LSLQ: An iterative method for linear least-squares with an error minimization property

R. Estrin, D. Orban, M. A. Saunders

G–2017–05

January 2017

This version is available to you under the open access policy of Canadian and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.ca/en/papers/G-2017-05) to update your reference data, if it has been published in a scientific journal.
LSLQ: An iterative method for linear least-squares with an error minimization property

Ron Estrina
Dominique Orbanb
Michael A. Saundersc

a Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
b GERAD and Department of Mathematics and Industrial Engineering, École Polytechnique, Montréal, QC, Canada
c Systems Optimization Laboratory, Department of Management Science and Engineering, Stanford University, Stanford, CA, USA

restrin@stanford.edu
dominique.orban@gerad.ca
saunders@stanford.edu

January 2017

Les Cahiers du GERAD
G–2017–05

Copyright © 2017 GERAD
Abstract: We propose an iterative method named LSLQ for solving linear least-squares problems $Ax \approx b$ of any shape. The method is based on the Golub and Kahan (1965) process, where the dominant cost is products with A and its transpose. In the rank-deficient case, LSLQ identifies the minimum-length least-squares solution. LSLQ is formally equivalent to SYMMLQ applied to the normal equations, so that the current estimate's Euclidean norm increases monotonically while the associated error norm decreases monotonically. We provide lower and upper bounds on the error in the Euclidean norm along the LSLQ iterations. The upper bound translates to an upper bound on the error norm along the LSQR iterations, which was previously unavailable, and provides an error-based stopping criterion involving a transition to the LSQR point. We report numerical experiments on standard test problems and on a full-wave inversion problem arising from geophysics in which an approximate least-squares solution corresponds to an approximate gradient of a relevant penalty function that is to be minimized.

Keywords: Least squares, least norm, SYMMLQ

Acknowledgments: We are grateful to Tristan van Leeuwen for supplying code that allowed us to generate instances of the seismic inverse problem.
1 Introduction

We propose an iterative method (LSLQ) for two ubiquitous problems in computational science—the least-squares problem and the least-norm problem:

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \|Ax - b\|^2, \\
\text{subject to} & \quad Ax = b,
\end{align*}
\]

both of which include consistent linear systems \(Ax = b\) as a special case. The norm \(\| \cdot \|\) is Euclidean and \(A\) may be an \(m\)-by-\(n\) matrix, but we assume more generally that \(A : \mathbb{R}^n \to \mathbb{R}^m\) is a linear operator because we only require operator-vector products of the form \(Au\) and \(A^Tv\). We often refer to the optimality conditions of \((\text{LS})\), namely the normal equations

\[
A^TAx = A^Tb.
\]

When \(Ax = b\) is consistent, LSLQ identifies a solution of \((\text{LN})\). If \(\text{rank}(A) < n\), LSLQ finds the minimum-length solution (MLS) \(x^\dagger = A^\dagger b\), where \(A^\dagger\) is the pseudoinverse.

Motivation: monitoring the error

We briefly describe why an iterative method for least squares with an error minimization property is of interest.

Van Leeuwen and Herrmann (2013) describe a penalty method for PDE-constrained optimization in the context of a seismic inverse problem. The penalty objective \(\phi_p(m,u)\) depends on the control variable \(m\) and the wavefields \(u\), where \(\rho > 0\) is a penalty parameter. For fixed values of \(\rho\) and \(m\), the wavefields \(u(m)\) satisfying \(\nabla_u \phi_p(m,u(m)) = 0\) can be found as the solution of a linear least-squares (LS) problem in \(u\). The gradient of \(\phi\) with respect to \(m\) is subsequently expressed as a linear function of \(u(m)\), say

\[
\nabla_m \phi_p(m,u(m)) = Gu(m) - g
\]

for a certain matrix \(G\) and vector \(g\). Assume now that an inexact solution \(\tilde{u}\) of the LS problem for \(u(m)\) is determined. The error on \(u\) translates directly into an error on the gradient of the penalty function, for

\[
\|\nabla_m \phi_p(m,u) - \nabla_m \phi_p(m,\tilde{u})\| \leq \|G\| \|u - \tilde{u}\|, \quad u \equiv u(m).
\]

If a derivative-based optimization method is to be used to minimize the penalty function, there is interest in a method to approximate \(u\) in which the error is monotonically decreasing. Indeed, the convergence properties of derivative-based optimization methods are not altered provided the gradient is computed sufficiently accurately in the sense that the left-hand side of \((1)\) is sufficiently small compared to \(\|\nabla_m \phi_p(m,u)\|\) (Conn, Gould, and Toint, 2000, §8.4.1.1).

In the following sections, we introduce the LSLQ method. We now comment on the necessity for LSLQ in order to monitor the error reliably. At this stage, it is sufficient to say that LSLQ applied to an LS problem is equivalent to SYMMLQ (Paige and Saunders, 1975) applied to \((\text{NE})\). LSLQ fits in the category of Krylov-subspace methods based on the Golub and Kahan (1965) process, and in that sense is related to LSQR (Paige and Saunders, 1982a) and LSMR (Fong and Saunders, 2011) (equivalent to CG and MINRES applied to \((\text{NE})\)). As far as error monitoring is concerned, the leading advantage that LSLQ inherits from SYMMLQ is that the solution estimate is updated along orthogonal directions. As a consequence, the solution norm increases and the error decreases along the iterations. It happens that both LSQR and LSMR share those properties (Fong and Saunders, 2012, Table 5.2) but with important differences. First, LSLQ’s orthogonal updates suggest error lower and upper bounds initially developed for SYMMLQ by Estrin, Orban, and Saunders (2016), and which are the subject of Section 4. Second, the error is minimized in LSLQ, while it is only monotonic in LSQR and LSMR. In spite of the latter observation, the error along the LSQR and LSMR iterations is typically smaller than for the LSLQ iterations by a few orders of magnitude—see Proposition 1. This is not a contradiction because LSLQ minimizes the error in a transformation of the Krylov subspace.
Figure 1 illustrates a typical scenario, where the error is represented along the LSQR, LSMR, and LSLQ iterations on two over-determined problems arising from an animal breeding application (Hegland, 1990, 1993), and where we consider that the solution obtained with a complete orthogonal decomposition is the exact solution.

It appears from Figure 1 that LSQR is more appealing than LSLQ if one is interested in minimizing the error. The difficulty is that LSQR does not lend itself to obvious error lower and upper bounds because it is not naturally formulated in terms of the Euclidean norm and its solution estimate is not updated along orthogonal directions. Estimates of the error in the conjugate gradient (CG) method (Hestenes and Stiefel, 1952) applied to a symmetric and positive definite system have been developed in the literature, an effort led chiefly by Meurant (2005). Those estimates could be applied to LSQR but unfortunately they are only estimates and have not been proved to be lower or upper bounds. Thus it is difficult to terminate the LSQR iterations reliably with a guaranteed error level. Fortunately, SYMMLQ is closely related to CG and it is possible to transition cheaply from a SYMMLQ iterate to a corresponding CG iterate. LSLQ inherits that property and it is possible to transition to a related LSQR iterate at any iteration. The red curve in Figure 1 represents the error observed at each LSQR point obtained by transitioning from the then-current LSLQ point. Note the high accuracy to which the red and blue curves match; they are essentially superposed. The black dot represents the error observed after transitioning from the final LSLQ iterate to the LSQR point. Note also that because the stopping rule for all methods involves the residual of the normal equations, the curves end at different abscissae.

Our main objective is to exploit the reliable lower and upper bounds on the LSLQ error based on those developed for SYMMLQ by Estrin et al. (2016). The upper bound on the LSLQ errors combined with the tight relationship between LSLQ and LSQR leads to an upper bound on the LSQR error. Thus it becomes possible to end the LSLQ iterations as soon as it becomes apparent that the upper bound on the LSQR error is below a prescribed tolerance.

Both problems used in Figure 1 are rank-deficient and the curves indicate that all methods tested identify the minimum-length least-squares solution (with $\|x\|$ minimized). We call the latter the MLS solution. Problem small2 is included in the illustration because it is an example where the error plateaus, which is interesting from the point of view of error bounds. We return to this point in Section 4.

We do not consider LSMR further here for two reasons. First, it is a consequence of (Hestenes and Stiefel, 1952, Theorem 7:5) that the LSMR error is monotonic but equal to or larger than that of LSQR—see also (Fong and Saunders, 2012, Theorem 2.4). Second, LSMR is a variant of MINRES (Paige and Saunders, 1975)}
and we know of no result relating the errors along the MINRES iterations on a symmetric positive definite system to those along the SYMMLQ iterations.

Notation

We use Householder notation \((A, b, \beta)\) for matrix, vector, scalar). Unless specified otherwise, \(\|A\|\) and \(\|x\|\) denote the Euclidean norm of matrix \(A\) and vector \(x\). For rectangular \(A\), we order its singular values according to \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)} > 0\). For symmetric positive definite \(M\), we define the \(M\)-norm of \(u\) via \(u_M^2 := u^T M u\). Again, MLS refers to the minimum-length solution \(x^* = A^T b\) (also called the pseudoinverse solution).

2 Derivation of the method

In this section, we describe LSLQ using the process/method/implementation framework.

2.1 The Golub-Kahan process

LSLQ is based on the Golub and Kahan (1965) process described as Algorithm 1, with \(A\) and \(b\) as in (LS) or (LN). In line 1, \(\beta_1 u_1 = b\) is short for \(\beta_1 \{b\}\); if \(\beta_1 > 0\) then exit; else \(u_1 = \{b/\beta_1\}\). Similarly for line 2 and the main loop.

Algorithm 1 Golub-Kahan bidiagonalization process

Require: \(A, b\)
1: \(\beta_1 u_1 = b\)
2: \(\alpha_2 v_1 = A^T u_1\)
3: for \(k = 1, 2, \ldots\) do
4: \(\beta_{k+1} u_{k+1} = A v_k - \alpha_k u_k\)
5: \(\alpha_{k+1} v_{k+1} = A^T u_{k+1} - \beta_{k+1} v_k\)
6: end for

We define \(U_k := [u_1 \ \cdots \ u_k], V_k := [v_1 \ \cdots \ v_k]\), and

\[
L_k := \begin{bmatrix}
\alpha_1 & \beta_2 & \alpha_2 & \cdots & \alpha_k \\
\beta_2 & \alpha_2 & \cdots & \beta_k & \alpha_k \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\beta_k & \cdots & \alpha_k & \beta_k & \alpha_k \\
\beta_k & \cdots & \alpha_k & \beta_k & \beta_{k+1}
\end{bmatrix}, \quad
B_k := \begin{bmatrix}
\alpha_1 & \alpha_2 & \cdots & \alpha_k \\
\beta_2 & \alpha_2 & \cdots & \beta_k \\
\vdots & \ddots & \ddots & \vdots \\
\beta_k & \cdots & \alpha_k & \beta_{k+1}
\end{bmatrix} = \begin{bmatrix}
L_k \\
B_k T
\end{bmatrix}.
\]

(2)

The situation after \(k\) iterations of Algorithm 1 can be summarized as

\[
AV_k = U_{k+1} B_k, \quad (3a)
\]
\[
A^T U_{k+1} = V_k B_k^T + \alpha_{k+1} v_{k+1} e_{k+1}^T = V_{k+1} L_{k+1}^T. \quad (3b)
\]

and the identities \(U_k^T U_k = I_k\) and \(V_k^T V_k = I_k\) are satisfied in exact arithmetic.

2.2 LSLQ: method

By definition, LSLQ applied to (LS) is equivalent to SYMMLQ applied to (NE). The identities (3) yield

\[
A^T A V_k = A^T U_{k+1} B_k \\
= V_k B_k^T B_k + \alpha_{k+1} v_{k+1} e_{k+1}^T B_k \\
= V_k B_k^T B_k + \alpha_{k+1} \beta_{k+1} v_{k+1} e_k^T
\]
where

\[H_k := \begin{bmatrix} B_k^T B_k \\ \alpha_k \beta_{k+1} e_k^T \end{bmatrix}, \]

while line 2 of Algorithm 1 yields \(A^T b = \alpha_1 \beta_1 v_1 \). From here on, we use the shorthand

\[\bar{\alpha}_k := \alpha_k^2 + \beta_{k+1}^2, \quad \text{and} \quad \bar{\beta}_k := \alpha_k \beta_k, \quad k = 1, 2, \ldots \]

As noted by Fong and Saunders (2011), the above characterizes the situation after \(k + 1 \) steps of the Lanczos (1950) process applied to \(A^T A \) with initial vector \(A^T b \). For all \(k \geq 1 \), we denote

\[T_k := B_k^T B_k = \begin{bmatrix} \bar{\alpha}_1 & \bar{\beta}_2 \\ \bar{\beta}_2 & \bar{\alpha}_2 & \ddots \\ & \ddots & \ddots & \bar{\beta}_k \\ & & & \bar{\alpha}_k \end{bmatrix}, \quad H_k = \begin{bmatrix} T_k \\ \beta_{k+1} e_k^T \end{bmatrix}. \]

Note that \(T_k \) is \(k \)-by-\(k \) and tridiagonal, and \(H_k \) is \((k + 1)\)-by-\(k \).

The \(k \)-th iteration of CG applied to (NE) computes \(x_k^C = V_k y_k^C \), where \(y_k^C \) is the solution of the subproblem

\[T_k y_k^C = \bar{\beta}_1 e_1. \]

The resulting \(x_k^C \) can be shown to solve the subproblem

\[\min_{x \in K_k} \| x - x \|_{A^T A}, \]

where \(K_k := \text{Span}\{ A^T b, (A^T A) A^T b, \ldots, (A^T A)^k A^T b \} \) is the \(k \)-th Krylov subspace associated with \(A^T A \) and \(A^T b \). LSQR (Paige and Saunders, 1982a,b) is equivalent in exact arithmetic. By contrast, the \(k \)-th iteration of SYMMLQ applied to (NE) computes \(y_k^L \) as the solution of

\[\min_{y \in H_k^{-1} y_k^L = \bar{\beta}_1 e_1}, \]

and sets \(x_k^L := V_k y_k^L \). Note that \(H_k^{-1} \) is the first \(k \) rows of \(T_k \) and may be written as \(H_k^{-1} = B_k^T L_k \). It can be shown that \(x_k^L \) solves the subproblem

\[\min_{x \in A^T A K_{k-1}} \| x - x \|, \]

One important distinction between (9) and (11) is that \(x_k^C \in K_k \) while \(x_k^L \in (A^T A) K_{k-1} \). By construction, \(\| x - x_k \| \) is monotonic along the LSLQ iterates, but as mentioned earlier, it also happens to be monotonic along the LSQR iterates. Somewhat surprisingly, the error is always smaller along the LSQR iterates than along the LSLQ iterates, as formalized by the next result.

Proposition 1 Let \(x_k^L \) and \(x_k^C \) be defined as in (21) and (22). Then, for all \(k \),

\[\| x - x_k^C \| \leq \| x - x_k^L \|. \]

Proof. The result follows from applying (Estrin et al., 2016, Theorem 5) to (NE). \(\square \)

Note first that Proposition 1 holds whether \(A \) has full column rank or not. Note also that Proposition 1 does not contradict the definition of LSLQ as minimizing the error because the latter is not minimized over the same subspace as that used during the \(k \)-th iteration of LSQR.

In the next section we describe the implementation of LSLQ, and we return to the two errors in Section 4.
2.3 LSLQ: implementation

We identify ε_k by way of an LQ factorization of H^T_{k-1}, which we compute via an implicit LQ factorization of T_k = B_k^T B_k. As in LSQR and LSMR we begin with the QR factorization

\[P_k^T \begin{bmatrix} B_k & \beta_1 e_1 \end{bmatrix} = \begin{bmatrix} R_k & g_k \\ 0 & \psi_{k+1} \end{bmatrix}, \quad R_k := \begin{bmatrix} \gamma_1 & \delta_2 \\ \gamma_2 & \ddots \\ \vdots & \ddots & \delta_k \\ \gamma_k & \end{bmatrix}, \quad g_k = \begin{bmatrix} \psi_1 \\ \vdots \\ \psi_{k} \end{bmatrix}, \quad (12) \]

where \(P_k^T = P_{k,k+1} \cdots P_{2,2} P_{1,1} \) is a product of orthogonal reflections. The \(j \)-th reflection \(P_{j,j+1} \) is designed to zero out the sub-diagonal element \(\beta_{j+1} \) in \(B_k \). With \(\bar{\gamma}_1 := \alpha_1 \) it may be represented as

\[\begin{bmatrix} c_j' & s_j' \\ s_j & -c_j \end{bmatrix} \begin{bmatrix} \gamma_j & \delta_{j+1} \\ \beta_{j+1} & \alpha_{j+1} \end{bmatrix} = \begin{bmatrix} \gamma_j & \delta_{j+1} \\ \bar{\gamma}_{j+1} & \end{bmatrix}, \quad (13) \]

where \(\gamma_j = (\gamma_j^2 + \delta_{j+1}^2)^{1/2}, c_j' = \gamma_j/\gamma_j, \) \(s_j' = \beta_{j+1}/\gamma_j, \) and

\[\bar{\gamma}_{j+1} = \delta_{j+1}, \quad \bar{\gamma}_{j+1} = -c_j' \alpha_{j+1}. \quad (14) \]

The rotations apply to the right-hand side \(\beta_1 e_1 \) to produce \(g_k \) defined by the recurrence

\[\psi_1' = \beta_1, \quad \psi_k = c_k' \psi_{k-1}', \quad \psi_{k+1} = s_k' \psi_k, \quad k = 1, 2, \ldots \quad (15) \]

It will be convenient to use the notation \(g_{k+1} = (g_k^T, \psi_{k+1})^T. \)

The QR factors of \(B_k \) give the Cholesky factorization \(T_k = R_k^T R_k. \) To form LQ factors of \(T_k \) we take the LQ factorization

\[R_k = \bar{M}_k Q_k, \quad \bar{M}_k := \begin{bmatrix} \varepsilon_1 \\ \eta_2 \\ \varepsilon_2 \\ \ddots \\ \cdots \\ \eta_k \\ \varepsilon_k \end{bmatrix}. \quad (16) \]

Initially, \(\varepsilon_1 = \gamma_1 \) so that \(R_1 = \bar{M}_1. \) We use the notation of Paige and Saunders (1975) to indicate that \(\bar{M}_k \)

differs from the leading \(k \)-by-\(k \) submatrix \(\bar{M}_{k-1} \) in the \((k, k) \)-th element only, which is updated to \(\varepsilon_k \) once \(\delta_{k+1} = \alpha_{k+1} \bar{\gamma}_{k+1}/\gamma_k \) is computed. This results in the plane reflection \(Q_{k,k+1} \) defined by

\[\begin{bmatrix} k & k+1 \\ k & \end{bmatrix} \begin{bmatrix} \varepsilon_k & \delta_{k+1} \\ \gamma_{k+1} & \end{bmatrix} \begin{bmatrix} c_k & s_k \\ s_k & -c_k \end{bmatrix} = \begin{bmatrix} \varepsilon_k & \eta_{k+1} \\ \varepsilon_{k+1} & \end{bmatrix}, \quad (17) \]

where \(\varepsilon_k = (\varepsilon_k^2 + \delta_{k+1}^2)^{1/2}, c_k = \varepsilon_k/\varepsilon_k, \) \(s_k = \delta_{k+1}/\varepsilon_k, \) and

\[\eta_{k+1} = \gamma_{k+1} s_k, \quad \varepsilon_{k+1} = -\gamma_{k+1} c_k. \quad (18) \]

Combining (12) and (16) gives

\[H_{k-1}^T = B_{k-1}^T L_k = \begin{bmatrix} B_{k-1}^T B_{k-1} & \alpha_k \beta_k \varepsilon_{k-1} \\ \gamma_k & \end{bmatrix} = R_{k-1}^T R_{k-1} \begin{bmatrix} \delta_k \varepsilon_{k-1} \\ \gamma_k \end{bmatrix}. \]

By construction,

\[R_k = \begin{bmatrix} R_{k-1} & \delta_k \varepsilon_{k-1} \\ \gamma_k \end{bmatrix} = \bar{M}_k Q_k = \begin{bmatrix} M_{k-1} & 0 \\ \eta_{k-1} \varepsilon_{k-1} & \varepsilon_k \end{bmatrix} Q_k. \]
and we obtain the LQ factorization

\[H_{k-1}^T = R_{k-1}^T [M_{k-1} \ 0] Q_k = [R_{k-1}^T M_{k-1} \ 0] Q_k. \]

With the solution of \(H_{k-1}^T y_k^L = \beta_1 e_1 \) in mind, we consider the system \(R_k^T t_k = \alpha_1 \beta_1 e_1 \) and obtain \(t_k := (\tau_1, \ldots, \tau_k) \) by the recursion

\[
\begin{align*}
\tau_1 & := \alpha_1 \beta_1 / \gamma_1, \\
\tau_j & := -\tau_{j-1} \delta_j / \gamma_j, \quad j = 2, \ldots, k.
\end{align*}
\]

(19)

We also consider the systems \(M_{k-1} z_{k-1} = t_{k-1} \) and \(\bar{M}_k \bar{z}_k := t_k \) and obtain \(z_{k-1} := (\zeta_1, \ldots, \zeta_{k-1}) \) and \(\bar{z}_k = (z_{k-1}, \bar{\zeta}_k) \) by the recursion

\[
\begin{align*}
\zeta_1 & = \tau_1 / \varepsilon_1, \\
\zeta_j & = (\tau_j - \zeta_{j-1} \eta_j) / \varepsilon_j, \quad j = 2, \ldots, k - 1, \\
\bar{\zeta}_k & = (\tau_k - \zeta_{k-1} \eta_k) / \bar{\varepsilon}_k = \zeta_k / c_k.
\end{align*}
\]

(20)

Then \(y_k^L = Q_k^T (z_{k-1}, 0) \) solves Eq. (10), while \(y_k^C = Q_k^T \bar{z}_k \) solves Eq. (8).

Now let \(\bar{W}_k := V_k Q_k^T = [w_1 \ldots w_{k-1} \ \bar{w}_k] = [W_{k-1} \ \bar{w}_k] \). Starting with \(x_1^L := 0 \) and \(x_1^C := 0 \) we obtain

\[
\begin{align*}
x_k^L & = V_k y_k^L = V_k Q_k^T \begin{bmatrix} z_{k-1} \\ 0 \end{bmatrix} = \bar{W}_k \begin{bmatrix} z_{k-1} \\ 0 \end{bmatrix} = W_{k-1} z_{k-1} = x_{k-1}^L + \zeta_{k-1} w_{k-1}, \\
x_k^C & = V_k Q_k^T \bar{z}_k = \bar{W}_k \bar{z}_k = W_{k-1} z_{k-1} + \bar{\zeta}_k \bar{w}_k = x_k^L + \bar{\zeta}_k \bar{w}_k.
\end{align*}
\]

(21)

(22)

Thus, as in SYMMLQ it is always possible to transfer to the CG point. In terms of error, Proposition 1 indicates that transferring is always desirable.

At the next iteration we have \(\bar{W}_{k+1} = V_{k+1} Q_{k+1}^T \), where

\[
\begin{bmatrix} \bar{w}_k & v_{k+1} \end{bmatrix} \begin{bmatrix} c_k & s_k \\ s_k & -c_k \end{bmatrix} = \begin{bmatrix} w_k & \bar{w}_{k+1} \end{bmatrix}.
\]

With \(\bar{w}_1 := v_1 \) this gives

\[
\begin{align*}
w_k & = c_k \bar{w}_k + s_k v_{k+1}, \\
\bar{w}_{k+1} & = s_k \bar{w}_k - c_k v_{k+1}.
\end{align*}
\]

(23a)

(23b)

Because \(W_{k-1} \) and \(\bar{W}_k \) are orthogonal in exact arithmetic, we have

\[
\begin{align*}
\|x_k^L\|^2 & = \|W_{k-1} z_{k-1}\|^2 = \|z_{k-1}\|^2 = \sum_{j=1}^{k-1} \zeta_j^2 = \|x_{k-1}^L\|^2 + \zeta_{k-1}^2, \\
\|x_k^C\|^2 & = \|x_k^L\|^2 + \bar{\zeta}_k^2.
\end{align*}
\]

(24)

(25)
2.4 Residual estimates

The k-th LSLQ residual is defined as $r_k^L := b - Ax_k^L$. We use the definition of $x_k^L = V_ky_k^L$, (3), (12) and (16) to express it as

$$r_k^L = b - AV_ky_k^L = U_{k+1} \left(\beta_1 e_1 - B_ky_k^L \right)$$

$$= U_{k+1}P_k \left(\beta_1 P_k^T e_1 - \begin{bmatrix} R_k \\ 0 \end{bmatrix} \right)$$

$$= U_{k+1}P_k \left(g_{k+1} - \begin{bmatrix} M_k \gamma_k \\ 0 \end{bmatrix} y_k \right)$$

$$= U_{k+1}P_k \left(g_{k+1} - \begin{bmatrix} M_k \\ 0 \end{bmatrix} z_{k-1} \right)$$

$$= U_{k+1}P_k \left(g_{k+1} - \begin{bmatrix} M_{k-1} \gamma_k \zeta_{k-1} \\ 0 \end{bmatrix} \right)$$

$$= U_{k+1}P_k \left(g_{k+1} - \begin{bmatrix} \psi_k \\ \psi_{k+1} \end{bmatrix} - \begin{bmatrix} t_{k-1} \\ \nu_k \zeta_{k-1} \end{bmatrix} \right),$$

where g_{k+1} is defined in (12) and (15). It is not immediately obvious that $g_{k-1} = t_{k-1}$, but note that (12) yields $R_{k-1}^T 0 P_{k-1}^T = B_{k-1}^T$, so that

$$R_{k-1}^T g_{k-1} = \begin{bmatrix} R_{k-1}^T \\ 0 \end{bmatrix} \left[\begin{array}{c} g_{k-1} \\ \gamma_k \end{array} \right] = B_{k-1}^T \beta_1 e_1 = \alpha_1 \beta_1 e_1 = R_{k-1}^T t_{k-1}$$

as long as $\gamma_{k-1} \neq 0$. Therefore, if the process does not terminate, we have $g_{k-1} = t_{k-1}$ as announced. By orthogonality of U_{k+1} and P_k we have

$$\|r_k^L\|^2 = \left\| \begin{bmatrix} \psi_k - \eta_k \zeta_{k-1} \\ \psi_{k+1} \end{bmatrix} \right\|^2 = (\psi_k - \eta_k \zeta_{k-1})^2 + (\psi_{k+1})^2. \quad (26)$$

The residual norm for the CG-point can also be computed as

$$r_k^C := b - Ax_k^C = U_{k+1}P_k \left(P_k^T \beta_1 e_1 - \begin{bmatrix} R_k \\ 0 \end{bmatrix} y_k^C \right) = U_{k+1}P_k \left(\begin{bmatrix} g_k \\ \psi_k \end{bmatrix} - \begin{bmatrix} R_k \\ 0 \end{bmatrix} y_k \right).$$

The top k rows of the parenthesized expression vanish by definition of y_k^C, and there remains

$$\|r_k^C\| = (\beta_1 P_k^T e_1)_{k+1} = |\psi_{k+1}|.$$

To derive recurrences for the residual norm for (NE), we can use the recurrences derived in Paige and Saunders (1975) for SYMMLQ and CG, which become

$$\|A^T r_k^L\|^2 = (\gamma_k \epsilon_k)^2 \zeta_k^2 + (\delta_k \eta_k)^2 \epsilon_{k-1}^2,$$

$$\|A^T r_k^C\|^2 = \alpha_1 \beta_1 s_1 \cdots s_{k-1} s_k / c_k.$$

2.5 Norm and condition number estimates

As in (Paige and Saunders, 1982a), (4) yields $V_k^T A^T A V_k = B_k^T B_k$, so that the Poincaré separation theorem ensures $\sigma_{\min}(A) \leq \sigma_{\min}(B_k) \leq \sigma_{\max}(B_k) \leq \sigma_{\max}(A)$ for all k, where σ_{\min} denotes the smallest nonzero singular value. Therefore we may use $\|B_k\|$ as an estimate of $\|A\|$ and $\text{cond}(B_k)$ as an estimate of $\text{cond}(A)$ in both the Euclidean and Frobenius norms. In particular, $\|B_{k+1}\|_F^2 = \|B_k\|_F^2 + \alpha_k + \beta_{k+1}^2$.
Algorithm 2 LSLQ

1: \(\beta_1 u_1 = b, \quad \alpha_1 v_1 = A^T u_1 \)
2: \(\delta_1 = -1, \quad \psi_1 = \beta_1 \)
3: \(\tau_0 = \alpha_2 \beta_1, \quad \zeta_0 = 0 \)
4: \(c_0 = 1, \quad s_0 = 0 \)
5: \(|A^T C_0| = \alpha_1 \beta_1 \)
6: \(w_1 = v_1, \quad x_1^T = 0 \)
7: for \(k = 1, 2, \ldots \) do
8: \(\beta_{k+1} v_{k+1} = A v_k - \alpha_k u_k \)
9: \(\alpha_{k+1} u_{k+1} = A^T u_k + \delta_{k+1} v_k \)
10: \(\gamma_k = (\gamma_k^2 + \delta_{k+1}^2)^{1/2}, \quad \zeta_k = \gamma_k/\tau_k, \quad s_k = \delta_k + 1/\gamma_k \)
11: \(\delta_{k+1} = \frac{s_k}{\gamma_k} \)
12: \(\eta_{k+1} = -\zeta_k \)
13: \(\tau_k = -\tau_{k-1} \delta_k/\gamma_k \)
14: \(\xi_k = -\gamma_k \)
15: \(\eta_k = \gamma_k \)
16: \(\varepsilon_k = \xi_k + \delta_k/\gamma_k \)
17: \(\|p_{k+1}^T\| = \|p_k^T\|^2 + \|p_k\|^2 \)
18: \(\psi_k = \psi_{k-1} \)
19: \(\|p_k^T\| = \psi_k \)
20: \(\zeta_k = \sigma_k - \eta_{k-1} \)
21: \(\|A^T C_{k-1}^\top\| = (\gamma_k^2 + \delta_k^2 + \sigma_k^2 \gamma_k^2) \)
22: \(\psi_k = \psi_{k-1} \)
23: \(\psi_k = \psi_{k-1} \)
24: \(\psi_k = \psi_{k-1} \)
25: \(\|x_{k+1}\|^2 = \|x_k\|^2 + \zeta_k^2 \)
26: end for

The condition number of \(B_k \) may serve as an estimate of \(\text{cond}(A) \). As in Fong and Saunders (2011), our approximation rests on the QLP factorization

\[
P_k^T B_k Q_k = \begin{bmatrix} M_{k-1} & 0 \\ \eta_{k-1} \end{bmatrix} \begin{bmatrix} \xi_k \\ 0 \end{bmatrix}.
\]

According to Stewart (1999), the absolute values of the diagonals of the bidiagonal matrix above are tight approximations to the singular values of \(B_k \). Thus we estimate

\[
\sigma_{\min}(B_k) \approx \min(\varepsilon_1, \ldots, \varepsilon_k, \bar{\varepsilon}_k), \quad \sigma_{\max}(B_k) \approx \max(\varepsilon_1, \ldots, \varepsilon_k, \bar{\varepsilon}_k),
\]

and \(\text{cond}(A) \approx \sigma_{\max}(B_k)/\sigma_{\min}(B_k) \), which turns out to be remarkably accurate.

3 Complete algorithm

The complete procedure is summarized as ?? For low-rank problems, LSLQ identifies the MLS solution (like LSQR and LSMR).

Theorem 1 LSLQ returns the MLS solution, i.e., it solves

\[
\min_{x \in \mathbb{R}^n} \|x\| \quad \text{subject to} \quad x \in \arg \min_y \|Ay - b\|.
\]

Proof. Identical to that of (Fong and Saunders, 2011, Theorem 4.2).

4 Error estimates

In exact arithmetic, a least-squares solution \(x_* \) is identified after at most \(p := \min(m, n) \) iterations, so that

\[
x_* = x_{p+1}^L = \sum_{j=1}^p \zeta_j w_j.
\]

Because \(x_k = \sum_{j=1}^{k-1} \zeta_j w_j \), the error may be written as \(e_k = x_k - x_{p+1}^L = \sum_{j=k}^p \zeta_j w_j \).
By orthogonality, \(\|e_k^L\|^2 = \sum_{j=k}^p \xi_j^2 \). A possible stopping condition based on the one suggested by Hestenes and Stiefel (1952) is

\[
\|x_{k+1}^L - x_{d}^L\|^2 = \left(\sum_{j=k-d}^k \xi_j^2 \right)^{\frac{1}{2}} \leq \varepsilon \|x_{k+1}^L\| \quad (k \geq d),
\]

where \(d \in \mathbb{N} \) is a delay and \(0 < \varepsilon < 1 \) is a tolerance. The left-hand side of (27) is a lower bound on the error \(\|e_k^L\| \).

As we illustrate in Section 6, (27) is not a robust stopping criterion because the lower bound may sometimes underestimate the actual error by several orders of magnitude. In the following sections, we develop a more robust estimate defined by an upper bound.

4.1 Upper bound on the LSLQ error

Estrin et al. (2016) develop an upper bound on the error along SYMMLQ iterations for a symmetric positive semidefinite system. The bound leads to an upper bound on the error along CG iterations. We now translate those estimates to the present scenario and obtain upper bounds on the error along LSLQ and LSQR iterations for (LS) or (37). We begin with an upper bound on the LSLQ error. By orthogonality, \(\|x_\ast - x_1^L\|^2 = \|x_\ast\|^2 - \|x_1^L\|^2 \), and because \(\|x_1^L\|^2 \) can be computed, an upper bound on the error will follow from an upper bound on \(\|x_\ast\|^2 \). Assume temporarily that \(m \geq n \) and that \(A \) has full column rank, so that \(A^T A \) is nonsingular. We may express

\[
\|x_\ast\|^2 = b^T A(A^T A)^{-2} A^T b = b^T A f(A^T A) A^T b,
\]

where \(f(\xi) := \xi^{-2} \) is defined for all \(\xi \in (0, \sigma_1^2] \), and where we define \(f(A^T A) := P f(\Sigma^T \Sigma) P^T \) with \(A = Q \Sigma P^T \) the SVD of \(A \). In other words, if \(p_i \) is the \(i \)-th column of \(P \) and \(\sigma_i \) is the \(i \)-th largest singular value of \(A \),

\[
f(A^T A) = \sum_{i=1}^n f(\sigma_i^2) p_i p_i^T.
\]

We have from line 2 of Algorithm 1 and (6) that \(A^T b = \tilde{\beta}_1 v_1 \) and therefore

\[
\|x_\ast\|^2 = \tilde{\beta}_1^2 \sum_{i=1}^n f(\sigma_i^2) \mu_i^2, \quad \mu_i := p_i^T v_1, \quad i = 1, \ldots, n.
\]

When \(A \) is rank-deficient, \(A^T A \) is positive semidefinite and singular, but (NE) remains consistent. In addition, the MLS solution of (LS) lies in \(\text{Range}(A^T) \). Let \(r \) be the smallest integer in \(\{1, \ldots, n\} \) such that \(\sigma_{r+1} = \cdots = \sigma_n = 0 \) and \(\sigma_r > 0 \). Then \(\text{rank}(A) = r = \dim \text{Range}(A^T) \) and the smallest nonzero eigenvalue of \(A^T A \) is \(\sigma_r^2 \). By the Rayleigh-Ritz theorem,

\[
\sigma_r^2 = \min \left\{ \|Av\|^2 \mid v \in \text{Range}(A^T), \|v\| = 1 \right\}.
\]

Note that each \(v_i \in \text{Range}(A^T) \) and that (4) implies \(T_k = V_k^T A^T A V_k \) in exact arithmetic. Hence, for all \(u \in \mathbb{R}^k \) with \(\|u\| = 1 \), we have \(\|V_k u\| = 1 \) and \(u^T T_k u = \|A V_k u\| \geq \sigma_r^2 > 0 \), and each \(T_k \) is uniformly positive definite, despite the fact that \(A^T A \) is singular.

Thus, in the rank-deficient case, \(A^T A = \sum_{i=1}^r \sigma_i^2 p_i p_i^T \). The only difference with the full-rank case is that the sum occurs over all nonzero singular values of \(A \). Therefore, we need only redefine

\[
f(\xi) := \begin{cases} \xi^{-2} & \text{if } x > 0 \\ 0 & \text{if } x = 0. \end{cases}
\]

Because each \(x_k^L \) and each \(x_k^C \in \text{Range}(A^T) \), the LSLQ and LSQR iterations occur in \(\text{Range}(A^T) \) exactly as if they were applied to the \(r \)-by-\(r \) positive-definite system

\[
P_r^T A^T P_r \bar{x} = P_r^T A^T b,
\]
where $P_r = [p_1 \ldots p_r]$ and $x^* = P_r x$. A consequence of the above discussion is that
\[
\|x^*\|^2 = \beta_1^2 \sum_{i=1}^{r} f(\sigma_i^2) \mu_i^2, \quad \mu_i := p_i^T v_1, \; i = 1, \ldots, n.
\]

Golub and Meurant (1997) explain that the main insight is to view the previous sum as the Riemann-Stieltjes integral
\[
\sum_{i=1}^{r} f(\sigma_i^2) \mu_i^2 = \int_{\sigma_r}^{\sigma_1} f(\sigma^2) \, d\mu(\sigma),
\]
where the piecewise constant Stieltjes measure μ is defined as
\[
\mu(\sigma) := \begin{cases}
0 & \text{if } \sigma < \sigma_r, \\
\sum_{j=i}^{r} \mu_j^2 & \text{if } \sigma_i \leq \sigma < \sigma_{i+1}, \\
\sum_{j=1}^{r} \mu_j^2 & \text{if } \sigma \geq \sigma_1.
\end{cases}
\]

Approximations to the integral via Gauss-related quadrature rules yield corresponding approximations to $\|x^*\|^2$.

Our main result leading to an upper bound estimate follows from a Gauss-Radau approximation of (28) with a fixed quadrature node in $(0, \sigma_r^2)$. We begin with a paraphrase of (Estrin et al., 2016, Theorem 2).

Proposition 2 Suppose $f : \mathbb{R} \to \mathbb{R}$ is such that $f^{(2j+1)}(\xi) < 0$ for all $\xi \in (\sigma_r^2, \sigma_1^2)$ and all $j \geq 0$. Fix $\sigma_{est} \in (-\sigma_r, \sigma_r)$, $\sigma_{est} \neq 0$. Let T_k be the tridiagonal generated after k steps of Algorithm 1 and $\varpi_k \in \mathbb{C}$ be chosen so that the smallest eigenvalue of
\[
\tilde{T}_k := \begin{bmatrix} T_{k-1} & \beta_k e_{k-1} \\
\beta_k e_{k-1}^T & \sigma_{est}^2 + \varpi_k^2 \end{bmatrix}
\]
is precisely σ_{est}^2. Then,
\[
\|x^*\|^2 \leq \beta_1^2 \mu_1^2 f(\tilde{T}_k) e_1.
\]

Note that the Poincaré separation theorem ensures that the smallest eigenvalue of each T_{k-1} is at least σ_r^2 and that the Cauchy interlace theorem guarantees that the smallest eigenvalue of \tilde{T}_k is smaller than or equal to that of T_{k-1}. Thus it is possible to choose ϖ_k satisfying the requirements of Proposition 2.

We now comment on the surprising fact that $\varpi_k \in \mathbb{C}$ in Proposition 2. To avoid forming T_k and \tilde{T}_k explicitly, we would prefer to pick a nonzero $\sigma_{est} \in (0, \sigma_r)$ and seek ϖ_k such that σ_{est} is the smallest singular value of
\[
\tilde{B}_k := \begin{bmatrix} L_k & \beta_k e_{k-1} \\
\varpi_k e_{k-1}^T & \sigma_{est}^2 \end{bmatrix}.
\]
(29)
The fact that $\varpi_k \in \mathbb{C}$ is a departure from the computations of Estrin et al. (2016), who establish that the last diagonal of \tilde{T}_k is real: $\alpha_k^2 + \varpi_k^2 \in \mathbb{R}$. In order for ϖ_k^2 to be real, ϖ_k must be either real or purely imaginary. In a numerical implementation of (29), although it is possible to avoid computations in complex arithmetic, we do observe corrections ϖ_k such that the last diagonal is strictly less than α_k^2, i.e., such that ϖ_k is purely imaginary.

An alternative strategy that avoids complex numbers altogether is to pick a nonzero $\sigma_{est} \in (0, \sigma_r)$ and seek ω_k such that σ_{est} is the smallest singular value of
\[
\tilde{R}_k := \begin{bmatrix} R_{k-1} & \delta_k e_{k-1} \\
\omega_k e_{k-1}^T & \omega_k \end{bmatrix}.
\]
(30)
Note that \tilde{R}_k differs from R_k, the R factor in the QR factors of B_k, in the (k,k)-th entry only. In addition, if \tilde{R}_k is the Cholesky factor of \tilde{T}_k, its diagonals are guaranteed to be real and positive and the smallest eigenvalue of \tilde{T}_k will be σ_{est}^2.
As earlier, the Poincaré separation theorem guarantees that the singular values of each \(R_{k-1} \), which are the same as those of \(B_{k-1} \), lie between \(\sigma_r \) and \(\sigma_1 \), and the Cauchy interlace theorem for singular values guarantees that it is indeed possible to choose \(\omega_k \) so that the smallest singular value (30) is \(\sigma_{\text{est}} \). We may now restate Proposition 2 with the above in mind.

Theorem 2 Suppose \(f : \mathbb{R} \to \mathbb{R} \) is such that \(f^{(2j+1)}(\xi) < 0 \) for all \(\xi \in (\sigma_r^2, \sigma_1^2) \) and all \(j \geq 0 \). Fix \(\sigma_{\text{est}} \in (0, \sigma_r) \). Let \(B_k \) be the bidiagonal generated after \(k \) steps of Algorithm 1 and \(\omega_k > 0 \) be chosen so that the smallest singular value of (30) is precisely \(\sigma_{\text{est}} \). Then,

\[
\|x_*\|^2 \leq \beta_1^2 e_1^T f(\tilde{R}_k^T \tilde{R}_k) e_1.
\]

In order to determine \(\omega_k \), we follow Golub and Kahan (1965) and embed \(\tilde{R}_k \) into a larger symmetric matrix to change the singular value problem into an eigenvalue problem. Indeed,

\[
\begin{bmatrix}
0 & \tilde{R}_k \\
\tilde{R}_k^T & 0
\end{bmatrix}
\]

has eigenvalues \(\pm \sigma_i(\tilde{R}_k) \). Define

\[
Y_{2k-2} := \begin{bmatrix}
0 & \gamma_1 & \delta_2 \\
\gamma_1 & 0 & \gamma_2 \\
\delta_2 & \gamma_2 & 0 \\
\gamma_3 & \delta_3 & \delta_3 \\
\vdots & \vdots & \vdots \\
\gamma_{k-1} & \delta_k & \delta_k
\end{bmatrix},
\]

\[
\tilde{Y}_{2k} := \begin{bmatrix}
Y_{2k-2} - \sigma_{\text{est}} I & \delta_k e_{2k-2} \\
\delta_k e_{2k-2}^T & -\sigma_{\text{est}} \omega_k & \omega_k \\
-\sigma_{\text{est}} \omega_k & -\sigma_{\text{est}} & \theta_{2k-1} \\
\omega_k & \theta_{2k-1} & \theta_{2k}
\end{bmatrix} = 0.
\]

Necessarily, \(\theta_{2k-1} \neq 0 \) because otherwise \(h^{(2k)} = 0 \) entirely. Thus we may fix \(\theta_{2k-1} = 1 \) and redefine \(h^{(2k)} = (\theta_1, \ldots, \theta_{2k}-1, 1, \theta_{2k})^T = (\tilde{h}^{(2k)}_{2k-2}, 1, \theta_{2k})^T \). The first block equation reads

\[
\tilde{Y}_{2k} - \sigma_{\text{est}} I h^{(2k)}_{2k-2} = -\delta_k e_{2k-2}.
\]

Let \(\theta_{2k-2} \) be the last entry of \(\tilde{h}^{(2k)}_{2k-2} \), which can be computed by updating the QR factors of \(Y_{2k-2} \) as in (Estrin et al., 2016).

In order to compute \(\omega_k \), note that the last two equations,

\[
\begin{bmatrix}
\delta_k & -\sigma_{\text{est}} & \omega_k \\
\omega_k & -\sigma_{\text{est}} & 1 \\
1 & \theta_{2k}
\end{bmatrix} = 0,
\]

imply that \(\omega_k = \sqrt{\sigma_{\text{est}}^2 - \sigma_{\text{est}} \delta_k \theta_{2k-2}} \).

With \(\omega_k \) computed, we have \(\tilde{R}_k^T \tilde{R}_k = \tilde{T}_k \). We are now interested in efficiently computing the upper bound

\[
\|x_*\|^2 \leq \beta_1^2 e_1^T f(\tilde{R}_k^T \tilde{R}_k) e_1 = \beta_1^2 e_1^T (\tilde{R}_k^T \tilde{R}_k)^{-2} e_1.
\]

The LQ factorization \(\tilde{R}_k = \tilde{M}_k \tilde{Q}_k \) provides the LQ factorization \(\tilde{T}_k = \tilde{R}_k \tilde{M}_k \tilde{Q}_k \), which in turn yields

\[
\|x_*\|^2 \leq \| \tilde{M}_k^{-1} \tilde{R}_k^{-T} \tilde{e}_1 \|^2 = \| \tilde{M}_k^{-T} \tilde{t}_k \|^2 = \| \tilde{z}_k \|^2,
\]
where we define \tilde{t}_k and \tilde{z}_k from $\tilde{R}_k^T \tilde{t}_k = \beta_k e_1$ and $\tilde{M}_k \tilde{z}_k = \tilde{t}_k$ as in (Estrin et al., 2016).

We determine the LQ factorization $\tilde{R}_k = \tilde{M}_k \tilde{Q}_k$ from

$$\tilde{R}_k = \begin{bmatrix} R_{k-1} & \delta_k c_{k-1} \end{bmatrix} = \begin{bmatrix} M_{k-1} & \tilde{\eta}_k^T e_{k-1} \\ \tilde{\delta}_k \end{bmatrix} \begin{bmatrix} Q_{k-1} \\ 1 \end{bmatrix},$$

Thus $\tilde{Q}_k = Q_k$ and \tilde{M}_k differs from M_k in the $(k, k-1)$-th and (k, k)-th entries only, which become

$$\tilde{\eta}_k = \omega_k s_{k-1}, \quad \tilde{\delta}_k = -\omega_k c_{k-1}.$$

Recalling the definition of t_k in (19) and z_{k-1} in (20) we observe that

$$\tilde{t}_k = \begin{bmatrix} t_{k-1} \\ \tilde{\tau}_k \end{bmatrix} \quad \text{and} \quad \tilde{z}_k = \begin{bmatrix} z_{k-1} \\ \tilde{\zeta}_k \end{bmatrix},$$

where

$$\tilde{\tau}_k = -\tau_{k-1} \delta_k / \omega_k = \tau_k \tilde{\gamma}_k / \omega_k \quad \text{and} \quad \tilde{\zeta}_k = (\tilde{\tau}_k - \tilde{\eta}_k z_{k-1}) / \tilde{\varepsilon}_k.$$

From (24) and orthogonality of W_k we now have

$$\|x^* - x_k^C\|^2 = \|x^*\|^2 - \|x_k^L\|^2 \leq \|z_{k-1}\|^2 + \tilde{\zeta}_k^2 - \tilde{\zeta}_k^2 = \tilde{\zeta}_k^2.$$ \hspace{1cm} (35)

4.2 Upper bound on the LSQR error

Obtaining an upper bound on the LSQR error is of interest for two reasons. First, LSLQ may transfer to the LSQR point at any iteration using a simple vector operation. Second, LSQR always produces a smaller error, as formalized by Proposition 1.

Based on Proposition 1, we wish to use the upper bound (35) and the transition (22) to the LSQR point to terminate LSLQ early and obtain an iterate with an error below a prescribed level. Evidently the same upper bound (35) could be used, but Estrin et al. (2016) provide the improved bound

$$\|x^* - x_k^C\|^2 \leq \tilde{\zeta}_k^2 - \tilde{\zeta}_k^2,$$ \hspace{1cm} (36)

where $\tilde{\zeta}_k$ is defined in (20) and $\tilde{\zeta}_k$ is in (34).

5 Regularization

LSLQ may be adapted to solve the regularized least-squares problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \left\| \begin{bmatrix} A \\ \lambda I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^2,$$ \hspace{1cm} (37)

where λ is a regularization parameter. The optimality conditions (NE) become

$$(A^T A + \lambda^2 I)x = A^T b.$$ \hspace{1cm} (38)

Notice that if we run Algorithm 1 on A only, we will produce the factorization

$$\begin{bmatrix} A \\ \lambda I \end{bmatrix} V_k = \begin{bmatrix} U_{k+1} & V_{k} \\ B_k & \lambda I \end{bmatrix},$$ \hspace{1cm} (39)

which we can compare to the factorization achieved when running Algorithm 1 on the entire regularized system,

$$\begin{bmatrix} A \\ \lambda I \end{bmatrix} V_k = \tilde{U}_{k+1} \tilde{B}_k = \tilde{U}_{k+1} \begin{bmatrix} \hat{\alpha}_1 \\ \beta_2 \\ \vdots \\ \hat{\alpha}_k \\ \beta_{k+1} \end{bmatrix},$$ \hspace{1cm} (40)
Note that V_k will remain unchanged, as can be seen from the equivalence between the Golub-Kahan process and the Lanczos process on the normal equations (Saunders, 1995). Given \tilde{B}_k, we could run the non-regularized LSLQ algorithm (using $\hat{\alpha}$ and $\hat{\beta}$ instead of α and β) to obtain all of the desired iterates and estimates. The idea is therefore to compute B_k via Golub-Kahan on (A,b), cheaply compute each $\hat{\alpha}_k$ and $\hat{\beta}_k$ and use them in place of α_k and β_k in the rest of the algorithm. For $k = 3$, the factorization proceeds according to

$$
\begin{bmatrix}
\alpha_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
\alpha_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
\alpha_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\lambda
\end{bmatrix}
$$

$$
\begin{bmatrix}
\hat{\alpha}_2 \\
\hat{\beta}_3 \\
\hat{\beta}_4 \\
\hat{\lambda}_3 \\
\lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
\hat{\alpha}_2 \\
\hat{\beta}_3 \\
\hat{\beta}_4 \\
\lambda_3 \\
\lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
\hat{\alpha}_2 \\
\hat{\beta}_3 \\
\hat{\beta}_4 \\
\lambda_3 \\
\lambda
\end{bmatrix}
$$

We use $\hat{\beta}_{k+1}$ to zero out λ_k, which transforms α_{k+1} into $\hat{\alpha}_{k+1}$ and introduces a nonzero $\hat{\lambda}_{k+1}$ above λ in the next column. We then use a second reflection to zero out $\hat{\lambda}_{k+1}$ using λ, which produces λ_{k+1}. With $\lambda_1 = \lambda$, the recurrences for $k \geq 2$ are

$$
\begin{align*}
\hat{\beta}_k &= (\beta_k^2 + \lambda_k^2)^{1/2}, \\
\hat{c}_k &= \beta_{k+1}/\hat{\beta}_{k+1}, \\
\hat{s}_k &= \lambda_k/\hat{\beta}_{k+1}, \\
\hat{\alpha}_{k+1} &= \hat{c}_k \alpha_{k+1}, \\
\hat{\lambda}_{k+1} &= \hat{s}_k \alpha_{k+1}, \\
\lambda_{k+1} &= (\lambda^2 + \hat{\lambda}_{k+1}^2)^{1/2}.
\end{align*}
$$

6 Numerical experiments

In the experiments reported here, the exact solution of (LS) was computed as the MLS solution using a complete orthogonal decomposition of A via the Factorize package (Davis, 2013). The horizontal axis in plots represents the number of products with A and A^T. LSLQ is implemented in the Julia language1 and is available as part of the Krylov.jl suite of iterative methods from https://github.com/JuliaSmoothOptimizers/Krylov.jl. Section 6.1 and subsection 6.2 document our results on problems from the animal breeding test set and on the seismic inversion problem described in Section 1, respectively.

6.1 Problems from the animal breeding test set

In this section, we use test problems from the animal breeding collection of Hegland (1990, 1993). These over-determined problems have rank-deficiency 1, come in two flavors and sizes, and have accompanying right-hand sides. In the first flavor, a single parameter is fitted per animal, while in the second flavor, two parameters are fitted per animal and A has twice as many rows and columns. The nonzero columns of A are scaled to have unit Euclidean norm.

We found that generating the problems from the original archive requires a small amount of corrections to the programs and several compilation steps. Because we feel that the problems from this set are generally

1http://julialang.org
useful as least-squares test problems, we have created an archive containing the problems as well as the MLS solutions corresponding to the scaled problems in Rutherford-Boeing format (Duff, Grimes, and Lewis, 1997). Our repository can be accessed at https://github.com/optimizers/animal (Orban, 2016).

We begin with an illustration of the non-robust lower bound (27) based on a delay \(d \). Figure 2 plots the actual LSLQ error along with the lower bound with delay (window size) \(d = 5 \) and \(d = 10 \) iterations for problems large and large2 (larger versions of the problems used in Figure 1). The behavior seen is typical. As in the left-hand plot, the lower bound tends to follow the exact error curve tightly when the latter is strictly decreasing. But as the right-hand plot shows, it tends to underestimate the actual error by several orders of magnitude when the latter plateaus, and requires a fair number of iterations to recover, rendering the stopping test unreliable by itself. In both plots, the stopping test used is (27) with \(\varepsilon = 1.0\times 10^{-10} \). The curves for \(d = 5 \) and \(d = 10 \) are almost the same.

![Graph showing error along the LSLQ iterations on problems large and large2 from the animal breeding set. The red and blue curves show the lower bounds with \(d = 5 \) and \(d = 10 \).](image)

Figure 3 illustrates the behavior of our upper bound (35) on problems large and large2 with regularization: a typical scenario for rank-deficient problems whose smallest nonzero singular value is unknown. For a given value \(\lambda \neq 0 \), the smallest singular value of the regularized \(A \) is \(\sigma_n = |\lambda| \). Estrin et al. (2016) show numerically that the upper bound is tighter when \(|\sigma_{\text{est}}| \) is closer to \(|\sigma_n|\), but they do not consider the effect of regularization. To simplify the discussion, we consider only positive values of \(\lambda \). For each value of \(\lambda > 0 \), we set \(\sigma_{\text{est}} := (1 - 1.0\times 10^{-10}) \lambda \) and measure the error with respect to the solution of the regularized problem.

We observe from Figure 3 that increasing \(\lambda \) (and hence \(\sigma_{\text{est}} \)) substantially improves the quality of the upper bound. The reason may be that \(\hat{T}_k \) is moved further away from singularity. In the case of large2 with \(\lambda = 1.0\times 2^{-1} \), the upper bound is exceptionally tight after about 100 iterations. As \(\lambda \) decreases, the upper bound deteriorates, although it remains a potentially useful bound as long as \(\lambda \neq 0 \).

In Figure 4, we compute the bound (36) on the error along the LSQR iterates or, equivalently, along the LSQR points obtained by transitioning from a corresponding LSLQ point. As with LSLQ, the quality of the LSQR upper bound deteriorates when \(A \), or its regularization, approaches rank-deficiency. The LSQR bound appears somewhat looser than the LSLQ bound, although Estrin et al. (2016) note that it could be tightened by incorporating an additional term along a moving window to the right-hand side of (36).

The next experiment illustrates the upper bounds for rank-deficient problems when we have knowledge of \(\sigma_r \). A sparse SVD reveals that the smallest nonzero singular value after scaling is approximately \(\sigma_r = \sigma_{n-1} \approx 0.0498733 \) for problem small and \(\sigma_r = \sigma_{n-1} \approx 0.00499044 \) for small2. In each case, we set \(\sigma_{\text{est}} := (1 - 1.0\times 10^{-10}) \sigma_{n-1} \). In practice, one may need to underestimate further in order to account for inaccurate \(\sigma_r \).
Figure 3: Error along the LSLQ iterations on problems large and large2 with regularization. The red and blue curves show the lower bounds with $d = 5$ and $d = 10$. The cyan curve shows the upper bounds for $\lambda = 1.0 \times 10^{-4}$ (top) and $\lambda = 1.0 \times 10^{-2}$ (bottom).

The error bounds in Figure 5 are quite tight, which suggests that it is important to supply an estimate of σ_r in rank-deficient problems if such knowledge is available. In Figure 5, LSLQ stops as soon as the upper bound on the LSQR error falls below $1.0 \times 10^{-10} \|x^C_k\|$.

6.2 The seismic inverse problem

This section documents experiments on a system arising from the PDE-constrained optimization problem described in Section 1. The problem has the form

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \left\| \begin{bmatrix} \rho A \\ P \end{bmatrix} x - \begin{bmatrix} \rho q \\ d \end{bmatrix} \right\|^2,$$

(43)

where $\rho = 0.1$ is fixed, A is a five-point stencil discretization of a Helmholtz operator, P is a sampling operator (a few rows of the identity), and q and d are fixed vectors. In our sample problem, A is square of size $83,600$ and P has 248 rows. The columns of the operator were not scaled as in the previous section, as that worsened the performance of LSLQ. A complete orthogonal decomposition, used to compute the exact solution, reveals that the operator of (43) has full rank but its smallest nonzero singular value is of order 1.0×10^{-6}. A partial sparse SVD suggests that there are several such small singular values. In order to obtain upper error bounds, it was necessary to set $\sigma_{\text{est}} = 1.0 \times 10^{-7}$ to avoid domain errors in computing the square root in the expression for ω_k (preceding (32)). The left plots of Figure 6 illustrate the upper and lower bounds on the error and the
Figure 4: Error along the LSQR iterations on problems large and large2 with regularization. The cyan curve shows the upper bounds for $\sigma_{\text{est}} = 1.0\times 10^{-4}$ (top) and $\sigma_{\text{est}} = 1.0\times 10^{-2}$ (bottom).

The large number of iterations needed to decrease the error by a factor of 1.0×10^{10}. The bounds on the LSLQ and LSQR errors nonetheless track the exact errors quite accurately, with the upper bound on the LSQR error overestimating by one or two orders of magnitude. Though the factor 1.0×10^{10} is far too demanding in practice, it illustrates that many iterations are likely when there are many tiny singular values. The situation is similar when the problem is regularized and the error is measured with respect to the exact solution of the original, unregularized, problem. The right plots of Figure 6 show the bounds in the presence of modest regularization when the error is computed with respect to the exact solution of the regularized problem. Dramatically fewer iterations are needed to achieve a corresponding decrease in the error. Note the remarkable tightness of the LSLQ and LSQR bounds, with the LSQR upper bound consistently overestimating by about one order of magnitude. The improved performance on the regularized problem suggests that a regularized optimization approach, such as that of Arreckx and Orban (2016), could be appropriate.
7 Discussion and perspectives

LSLQ is an iterative method for least-squares and least-norm problems with the attractive property that it ensures monotonic reduction of the error. Although the error is provably worse along LSLQ iterates than along LSQR iterates, it is possible to develop cheaply computable lower and upper bounds on the former. The intimate relationship between LSLQ and LSQR provides a corresponding upper bound on the error along LSQR iterates. Such an upper bound was not previously available and may be used in a stopping criterion to terminate the LSLQ iterations early before transition to an LSQR point.

Strakoš and Tichý (2002) justify the adequacy of error estimates in the conjugate gradient method by way of a finite-precision arithmetic analysis. The upper bounds described in the present paper assume exact arithmetic and orthogonality of the Golub-Kahan bases. Although both upper bounds have been observed to remain upper bounds in our numerical experiments in spite of inexact arithmetic, a finite-precision analysis is the subject of ongoing work and is necessary if one is to recommend using the bounds in a practical setting.

USYMLQ (Saunders, Simon, and Yip, 1988) is only applicable to consistent systems, but it is possible to develop a variant that is implicitly applied to (NE). USYMLQ also produces monotonic error, but with no possibility of transferring to the LSQR point. Because USYMLQ reduces to SYMMLQ in the symmetric case, the result must be equivalent to LSLQ in exact arithmetic.

Figure 5: Error along the LSLQ and LSQR iterations on problems small and small2 without regularization. Both problems have rank-deficiency 1.
LSLQ may be generalized to the solution of symmetric quasi-definite systems (Vanderbei, 1995) of the form

\[
\begin{bmatrix}
 M & A \\
 A^T & -N
\end{bmatrix}
\begin{bmatrix}
 r \\
 x
\end{bmatrix}
=
\begin{bmatrix}
 b \\
 0
\end{bmatrix},
\]

(44)

where \(M = M^T \) and \(N = N^T \) are positive definite. Indeed (44) represents the optimality conditions of

\[
\text{minimize } x \in \mathbb{R}^n \frac{1}{2} \left(\begin{bmatrix} A \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right)^2_E,
\]

(45)

where \(E = \text{blkdiag}(M^{-1}, N) \). Under the assumption that solves with \(M \) and \(N \) can be performed cheaply, which is the case in certain optimization schemes and fluid flow simulations (Arioli and Orban, 2013), it suffices to replace Algorithm 1 with its preconditioned variant, stated as (Arioli and Orban, 2013, Algorithm 4.2), and to set the regularization parameter \(\lambda = 1 \).

We expect that solving (45) using the preconditioned and regularized LSLQ is more efficient than a straightforward application of SYMMLQ to (44). The reasoning is as follows. Note that (44) also represents the optimality conditions of the least-norm problem

\[
\text{minimize } x \in \mathbb{R}^n, r \in \mathbb{R}^m \frac{1}{2}(\|r\|^2_M + \|x\|^2_N) \quad \text{subject to } M r + Ax = b.
\]

(46)
We may construct a variant of LSLQ that solves (46) by implicitly applying SYMMLQ to the normal equations of the second kind, which in this case are

\[(AN^{-1}A^T + M)x = b.\]

Let us call that variant LNLQ, where LN stands for least norm. LNLQ is to LSLQ as the method of Craig (1955) is to LSQR. Following the same reasoning as Saunders (1995) and Arioli and Orban (2013), it appears possible to show that applying SYMMLQ to (44) is equivalent to applying both LSLQ to (45) and LNLQ to (46). If that conjecture holds, SYMMLQ on (44) would perform twice the work by solving two equivalent problems simultaneously.

References

