.8 80 0.12 0

|W |

5 540034 587.33 541416 1451.26 14.8 60 0.23 0
10 621960 912.23 622489 1095.86 3.5 60 0.07 0
15 678045 1023.23 678196 827.76 1.5 60 0.02 0
20 731078 781.58 731111 712.18 0.5 60 0 0

Costs
SF 658846 1040.45 659632 1508.85 8.6 120 0.12 0
DF 626713 611.74 626974 534.68 1.6 120 0.04 0

Demand
SD 644294 840.35 644921 1077.51 6.4 120 0.1 0
DD 641265 811.84 641685 966.03 3.7 120 0.06 0
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Conclusions and future research

We have extended eleven MIP formulations proposed in the context of the OWMR and have applied them

to the 3LSPD. We also introduced the ES-N, ES-F-N, ES-F-TP, ES-F-LS and MCE formulations that had

not been tested before in the context of the OWMR. For our numerical experiments, we have considered

two network structures (a balanced one and an unbalanced one) and have assessed the performance of the

formulations proposed using several indicators. We have also considered the possibility of having production

capacities at the plant level. The results indicate that, for the uncapacitated case, the unbalanced instances

are harder to solve than the balanced instances and lead to a worse performance of all formulations, except

for the classical formulations. On the contrary, for the capacitated case, the unbalanced instances give

better values for our different performance indicators compared to the balanced instances. The classical

formulations are much weaker than the other formulations and do not suit our problem, mainly because

of a very weak LP relaxation. On the contrary, the MC formulation obtains the best performance on the

uncapacitated instances and is able to solve all instances for both network structures. This result is similar

to the conclusion of Cunha and Melo [8] for the OWMR. The other formulations obtain results that are not

entirely satisfactory for the uncapacitated instances. In particular, for the rich formulations TP and N, the

non-satisfactory performances on the large instances, in terms of number of MIP optimal solutions found and

CPU time, are due to the huge size of the model. As a consequence, it is already very time-consuming to

solve the LP relaxation of these formulations. When we impose capacity restrictions for production at the

plant level, the performance of the formulations are reversed: the rich formulations have a worse performance

and the echelon formulations have the best performance. Within the rich formulations, for the capacitated

instances, our newly introduced MCE formulation generally has the best performance.

In future research, we want to introduce transportation capacities to limit the flows between all facilities.

We will then use the results of our study and the possible substructures induced by transportation capacities

to chose the best formulation possible to solve the problem, either heuristically or using decomposition

methods.

Appendices

See the online document for Tables 21–204.
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