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Abstract: The vertex cover problem and the dominating set problem are two well-known problems in
graph theory. Their goal is to find the minimum size of a vertex subset satisfying some properties. Both
hold a connected version, which imposes that the vertex subset must induce a connected component. To
study the interdependence between the connected version and the original version of a problem, the Price of
Connectivity (PoC) was introduced by Cardinal and Levy [8, 14] as the ratio between invariants from the
connected version and the original version of the problem.

Camby, Cardinal, Fiorini and Schaudt [5] for the vertex cover problem, Camby and Schaudt [7] for the
dominating set problem characterized some classes of PoC-Near-Perfect graphs, hereditary classes of graphs
in which the Price of Connectivity is bounded by a fixed constant. Moreover, only for the vertex cover
problem, Camby et al. [5] introduced the notion of critical graphs, graphs that can appear in the list of
forbidden induced subgraphs characterization. By definition, the Price of Connectivity of a critical graph is
strictly greater than that of any proper induced subgraph.

In this paper, we prove that for the vertex cover problem, every critical graph is either isomorphic to
a cycle on 5 vertices or bipartite. To go further in the previous studies, we also present conjectures on
PoC-Near-Perfect graphs and critical graphs with the help of the computer software GraphsInGraphs [4].
Moreover, for the dominating set problem, we investigate critical trees and we show that every minimum
dominating set of a critical graph is independent.

Keywords: Vertex cover, connected vertex cover, dominating set, connected dominating set, forbidden
induced subgraph, extremal graph
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1 Introduction

This section contains basic background and a brief state-of-the-arts.

1.1 Background

All fundamental background is explained by Diestel [9]. We recall here some notions that we need.

Let G and H be two graphs. We say that G contains H if G contains an induced subgraph isomorphic

to H. When G does not contain H, G is H-free. Moreover, G is (H1, . . . ,Hk)-free if G does not contain Hi

for any i ∈ {1, . . . , k}.

A vertex cover is a vertex subset X such that every edge of G has at least one endpoint in X. The

minimum size of a vertex cover, denoted by τ(G), is called the vertex cover number of G. A vertex cover of

size τ(G) is called minimum.

A connected vertex cover of G is a vertex cover X such that the induced subgraph G[X] is connected.

When G is not connected, we require that G[X] has the same number of connected components as G. The

connected vertex cover number, denoted by τc(G), of a graph G is the minimum size of a connected vertex

cover of G. Naturally, a connected vertex cover of size τc(G) is called minimum.

The Price of Connectivity of a graph G for the vertex cover problem is defined as

τc(G)

τ(G)
.

A dominating set of a graph G is a vertex subset X such that every vertex either is in X or has a neighbor

in X. The domination number of G is the minimum size of a dominating set of G and is denoted by γ(G).

A dominating set of size γ(G) is called minimum.

A connected dominating set of G is a dominating set X of G that induces a connected subgraph. If G is

disconnected, we ask that G[X] has the same number of connected components as G. The minimum size of

a connected dominating set is the connected domination number and is denoted γc(G).

Similarly to the vertex cover problem, the Price of Connectivity of a graph G for the dominating set

problem is defined as
γc(G)

γ(G)
.

A set X of vertices in a graph G is called independent if the induced subgraph G[X] contains no edge, i.e.

E(G[X]) = ∅.

We denote by Pk the path on k vertices and by Ck the cycle on k vertices.

1.2 State-of-the-art

In 1972, Karp identified 21 NP-hard problems, among which finding a minimum vertex cover of a graph.

Cardinal and Levy [8, 14] introduced the Price of Connectivity for the vertex cover problem, as defined

in the previous subsection. Lately, Camby, Cardinal, Fiorini and Schaudt [5] studied rigorously this new

graph invariant. We will examine in detail their results in Section 2. Besides, several researchers studied the

interdependence between other graphs invariants.

Zverovich [18] characterized, in terms of list of forbidden induced subgraphs, perfect connected-dominant

graphs, here called PoC-Perfect graphs, graphs for which the connected domination number and the domina-

tion number are equal for all induced subgraphs. Duchet and Meyniel [10], Tuza [17] established some results

on these graph invariants. Some years ago, Camby and Schaudt [7] translated the Price of Connectivity from
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the vertex cover problem to the dominating set problem. Likewise for the vertex cover problem, we will

explore in detail their results in Section 3.

In the same spirit, Summer and Moore [16] introduced the class of domination perfect graphs, related to

the independent domination number and to the domination number, and Zverovich and Zverovich [19] char-

acterized it. However, Fulman [11] found a counter-example. Then, Zverovich and Zverovich [20] corrected

the characterization. Unfortunately, the last one was still inexact. Camby and Klein [6] finally revised the

theorem and proposed a polynomial-time algorithm that transforms from any minimum dominating set into

an independent one, for every graph in the so-characterized class.

Zverovich and Zverovich [21] considered the ratio between the independence number and the upper dom-

ination number whereas Schaudt [15] studied the ratio between the connected domination number and the

total domination number.

Recently, Belmonte, van ’t Hof, Kamiński and Paulusma [1, 2, 3] investigated the Price of Connectiv-

ity for the feedback vertex set while Hartinger, Johnson, Milanič and Paulusma [12, 13] studied the Price of

Connectivity for cycle transversals.

This paper is divided into two parts: one dedicated to the vertex cover problem and another one to the

dominating set problem. In each section, we state a whole previous work on the Price of Connectivity for the

concerning problem. Then we present new results: conjectures (if any) and investigation on critical graphs.

2 Vertex cover problem

2.1 Previous work

First, the Price of Connectivity of any graph lies in the interval [1, 2), since a vertex cover X of a connected

graph G such that G[X] has k connected components can be connected by adding at most k − 1 vertices.

For the vertex cover problem, the class of PoC-Perfect graphs, i.e. the hereditary class of graphs G for

which τc(G) = τ(G), was characterized by Camby, Cardinal, Fiorini and Schaudt [5].

Theorem 1 (Camby et al. [5]) The following assertions are equivalent for every graph G:

(i) For every induced subgraph H of G it holds that τc(H) = τ(H).

(ii) G is (P5, C5, C4)-free.

(iii) G is chordal and P5-free.

Camby & al. [5] introduced the notion of PoC-Near-Perfect graphs with threshold t, for a fixed t ∈ [1, 2),

and they characterized them for t 6 3
2 . A graph G is said PoC-Near-Perfect graphs with threshold t if every

induced subgraph H of G satisfies τc(H) 6 t τ(H). The following theorem states for t = 4
3 .

Theorem 2 (Camby et al. [5]) The following assertions are equivalent for every graph G:

(i) For every induced subgraph H of G it holds that τc(H) 6 4
3 τ(H).

(ii) G is (P5, C4)-free.

For any fixed t ∈
[
1, 43
)
, the characterization of PoC-Near-Perfect graphs with threshold t is the same as

in Theorem 1. The next interesting threshold is 3
2 , i.e. the Price of Connectivity of C4 and of P5. So, for

any fixed t ∈
[
4
3 ,

3
2

)
, the characterization of these graphs with threshold t is like in Theorem 2.

Theorem 3 (Camby et al. [5]) The following assertions are equivalent for every graph G:

(i) For every induced subgraph H of G it holds that τc(H) 6 3
2 τ(H).

(ii) G is (P7, C6,∆1,∆2)-free, where ∆1 and ∆2 are depicted in Figure 1.
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Figure 1: An illustration of graphs ∆1 (on the left) and ∆2 (on the right).

After investigating PoC-Near-Perfect graphs, they turned their attention to critical graphs, i.e. graphs G

for which the Price of Connectivity of any proper induced subgraph H of G is strictly smaller than the Price

of Connectivity of G, since these graphs appear in a forbidden induced subgraph characterization of the

PoC-Near-Perfect graphs for some threshold t ∈ [1, 2). They also defined a smaller class of graphs: a strongly

critical graph is a graph G for which every proper (not necessarily induced) subgraph H of G has a Price of

Connectivity that is strictly smaller than the Price of Connectivity of G.

Camby et al. [5] obtained a characterization of critical graphs in the class of chordal graphs. Beforehand,

they defined 1-special trees. A tree T is 1-special if it is obtained from another tree by subdividing each edge

exactly once and then attaching a pendant vertex to every leaf of the resulting graph (See Figure 2 for an

example).

Figure 2: A 1-special tree constructed from another tree H (vertices indicated by filled circles) where each edge of H is exactly
subdivided once.

Theorem 4 (Camby et al. [5]) For a chordal graph G, the following assertions are equivalent:

(i) G is a 1-special tree.

(ii) G is strongly critical.

(iii) G is critical.

Moreover, they found the following theorem about strongly critical graphs.

Theorem 5 (Camby et al. [5]) Let G be a strongly critical graph.

(i) Every minimum vertex cover of G is independent. In particular, G is bipartite.

(ii) If G has a cutvertex, then G is a 1-special tree.

2.2 New results

2.2.1 Conjectures

With the help of GraphsInGraphs [4], the computer aided Graph Theory software that relates graphs and

their induced subgraphs, we establish two new conjectures on PoC-Near-Perfect graphs and critical graphs.

Indeed, we obtain the list of critical graphs up to 10 vertices, in which appears C4, C5, C6, P5, P7, ∆1 and ∆2,

as expected, and the graphs depicted in Figure 3.

Conjecture 1 The following assertions are equivalent for every graph G:

(i) For every induced subgraph H of G it holds that τc(H) 6 5
3 τ(H).

(ii) G is (Hi)
10
i=1-free, where graphs H1, . . . , H10 are depicted in Figure 3.

Conjecture 2 Every critical graph is a cactus, i.e. a connected graph in which any two cycles have at most

one vertex in common.
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Figure 3: Graphs H1, . . . , H10 from Conjecture 1.

2.2.2 Critical graphs

In Theorem 5, Camby et al. proved that every strongly critical graph is bipartite. Here, we extend the result

to the class of critical graphs, except the cycle C5 on 5 vertices.

Theorem 6 A critical graph G is either isomorphic to C5, or bipartite. Moreover, when G is bipartite, every

minimum vertex cover of G is independent.

Proof. The proof arises directly from Lemma 1 and Lemma 2.

Lemma 1 Let G be a critical graph with τc(G) 6 3
2τ(G). Then G is isomorphic to C4, to C5 or to P5.

Proof. First, we assume that G � P5 and G � C4. We prove that τc(G) 6 4
3τ(G). Otherwise by Theorem 2,

the graph G contains either P5 or C4. However,

τc(P5)

τ(P5)
=
τc(C4)

τ(C4)
=

3

2
>
τc(G)

τ(G)
,

which is a contradiction with G critical graph.

Now, we prove that G is isomorphic to C5. We assume that it is not the case. Since 1 6 τc(H)
τ(H) <

τc(G)
τ(G) 6 4

3

for all induced subgraph H of G, we deduce that by Theorem 1, G is not (C4, C5, P5)-free and by Theorem 2,

G is (C4, P5)-free. Accordingly, G contains C5 or G ∼= C5. But in the first case,

τc(C5)

τ(C5)
=

4

3
>
τc(G)

τ(G)
,

which is again in contradiction with G critical graph. Thus G ∼= C5.

Lemma 2 Let G be a critical graph with τc(G)
τ(G) > 3

2 . Every minimum vertex cover of G is independent. In

particular, G is bipartite.

Proof. Let X be a minimum vertex cover of G. We assume that there are two adjacent vertices u and v

in X. Consider H = G\{u, v} the resulting graph after deleting vertices u and v. Since X \{u, v} is a vertex

cover of H, and any vertex cover of H with vertices u and v is a vertex cover of G,

τ(G) = τ(H) + 2.

Moreover, τc(G) 6 τc(H)+3 because any connected vertex cover of H with u, v and an arbitrary vertex from

NG(u) ∪NG(v) gives a connected vertex cover of G. Accordingly,

3

2
<
τc(G)

τ(G)
6
τc(H) + 3

τ(H) + 2
.

Because
τc(H) + 3

τ(H) + 2
∈
[

3

2
,
τc(H)

τ(H)

]
,

we obtain that τc(H)
τ(H) = max

(
3
2 ,

τc(H)
τ(H)

)
and so τc(G)

τ(G) 6 τc(H)
τ(H) , which is a contradiction with G critical.
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3 Dominating set problem

3.1 Previous work

First, the Price of Connectivity of any graph G for the dominating set problem lies in the interval [1, 3)

because a dominating set X of a connected graph G can be turned into a connected dominating set by

adding at most 2k − 2 vertices, where k is the number of connected components of G[X].

For the dominating set problem, Zverovich [18] established a characterization of PoC-Perfect graphs in

the following theorem.

Theorem 7 (Zverovich [18]) The following assertions are equivalent for every graph G:

(i) For every induced subgraph H of G it holds that γc(H) = γ(H).

(ii) G is (P5, C5)-free.

Camby and Schaudt [7] investigated the class of PoC-Near-Perfect graphs, similarly defined as in Section 2.

Actually, they proved that every (P6, C6)-free graph G satisfies γc(G) 6 γ(G) + 1, which directly yields the

next characterization of PoC-Near-Perfect graph with threshold 3
2 .

Theorem 8 (Camby and Schaudt [7]) The following assertions are equivalent for every graph G:

(i) For every induced subgraph H of G it holds that γc(H) 6 3
2 γ(H).

(ii) G is (P6, C6)-free.

They also attempted to characterize PoC-Near-Perfect graphs with threshold 2: they found a subclass of

this class.

Theorem 9 (Camby and Schaudt [7]) For every (P8, C8)-free graph G, it holds that

γc(G) 6 2 γ(G).

Conjecture on PoC-Near-Perfect graphs

Camby and Schaudt [7] have already established the following conjecture, confirmed by the computer software

GraphsInGraphs [4].

Conjecture 3 (Camby and Schaudt [7]) The following assertions are equivalent for every graph G:

(i) For every induced subgraph H of G it holds that γc(H) 6 2 γ(H).

(ii) G is (P9, C9, H)-free, where the graph H is depicted in Figure 4.

Figure 4: The graph H from Conjecture 3.

3.2 New results

We now turn our attention to critical graphs, which is, graphs G for which the Price of Connectivity of every

proper induced subgraph H of G is strictly smaller than the Price of Connectivity of G, similarly to what

Camby et al. [5] did for the vertex cover problem. These are exactly the graphs that can appear in a minimal

forbidden induced subgraph characterization of the PoC-Near-Perfect graphs for some threshold t ∈ [1, 3).

A perhaps more tractable class of graphs is the class of strongly critical graphs, defined as the graphs G for

which every proper (not necessarily induced) subgraph H of G has a Price of Connectivity that is strictly
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smaller than the Price of Connectivity of G. It is clear that every strongly critical graph is critical, but the

converse is not true. For instance, C5 is critical, but not strongly critical. Notice that every (strongly) critical

graph is connected.

3.2.1 Critical trees

Let T be a tree. We call T 2-special if T is obtained from another tree (with at least one edge) by subdividing

each edge either once or twice and then attaching a pendent vertex to every leaf of the resulting graph (see

Figure 5 for an example).

Figure 5: A 2-special tree constructed from another tree (vertices indicated by filled circles) by subdividing each edge either
once or twice (subdivision vertices are indicated by hollow circles) and then attaching a pendent vertex (indicated by squares) to
every leaf.

The next result gives a partial characterization of the class of critical trees. However, the class of 2-special

trees turns out to be too restricted. We need a new definition.

A tree T is called peculiar if

• the neighbor of every leaf has degree 2,

• every minimum dominating set D of T is independent and

• every vertex v ∈ V (T ) \D with degree at least 3 has only one neighbor in D, i.e. |NT (v) ∩D| = 1.

See Figure 6 for an example.

Figure 6: A peculiar tree where a minimum dominating set contains vertices indicated by filled circles and leaves are indicated
by squares.

In spite of our initial expectation, Theorem 4 cannot be straightforwardly adapted to the domination case

because 2-special trees are too restricted.

Theorem 10 For a tree G, the following assertions are equivalent:

(i) G is a peculiar critical tree.

(ii) G is strongly critical.

(iii) G is critical.

Moreover, if G is critical and if the degree of any v ∈ V (G)\D, where D is an arbitrary minimum dominating

set of G, is at most 2, then G is a 2-special tree built on an initial tree H, where V (H) is a minimum

dominating set.

Before proving the theorem, we show the following useful lemma.
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Lemma 3 Let G be a critical graph. For every minimum dominating set D of G, there does not exist a bridge

of G with endpoints in D.

Proof. Suppose there exists a bridge x1x2 with x1, x2 ∈ D. The removal of the edge x1x2 results in two

connected subgraphs of G, which we denote by G1 and G2 respectively. We can assume that x1 ∈ V (G1) and

x2 ∈ V (G2). Let G′
1 be the graph obtained from G1 by attaching a pendent vertex to x1. Similarly, let G′

2

be the graph obtained from G2 by attaching a pendent vertex to x2.

We observe that D ∩ V (G1) is a dominating set of G′
1 and D ∩ V (G2) is a dominating set of G′

2. Thus

γ(G) > γ(G′
1) + γ(G′

2). (1)

On the other hand, let Dc,1 be a minimum connected dominating set of G′
1 and Dc,2 be a minimum

connected dominating set of G′
2. We can assume that Dc,1 ⊆ V (G1) and Dc,2 ⊆ V (G2), since for i = 1, 2,

G′
i is the graph Gi with a pendent vertex. It is clear that x1 ∈ Dc,1 and x2 ∈ Dc,2. Thus Dc,1 ∪ Dc,2 is a

connected dominating set of G. Since Dc,1 ∩Dc,2 = ∅,

γc(G) 6 γc(G
′
1) + γc(G

′
2). (2)

But (1) and (2) say that

γc(G)/γ(G) 6 max{γc(G′
1)/γ(G′

1), γc(G
′
2)/γ(G′

2)}. (3)

Since both G′
1 and G′

2 are isomorphic to induced subgraphs of G, (3) is a contradiction to the fact that G is

critical.

Proof of Theorem 10. It is obvious that (ii) implies (iii). Firstly, we show that (i) implies (ii): every

peculiar critical tree is strongly critical. Let G be a peculiar critical tree. Let G′ be a proper (not necessarily

induced) subgraph of G and C1, . . . , Ck be the vertex sets of its connected components. Because G is a tree,

G′ is the disjoint union of G[Ci] for i = 1, . . . , k. Moreover a minimum (resp. connected) dominating set of

G is the union of a minimum (resp. connected) dominating set of each connected component of G′, so

γc(G
′)

γ(G′)
=

∑
16i6k γc(G[Ci])∑
16i6k γ(G[Ci])

6 max

{
γc(G[Ci])

γ(G[Ci])

∣∣∣∣i = 1, . . . , k

}
<
γc(G)

γ(G)
,

since G is critical.

Secondly, we prove that (iii) implies (i): every critical tree is peculiar. For this, let G = (V,E) be a

critical tree. Let D be a minimum dominating set of G.

First we show that D is an independent set. Suppose there are x, y ∈ D such that xy ∈ E. Since G is a

tree, xy is a bridge, a contradiction to Lemma 3.

Now we show that every member of V \D with degree at least 3 has only one neighbor in D. For this, let

x ∈ V \D with |NG(x)| > 3. Suppose that |NG(x)∩D| > 2, hence let d1, d2 ∈ NG(x)∩D. Let X1, X2, . . . , Xk

be the vertex sets of the connected components of G− x. By assumption, k > 3. Suppose that d1 ∈ X1 and

d2 ∈ X2. Let

H1 = G−
⋃
i 6=2,3

Xi

and

H2 = G− (X2 ∪X3).

We observe that

γ(G) > γ(H1) + γ(H2). (4)

Since x is a cutvertex of H1, x is contained in every connected dominating set of H1. Therefore

γc(G) 6 γc(H1) + γc(H2). (5)
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By the same argumentation from Lemma 3, (4) and (5) yield a contradiction to the fact that G is critical.

This proves that every vertex of V \D with degree at least 3 has only one neighbor in D. From the discussion

above, D is an independent set.

Moreover, two degree-1 vertices, say x and y, cannot have the same neighbor since γc(G − x) = γc(G),

γ(G− x) = γ(G) and G is critical. The neighbor y of any degree-1 vertex x must have its degree equal to 2.

Otherwise, clearly γ(G− x) 6 γ(G). The vertex y is a cutvertex of the tree G− x, hence γc(G− x) = γc(G).

We obtain a contradiction since G is critical. All in all, G is peculiar.

Now, we prove that the critical tree G is 2-special if every member of V \D has a degree at most 2, for

a minimum dominating set D. By the previous argument, we know that any minimum dominating set is

independent. We can suppose that D does not contain a leaf. Otherwise, we could replace in D the degree-1

vertex by its neighbor such that D is an independent dominating set and every vertex v /∈ D has degree at

most 2. Consider the initial tree H defined as followed: V (H) = D and E(H) = {uv| there exists a path Puv
in (V \D) ∪ {u, v} from u to v}. Because D is a dominating set of G, if uv is an edge in H, then the length

of the path Puv in G is either 2 or 3. All in all, G is a 2-special tree. This completes the proof.

Notice that Theorem 10 is quite similar to Theorem 4 for the vertex cover problem but the hypothesis in

the domination version is stronger. Indeed, for the dominating set problem, in the class of chordal graphs,

the three assumptions from Theorem 10 are not equivalent: the graph from Conjecture 3 is a critical chordal

graph without being a tree.

Now, we investigate the relations between graph classes: 2-special trees, peculiar trees and critical trees.

Figure 7 illustrates the situation.

2-special trees

P7

P8

peculiar trees

Figure 6

Figure 8

Figure 9

critical trees

Figure 7: The situation around critical trees, where the gray area represents special trees with a double subdivision.

Not all peculiar trees are critical. For instance, the graph depicted in Figure 6 (whose Price of Connec-

tivity is 12/5) is not critical because it contains an induced subgraph H with a higher Price of Connectivity.

Indeed, for instance, H could be the graph obtained from a claw, K1,3, by subdividing each edge exactly

thrice. Furthermore, the graph illustrated by Figure 8 is a peculiar critical tree which is not 2-special. Also,

we point out that not all 2-special trees are critical, for instance P8 contains an induced P6 with the same

Price of Connectivity.

Moreover, by Proposition 1, every 2-special tree built on the initial tree H, where all edges of H are

subdivided exactly twice in G, is critical. These graphs are represented by the gray area in Figure 7.

However, the converse in the class of 2-special trees is not true because the graph illustrated by Figure 9 is

critical.

Proposition 1 Let G be a 2-special tree built on the initial tree H. If all edges of H are subdivided twice in G,

then G is critical.
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Figure 8: A peculiar critical tree which is not special, where a minimum dominating set contains vertices indicated by filled circles
and leaves are indicated by squares.

Proof. Notice that γc(G) = 3γ(G)− 2. Let G′ be a proper induced subgraph of G. We can assume that G′

is connected, because otherwise

γc(G
′)

γ(G′)
=

∑k
i=1 γc(G[Ci])∑k
i=1 γ(G[Ci])

6 max

{
γc(G[Ci])

γ(G[Ci])

∣∣∣∣ i = 1, . . . , k

}
,

where Ci, for i = 1, . . . , k, is the vertex set of connected components in G′. First, we suppose that

γ(G′) = γ(G). We know that a minimum connected dominating set of a tree (with one vertex of degree > 1)

is the set of vertices with degree at least 2, i.e. all vertices which are not leaves, or in other words, the set of

internal vertices. Observe that the number of internal vertices of G′ is strictly smaller than this of G because

every neighbor of a leaf in G has a degree 2. Thus γc(G
′) < γc(G) and

γc(G
′)

γ(G′)
<
γc(G)

γ(G)
.

Now, assume that γ(G′) > γ(G). Because G is a tree and G′ is connected, a minimum connected

dominating set of G′ is a subset of the internal vertex set of G, hence γc(G
′) 6 γc(G). Trivially, we obtain

γc(G)

γ(G)
>
γc(G

′)

γ(G′)
.

It remains the case where γ(G′) < γ(G). Since γc(G
′) 6 3γ(G′)− 2,

γc(G
′)

γ(G′)
6

3γ(G′)− 2

γ(G′)
= 3− 2

γ(G′)
< 3− 2

γ(G)
=

3γ(G)− 2

γ(G)
=
γc(G)

γ(G)
.

Figure 9: A 2-special critical tree constructed from another tree H (vertices indicated by filled circles) where each edge of H is
not necessarily subdivided twice.

Besides, the following proposition gives a necessary condition for a 2-special tree to be critical. First, we

prove a short lemma.

Lemma 4 Every 2-special tree G built on an initial tree H with |V (H)| > 3 contains a proper induced path

on 6 vertices.

Proof. Let P be a longest path in H. Then P has k > 3 vertices, since |V (H)| > 3. Thus, the corresponding

path P ′ in G contains all vertices from P and at least one for each edge. Moreover, P ′ can be extended
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in its endpoints by two vertices, by construction of G. Accordingly, G contains a path on |V (P ′)| + 2 >
(2k − 1) + 2 > 7 vertices. Besides, being a tree implies that any path is induced. Thus, G contains a proper

induced path on 6 vertices.

Proposition 2 Let G be a 2-special critical tree built on the initial tree H with V (H) a minimum dominating

set. Suppose that |V (H)| > 3.

(i) Let x be a leaf of H and y be its neighbor in H. Then the edge xy is subdivided exactly twice in G.

(ii) Let v be a vertex in H and NH(v) be its neighborhood. Then there exists at least one u ∈ NH(v) such

that the edge uv is subdivided exactly twice in G.

Proof. By Lemma 4, observe that γc(P6)/γ(P6) = 2 < γc(G)/γ(G) since G is critical. First, we prove (i).

Suppose that there exists a leaf x in H and its neighbor y where xy is subdivided exactly once in G. Let x′

be the pendent vertex of x in G. Consider G′ = G− {x, x′} the induced subtree built on H − {x}. It is easy

to see that γ(G) > γ(G′) + 1 and γc(G) 6 γc(G
′) + 2. Thus,

γc(G)

γ(G)
6
γc(G

′) + 2

γ(G′) + 1
6 max

(
γc(G

′)

γ(G′)
, 2

)
=
γc(G

′)

γ(G′)
. (6)

The last equality is true because γc(G)/γ(G) > 2. Thus, we obtain a contradiction since G is critical.

It remains to show (ii). Let v be a vertex in H. Suppose that for every u ∈ NH(v), the edge uv is

subdivided only once in G. We can suppose that dH(v) > 2 because the case of leaves was studied previously.

Let u1, . . . , uk be the neighbors of v in H with k > 2 and vi be the midpoint of the edge uiv in G, for all i.

Consider C1, . . . , Cj the vertex sets of the connected components of G − v. Since G is a tree, we have that

j = k and we can assume that vi, ui ∈ Ci for all i.

Let G1 be the subgraph of G induced by C1 and G2 be the subgraph of G induced by ∪ki=2Ci∪{v, v1, u1}.
We observe that V (H)∩C1 is a dominating set of G1 and ((V (H)∩V (G2)) \ {v})∪{v1} is a dominating set

of G2. Thus

γ(G) > γ(G1) + γ(G2). (7)

On the other hand, let Dc,1 be a minimum connected dominating set of G1 and Dc,2 be a minimum

connected dominating set of G2. We can assume that Dc,1 ⊆ V (G1) \ {v1} and Dc,2 ⊆ V (G2) \ {u1}. It is

clear that u1 ∈ Dc,1 and v1 ∈ Dc,2. Thus Dc,1∪Dc,2 is a connected dominating set of G. Since Dc,1∩Dc,2 = ∅,

γc(G) 6 γc(G1) + γc(G2). (8)

But (7) and (8) say that

γc(G)/γ(G) 6 max{γc(G1)/γ(G1), γc(G2)/γ(G2)}. (9)

Since both G1 and G2 are induced subgraphs of G, (9) is a contradiction to the fact that G is critical.

3.2.2 Critical graphs

As proved for the vertex cover problem in Theorem 6, we state a similar result for the dominating set problem.

Theorem 11 Every minimum dominating set of a critical graph is independent.

Proof. The proof arises directly from Lemma 5 and Lemma 6 and because every minimum dominating set

of C5, P5, C6 or P6 is independent.

Lemma 5 Let G be a critical graph with γc(G)
γ(G) 6 2. Then G is isomorphic to one of the following graphs:

C5, P5, C6 or P6.
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Proof. First, we suppose that γc(G)
γ(G) >

3
2 . By Theorem 8, the graph G strictly contains either P6 or C6, or is

isomorphic to P6 or to C6. But in the first case,

γc(P6)

γ(P6)
=
γc(C6)

γ(C6)
= 2 >

γc(G)

γ(G)
,

which is a contradiction with G critical graph. So, G ∼= P6 or G ∼= C6.

Now, we prove that if γc(G)
γ(G) 6 3

2 then G is isomorphic either to C5, or to P5. Since

1 6
γc(H)

γ(H)
<
γc(G)

γ(G)

for all induced subgraph H of G, we deduce that by Theorem 7, G is not (C5, P5)-free. Accordingly, G strictly

contains either C5 or P5, or G is isomorphic to C5 or to P5. In the first case,

γc(C5)

γ(C5)
=
γc(P5)

γ(P5)
=

3

2
>
γc(G)

γ(G)
,

which is again in contradiction with G critical graph. Thus G ∼= C5 or G ∼= P5.

Lemma 6 Let G be a critical graph with γc(G)
γ(G) > 2. Every minimum dominating set of G is independent.

Proof. Let X be a minimum dominating set of G. We suppose that two adjacent vertices u and v are in X.

Consider H = G \ (NG[u] ∪ NG[v]) the resulting graph after deleting the closed neighborhood of vertices u

and v. Since X \ {u, v} is a dominating set of H,

γ(G) > γ(H) + 2.

Besides, γc(G) 6 γc(H) + 4 because any connected dominating set of H with u, v and two additional vertices

to obtain a connected component gives a connected dominating set of G. Accordingly,

2 <
γc(G)

γ(G)
6
γc(H) + 4

γ(H) + 2
.

Because
γc(H) + 4

γ(H) + 2
∈
[
2,
γc(H)

γ(H)

]
,

we obtain that γc(H)
γ(H) = max

(
2, γc(H)

γ(H)

)
and so γc(G)

γ(G) 6 γc(H)
γ(H) , which is a contradiction with G critical.
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